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It can be expected that medical treatments in the future will be individually tailored for each
patient. Here we present a step towards personally addressed drug therapy. We consider
multiple myeloma treatment with drugs: bortezomib and dexamethasone. It has been
observed that these drugs are effective for some patients and do not help others. We
describe a network of chemical oscillators that can help to differentiate between non-
responsive and responsive patients. In our numerical simulations, we consider a network
of 3 interacting oscillators described with the Oregonator model. The input information is
the gene expression value for one of 15 genes measured for patients with multiple
myeloma. The single-gene networks optimized on a training set containing outcomes
of 239 therapies, 169 using bortezomib and 70 using dexamethasone, show up to 71%
accuracy in differentiating between non-responsive and responsive patients. If the results
of single-gene networks are combined into the concilium with the majority voting strategy,
then the accuracy of predicting the patient’s response to the therapy increases to ~ 85%.

Keywords: chemical computing, oscillations, Oregonator model, networks, genetic optimization, multiple myeloma,
gene expression values

1 INTRODUCTION

The medical therapy of the future will be based on drugs individually selected for patient needs.
Individual approach is necessary because it has been observed that one standard treatment does not
work for all patients with the same type of cancer (Mulligan et al., 2007). An example is the therapy
for patients with multiple myeloma. The drugs as bortezomib or dexamethasone have shown a good
anti-myeloma effect, and they has been approved for treatment for patients with multiple myeloma
(Field-Smith et al., 2006;1). But the literature reports suggest that myeloma consists of many variants
with different molecular pathologies (Hideshima et al., 2004; Mulligan et al., 2007). For certain
subtypes, the drugs mentioned above can be effective, and for others, they may not. We can hope that
using the gene expression profiling one can determine if certain drugs will be effective on a particular
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patient or not (Lesko and Woodcock, 2004). Considering the
challenges one can face with genomic analysis for each patient
(Zhan et al., 2006), we present a method that can be used to
predict the drug effectiveness if the expression values of selected
genes are known.

Our study is based on the results published in (Mulligan et al.,
2007), its Supplementary Material (2) and the data of clinical
tests available on the related web page (3). We considered this
important medical problem to demonstrate the power of
chemical computers operating with nonlinear chemical
processes (Adamatzky et al., 2005). There are zillions of
chemical computers operating around us because information
processing in living organisms is based on chemical reactions.
Animals and humans, using their nerve systems and brains, can
control complex life processes, create models of the environment
they function and even develop self-awareness. It demonstrates
that Nature-made chemical computers can perform very complex
computational tasks at low energy consumption. However, the
development of human-made chemical computers has not shown
as spectacular progress as semiconductor microprocessors
(Waldrop, 2016). The binary information coding combined
with robust logic gates, perfectly suited for electronic
computers (Feynman et al., 2000), does not work for chemical
computers because the lifetime of reagents is short. Therefore, the
bottom-up approach (Feynman et al., 2000) does not help to
design efficient chemical information processing devices. There
are a few examples of the high computing potential of a chemical
medium and its ability for parallel processing, such as the prairie-
fire algorithm for labyrinth search (Steinbock et al., 1995) or
image processing with a photosensitive variant of oscillatory
Belousov-Zhabotinsky reaction (Kuhnert et al., 1989).
However, the number of such human-proposed, efficient
algorithms is limited. An alternative to the cleverness of a
human researcher is the top-down machine design, where the
computing medium is optimized to perform a selected task. The
design of a chemical McCulloch-Pits neuron (McCulloch and
Pitts, 1943) is difficult and requires high precision in setting the
medium parameters (Gorecka and Gorecki, 2006). In this respect,
networks of interacting chemical oscillators seem to be an
interesting candidate for chemical computers. The recent
results (Adamatzky et al., 2011; Holley et al., 2011; Szymanski
et al., 2011; Adamatzky et al., 2012) demonstrated that networks
of chemical oscillators can be easily assembled in experiments and
studied for around a day (Muzika and Górecki, 2022). Such
networks can be optimized to perform classification tasks
(Gizynski et al., 2017) and process information with the best
possible use of the chemical medium. The top-down design
allows to design oscillator networks that perform functions for
which a straightforward algorithm does not exist, as the
determination of the cancer type on the basis of medical tests
(Gizynski and Gorecki, 2017a).

In this paper, we describe another application of chemical
oscillator networks for a medically oriented problem. We present
a method that can help to determine the outcome of multiple
myeloma therapy with bortezomib or dexamethasone drugs. The
method is supposed to determine the response of a patient with a
given gene expression profile to the therapy with the drugs
mentioned above. The expression values of genes listed in
Table 1 were considered. The functions of selected genes can
be found in (4). For example, the gene RPS7 we consider in the
discussed example of a single gene classifier encodes a ribosomal
protein that belongs to the S7E family of ribosomal proteins. The
gene CXCL5 encodes a protein that is a member of the CXC
subfamily of chemokines, which recruit and activate leukocytes.
This protein is proposed to bind the G-protein coupled receptor
chemokine (C-X-C motif) receptor 2 to recruit neutrophils,
promote angiogenesis, and remodel connective tissues. It is
believed to play a role in cancer cell proliferation, migration,
and invasion. The gene SERP1 is predicted to be involved in the
endoplasmic reticulum unfolded protein response and protein
glycosylation and act within several processes, including
multicellular organism aging, positive regulation of organ
growth, and positive regulation of peptide hormone secretion.

In our study, we used the gene expression values provided by
the authors of reference (Mulligan et al., 2007). Total RNA was
isolated using Qiagen RNAeasy kit (5), and the expression values
were measured by using the microarray technique (6). The
information on the detailed procedure of myeloma cells
enrichment, producing the expression of genes in myeloma
cells, and quality control metrics can be found in Document 1
listed at the end of the web page (7). The records of the training
dataset containing the gene expression values were generated
from the GSM files describing the clinical results that can be
found at (8). We included our training dataset in the
Supplementary Material as the database file Table 1.xlsx. It
contains the gene expression values data (columns A-O)
together with the therapy result (Q column, 0 for
nonresponsive and 1 for responsive case). Moreover, the
database file includes information on the drug used (S
column, PS341 for bortezomib and DEX for dexamethasone)
and on the corresponding name of the GSM file with patient
identification (U column). We considered information on 239
clinical tests. There were 169 tests with bortezomib, of which 84
were nonresponsive and 85 responsive, as well as 70 tests with
dexamethasone, of which 42 were nonresponsive and 28
responsive.

Our approach is based on processing gene expression values
with a network of chemical oscillators optimized for correlations
between a single gene expression value and the result of therapy.
The information processing network takes gene expression values

2https://ashpublications.org/blood/article/109/8/3177/23711/Gene-expression-
profiling-and-correlation-with
3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9782

4https://www.ncbi.nlm.nih.gov/gene
5https://www.qiagen.com/us/products/discovery-and-translational-research/dna-
rna-purification/rna-purification/total-rna/rneasy-kits/
6https://en.wikipedia.org/wiki/DNA_microarray
7https://ashpublications.org/blood/article/109/8/3177/23711/Gene-expression-
profiling-and-correlation-with
8https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9782
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as the inputs. The network functionality is optimized for
maximum correlations between the result of therapy and the
number of oscillations observed on the output oscillator, which is
regarded as the network answer. The ideal network should
simultaneously process information coming from many genes.
However, it has been observed that in the case of many inputs, the
evolutionary optimization of an information processing chemical
network is long and ineffective because there are many local
optima. In order to simplify the numerical simulations, we
restricted our attention to networks made of three oscillators
that process the expression data of a single gene. A typical
optimized network returns ~ 68% accuracy of prediction if for
a given gene expression level, the therapy using bortezomib or
dexamethasone is an effective treatment for multiple myeloma or
not. We combined answers of single gene networks and made a
concilium of networks based on the majority voting strategy. If
such a strategy is applied to 15 considered genes, then we can
predict the patient response to the drug therapy with an accuracy
of ~85% measured on the training dataset.

The paper is organized as follows: in Section 2 we define the
procedure of input data normalization, introduce a 3-oscillator
network and describe its optimization method. In the next
section, we present optimization results and give the
parameters of the best networks that correlate the individual
gene expression values with the drug effectiveness. These
networks are used for the concillum deciding if the drug
therapy can be effective.

2 THE CLINICAL DATA AND THEIR
CLASSIFICATION

In the available dataset R = {rk, k = 1, 239} we have 239 patient
records and each record rk contains information on the expression
values of i = 15 genes (ei,k, i = 1, 15) listed in Table 1. Moreover,
Table 1 gives the maximum (Maxk(ei,k)) and the minimum
(Mink(ei,k)) gene expression values for each gene in R. The

outcome of the therapy zk ∈ {0, 1}, where 0 stands for
nonresponsive therapy and 1 denotes responsive one, can be
regarded as the record type. Therefore, a record rk has the form
of 16-tuple: rk = (e1,k, . . ., e15,k, zk). The problem of deciding if the
therapy can be effective for a given patient reduces to the problem of
finding an algorithm that gives the correct record type z provided
that the predictor values {ei, i = 1, 15} are known. It can be noticed
that on this test group of patients, two trivial algorithms: 1) always
use drugs and 2) do not use drugs because they will not help lead the
correct therapy results in 47 and 53% cases respectively.

The values of a single gene expression weakly correlate with
the efficiency of the drug therapy. Figure 1 illustrates the
correlations between the expression of the RPS7 gene and the
responsive/nonresponsive results observed in clinical tests. The

TABLE 1 | Genes considered for determining the drug response and their range.

Gene no. i Gene name Gene expression value
range in the

set R: Mink(ei,k) − Maxk(ei,k)

Histogram accuracy (%)

1 SERP1 315.8–1879.8 56.9
2 NPM1 1,556.8–9,849.1 56.9
3 PIK3R1 59.8–437.1 57.7
4 APEX1 200.7–1741.2 58.9
5 DAPP1 69.9–564.5 59.4
6 NRAS 38.8–679.2 55.6
7 RRAGC 148.9–679.2 61.1
8 CFLAR 135.7–2000.7 56.9
9 CXCL5 1.09–58.8 57.3
10 IL15 13.3–562.05 58.9
11 NFKβ2 54.7–2,848.01 56.9
12 COX7C 559.5–5,476.9 61.5
13 RPS7 1,142.48–12,167.3 62.3
14 RPS13 2079.7–23,208.7 60.6
15 UQCRH 370.82–5,554.15 60.2

FIGURE 1 | The histogram showing correlation between the expression
of the RPS7 gene and responsive (red)/nonresponsive (blue) results of drug
therapy. The range of gene expression values corresponding to each bin are
given in Table 2.
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whole range of gene expression values is divided into 10
subintervals (bins) of the same length, and their ranges are
given in Table 2. It can be noticed that if the gene expression
value of RPS7 is within bins no. 1,2,3 or 10, then the probability of
successful therapy is higher than its failure. On the other hand, if
the expression of the RPS7 gene is above 4,445 but below 11,065
then it is more likely that multiple myeloma will not respond to
the drug. Using this rule, we can plan the therapy with an
accuracy of 62.3%, which is much higher than that of the
trivial algorithms mentioned above. Of 239 cases included in
the dataset R, we obtained 70 correctly determined nonresponsive
cases and 79 correctly determined responsive ones. We also
observed 56 wrongly determined nonresponsive cases and 34

wrongly determined responsive ones. In the following, we show
how this accuracy can be improved with simple classification
networks based on interacting chemical oscillators.

It can be seen in Table 1 that the expression values
significantly differ between genes. In order to unify the data
for each gene we normalized the set of gene expression values ei,k
for all 239 patients using the formula:

pi,k � ei,k −Mink ei,k( )
Maxk ei,k( ) −Mink ei,k( ) (1)

As an example the data {p13,k, k = 1, 239} are illustrated in
Figure 2. For clearer presentation of data we show points {(p13,k,
yk), k = 1, 239} where yk is a random number in the interval [0,
1]. The random y-coordinates Y = {yk, k = 1, 239} were used to
make the distribution of the training data easier to visualize, but
of course, only the x-coordinate has a medical meaning. The
same set of random y-coordinates Y was used to define points
illustrated in Figures 3, 5, 7. The red and blue colors
differentiate responsive and nonresponsive results of drug
therapy, respectively. It can be seen that points
corresponding to responsive and nonresponsive cases are not
separated by the x-coordinate, related to the expression of
gene no.13.

If we apply the rule following from the histogram shown in
Figure 1 to the dataset of normalized data Q = {qk, k = 1, 239}
where qk = (p1,k, . . ., p15,k, zk) we obtain the distribution of

TABLE 2 | The range of gene expression values in the bins considered in the
histogram shown in Figure 1.

Bin number Range of gene
expression values in

the Bin

1 1,142.4–2,244.9
2 2,244.9–3,347.4
3 3,347.4–4,449.9
4 4,449.9–5,552.4
5 5,552.4–6,654.8
6 6,654.8–7,757.3
7 7,757.3–8,859.8
8 8,859.8–9,962.3
9 9,962.3–11,064.8
10 11,064.8–12,167.3

FIGURE 2 | The distribution of normalized values of the RPS7 gene
expression corresponding to responsive (red) and nonresponsive (blue)
results of drug therapy respectively. The values of p13,k are represented by the
x-coordinate of marked points. The y-coordinate was randomly
generated to differentiate points.

FIGURE 3 | The distribution of normalized values of correctly and
wrongly determined therapies using the majority rule based on the histogram
of Figure 1. Red and blue points mark correctly determined responsive and
nonresponsive records respectively. Black and green points mark
wrongly determined responsive and nonresponsive records. The values of
p13,k are represented by the x-coordinate of marked points. The y-coordinate
was randomly generated to differentiate points and it is the same as in
Figure 2.
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correctly and wrongly determined results of drug therapy
illustrated in Figure 3.

In the following, we consider the classification of the dataset Q
using a network of interacting chemical oscillators. The idea of
such computing was presented in the number of our papers
(Gizynski and Gorecki, 2017a; Gizynski et al., 2017; Gorecki and
Bose, 2020). We assume that there is a factor that controls
oscillators and can inhibit oscillatory behavior. Such
assumption is supported by the properties of Belousov
Zabhotinsky(BZ) reaction (Belousov, 1959; Zhabotinsky, 1964)
that has been widely used as a medium for chemical computing
(Tóth and Showalter, 1995; Adamatzky et al., 2005; Yoshikawa
et al., 2009; Gorecki et al., 2015; Dueñas-Díez and Pérez-
Mercader, 2019; Proskurkin et al., 2020). The BZ-reaction is
an oscillatory catalytic process (Epstein and Pojman, 1994).
Among its reagents, we can distinguish HBrO2 acting as the
reaction activator and Br− ions that are reaction inhibitors. It has
been observed that for specific catalysts (for example, the
ruthenium complex Ru(bpy)3), the reaction is photosensitive
(Kuhnert, 1986; Kuhnert et al., 1989). The illumination with a
blue light generates Br− ions that suppress oscillations (Kádár
et al., 1997). The Oregonator model with two variables u and v
representing concentrations of HBrO2 and the oxidized form of
the catalyst respectively is described by the equations (Rovinskii
et al., 1984; Adamatzky et al., 2005):

du

dt
� 1
ε

u − u2 − fv + ϕ t( )( ) u − q

u + q
( ) (2)

dv

dt
� u − v (3)

The time evolution of a medium where BZ-reaction proceeds
are determined by the values of parameters: f, q, and ε. The
parameter ε sets up the ratio of time scale between variables u and
v, q is the scaling constant, and f is the stoichiometric coefficient.
The time-dependent function ϕ(t) is related to the medium
illumination. The values of parameters f, q and ε can be
selected such that for small ϕ(t) there are oscillations in u and
v, but for a large ϕ the system converges to a stable stationary state
(Kádár et al., 1997; Gorecki et al., 2014). Therefore, the value of ϕ
can be interpreted as the light intensity in the Ru-catalyzed BZ-
reaction. It can be used as an external factor to suppress
oscillations or restore them. In the following, we used a
modified Oregonator model to describe the time evolution of
the considered computing oscillator networks.

There are a few arguments for the selection of the 2-variable
Oregonator model. First, it provides a more realistic description
of an oscillator network based on BZ-reaction than the
oversimplified event-based-model used in early studies on
computing networks of oscillators (Gizynski and Gorecki,
2017a; Gizynski et al., 2017). For example, the Oregonator
model takes into account the effect of combined excitation of
an oscillator by a few neighbors, which is missing in the event-
based-model. Second, the model is still computationally simple,
and it allows to perform a complex evolutionary optimization
involving a huge number of evaluations of network evolution.
Moreover, despite its simplicity, it provides a better than

qualitative description of many phenomena related to BZ-
reaction. It correctly describes the oscillation period as a
function of reagent concentration and also can be used to
model non-trivial phenomena like the migration of a spiral in
an electric field (Sutthiopad et al., 2014) or reaction of a
propagating pulse to time-dependent illumination (Tanaka
et al., 2007). Of course, a model with a larger number of
variables gives a more realistic description of BZ-reaction but,
on the other hand, requires a more precise model of interactions
between oscillators.

An example illustrating the idea of a considered computing
oscillator network is illustrated in Figure 4A (Gorecki and
Bose, 2020). The network is formed by three coupled
oscillators marked by circles. We assume that the output
information can be extracted from the observation of the
network evolution during the time interval [0, tmax]. More
precisely, the output information is coded in the number of
activator maxima that are higher than a threshold value (in
our study, this is 0.05) that are observed within the time
interval [0, tmax] on a selected oscillator of the network. We
consider time-dependent illumination ϕj(t) of the oscillator #j
in the form:

ϕj t( ) � 0.1 · 1.001 + tanh −10 t − tillum j( )( )( ) (4)

FIGURE 4 | (A) An example illustrating the idea of a computing oscillator
network. (B) The structure a network that produces a high correlation
between the RPS7 gene expression and the result of drug therapy. The
symbol In13 marks input oscillators. The rightmost oscillator is a normal
one, and it is also the output oscillator what is indicated with a double circle.
(C) Correlations between the success of therapy and the number of activator
maxima observed on the output oscillator.
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This functional dependence is the same for every oscillator;
however, the value of parameter tillum(j) differs between oscillators.
At the beginning of evolution, the inhibiting factor is high, which
means that the oscillator is in a stationary state. For times t > tillum(j)
oscillations on the jth oscillator appear. At long times the value of ϕi(j)
approaches 0.0001. For such illumination, Eqs 2, 3 produce
oscillations characterized by the period of 8.2 time unit.

The use of illumination time (or, in general, the inhibition time
for an oscillator) tillum to influence oscillators is inspired by our
experiments in which oscillations in individual BZ-droplets were
controlled by blue LEDs (Gizynski and Gorecki, 2017b). In these
experiments, we used just two illumination intensities: a low one
for which the droplet was oscillating and a high one inhibiting
oscillations. The transitions between the steady state and
oscillations predicted by the 2-variable Oregonator model were
in qualitative agreement with observations. For further studies, it
will be interesting to consider more complex forms of time-
dependent illumination because it has been observed that the
time evolution of BZ-medium depends on the rate of changes in
applied illumination (Tanaka et al., 2007).

Oscillators that form a computing network are of one of two
types: the input oscillators and the normal ones (Gizynski and
Gorecki, 2017a; Gizynski et al., 2017; Gorecki and Bose, 2020). If
the jth oscillator is considered as a normal one, then the value of
tillum(j) is fixed. If this oscillator is consider as the input of a
predictor pi then the value of tillum(j) is functionally related to pi.
For our analysis, we assume that the function has the form:

tillum j( ) � tstart + tend − tstart( )ppi (5)

The transformation given by Eq. 1 with parameters listed in
Table 1 normalized the data included in the test dataset R to the
interval [0, 1]. But we would like to know if the therapy is effective for
any potential patient. Assume that the measured gene expression
values are ~ei, i = 1, 15. It can happen that some of ~ei are outside of the
range listed in Table 1. Applying transformation (Mulligan et al.,
2007) we obtain the corresponding ~pi outside [0, 1]. Nevertheless,
according to Eq. 5 such input values also produce meaningful values
of tillum(j) that are accepted by gene information processing oscillator
networks discussed below.

There is the output oscillator in the network. For fixed
parameters describing the network, we select the output
oscillator as the one that produces the highest accuracy of
predicting record types for the dataset used for network
training. In order to determine the network accuracy, we
applied the following method. The network time evolution
is simulated for all records of Q. For each oscillator and for
each number of activator maxima, we formulate the
relationship between the number of activator maxima and
the outcome of therapy based on the majority of cases. The
oscillator for which the number of errors is minimized is
regarded as the output one.

The coupling between oscillators, indicated by two direction
arrows in Figure 4A is achieved by reactions that extend the
original Oregonator model. We assume that the coupling is of the
activatory type and occurs via the exchange of reactor activators
between oscillators (Gorecki and Bose, 2020; Bose and Gorecki,
2022). Let Ui denotes the activator of the ith oscillator. The
exchange is described by reactions:

Uj + Bj → Ui + Ci (6)
Ui + Bi → Uj + Cj (7)

thus the coupling between oscillators is symmetric. We also
assumed that the activator of each reaction can spontaneously
decay in the process:

Uj +Dj → products (8)
The symbols B, C and D appearing in the reactions above denote

other molecules involved in these reactions. The concentrations of B
and D (b, d) were assumed to be high with respect to the
concentrations of activator and inhibitor, and hence their
concentration was treated to be constant. If kB and kA are the
reaction rate constants of reactions corresponding to coupling and
decay respectively then the decrease in activator concentrations is
described by the terms: kBbjuj, kBbiui, and kAdjuj respectively. Having
in mind high concentrations of Bj and Dj we can write those as βuj,
βuj and αujwhere α and β are parameters with values controlled by b
and d.

On the basis of the above assumptions we can formulate the
following equations describing the time evolution of the network:

duj

dt
� 1
ε

uj − u2
j − fvj + ϕj t( )( ) uj − q

uj + q
( ) − α + β ∑

i�1,m
sj,i⎛⎝ ⎞⎠uj

+ β ∑
i�1,m

sj,iui

(9)

FIGURE 5 | Location of correct and incorrect predictions on the result of
drug therapy by a network of oscillators optimized for the RPS7 gene. The
values of p13,k are represented by the x-coordinate of marked points. The
y-coordinate is randomly generated to differentiate points and is the
same as in Figure 2.
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dvj
dt

� uj − vj (10)
where i,j represent the jth and ith oscillator and m is the number
of oscillators in the network. The variables uj and vj denote the
concentration of an activator Uj and an inhibitor Vj respectively.
The symbols sj,i are defined as:

sj,i = 0 if j = i or if j ≠ i and oscillators #j and #i do not interact,
sj,i = 1 if j ≠ i and oscillators #j and #i do interact.
In our simulations we used the following set of Oregonator

model parameters: ε = 0.3, q = 0.002, f = 1.1. For ϕj(t = 0) = 0.2
and these parameter values the stable steady state of Eqs 2, 3 is uj
= 0.00204 and vj = 0.00204.

In order to define an information processing chemical oscillator
network we have to specify many parameters: the number of
oscillators m, the geometry of their connections (sj,i), location of
input and normal oscillators, all parameters for a model of chemical
oscillations (ε, q and f), rates for reactions responsible for interactions
between oscillators (α, β) the observation time tmax, illumination times
for all normal oscillators tillum(i) and parameters tstart and tend that
translate an input value into the illumination of an input oscillator (cf.
Eq. 5). The problem is even more complicated as we can consider
other models of chemical oscillators than Oregonator, different
functions linking input values with the time interval within which
the inhibiting factor is applied, and various models for coupling

TABLE 3 | The parameters of networks that give the best correlations between the number of activator maxima on the output oscillator and the therapy result.

Gene
no.

tmax tstart tend α β Input
oscillators

Output
oscillator

Normal
oscillators

tillum (i)

1 77.35 28.11 2.31 0.69 0.08 1 2 2, 3 tillum (2) = 17.63
tillum (3) = 7.24

2 77.55 2.03 33.77 0.7 0.07 1 1 2, 3 tillum (2) = 8.73
tillum (3) = 4.33

3 80 63.81 2.26 0.7 0.08 1, 2 1 3 tillum (3) = 8.58
4 77.45 6.02 35.37 0.68 0.074 1 1 2,3 tillum (2) = 8.26

tillum (3) = 2.84
5 80 2.45 68.46 0.62 0.06 1, 2 3 3 tillum (3) = 4.34
6 80 2.1 42.37 0.7 0.09 1 1 2, 3 tillum (2) = 2.58

tillum (3) = 12.11
7 80 1.87 69.8 0.63 0.06 1 2 2, 3 tillum (2) = 3.51

tillum (3) = 5.28
8 70.3 1.82 32.68 0.70 0.081 1 1 2, 3 tillum (2) = 2.64

tillum (3) = 10.68
9 74.63 2.49 28.12 0.70 0.08 1, 2 3 3 tillum (3) = 10.56
10 80 2.56 29.14 0.7 0.06 1, 2 3 3 tillum (3) = 4.33
11 80 2.74 29.05 0.69 0.07 1 2 2, 3 tillum (2) = 3.16

tillum (3) = 7.25
12 70.79 70.65 1.57 0.59 0.09 1, 2 1 3 tillum (3) = 13.42
13 80 2.48 51.09 0.7 0.07 1, 2 3 3 tillum (3) = 2.0
14 80 36.28 2.79 0.7 0.08 1, 2 3 3 tillum (3) = 4.39
15 75.71 62.57 3.52 0.66 0.08 1, 2 3 3 tillum (3) = 0.78

TABLE 4 | The rules that translate the number of activator maxima on the output oscillator and the effective therapy using bortezomib or dexamethasone drugs.

Input gene no. Number of activator
maxima for responsive

therapy

Number of activator
maxima for nonresponsive

therapy

Accuracy %

1 0, 1, 3, 5, 7, 10 2, 4, 6, 8, 9, 11 66.5
2 3, 6, 7, 9, 10 1, 2, 4, 5, 8, 11 60.0
3 2, 6, 7, 8, 9, 11 1, 3, 4, 5, 10 68.2
4 1, 2, 3, 4, 7, 9 0, 5, 6, 8 67.7
5 1, 5, 7, 9 3, 4, 6, 8, 10, 11 68.2
6 2, 5, 6 0, 1, 3, 4, 7, 8, 9 67.7
7 2, 6,9 1, 3, 4, 5, 7, 8, 10, 11 69.0
8 0, 2, 4, 6, 7, 8, 9 1, 3, 5, 10 69.4
9 0, 2, 3, 5, 7, 8 1, 4, 6, 9, 10 66.5
10 1, 3, 6, 7, 10 2, 4, 5, 8, 9, 11 66.5
11 1, 2, 6, 7, 11 3, 4, 5, 8, 9, 10 69.8
12 2, 3 1, 3, 4, 5, 6, 7, 8 69.8
13 1, 3, 4, 5, 9, 10 0, 2, 6, 7, 8 71.1
14 0, 1, 2, 4, 7 3, 5, 6, 8, 9, 10, 11 68.2
15 3, 4 1, 2, 5, 6, 7, 8, 10 69.4
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between oscillators. We do not know any algorithm that allows for a
straightforward design of the optimum oscillator network for a given
problem. Still, we can apply a parameter optimization algorithm to a
training dataset in the hope it produces a network that gives a
reasonable solution to the problem. However, optimization of all
parameters mentioned above represents a computational problem of
very high complexity. Before starting the optimization, we introduced
a number of simplifications:

(1) we restricted our attention to classifiers formed by m = 3
oscillators,

(2) we assumed that each oscillator interacted with all others, so
sj,i ≡ 1 for j ≠ i. The geometry of such network is illustrated in
Figure 4A.

(3) There has to be an input oscillator in the network and a
normal one. Without the input oscillator, the network
returns the same answer on all inputs. Without the
normal oscillator, the network evolves like a single
oscillator. Keeping in mind the symmetry of the
considered network, we can assume that the oscillator #1
is the input oscillator and the oscillator #3 is a normal one.
The role of the oscillator #2 is the subject of optimization.

FIGURE 6 | Comparison between the accuracy of predictions of the result of drug therapy based on the histogram of gene expression values (red bars) and the
optimized network of oscillators (blue bars). The gene numbers correspond to these in Table 1.

TABLE 5 | The accuracy of determination if the therapy using the bortezomib or dexamethasone drugs is efficient for different majority rules. The results for the optimized
network and the network with modified parameters (cf. Table 6) are compared.

The majority rule The concillum accuracy (%) The accuracy of
concillium for bortezomib

cases only (%)

The accuracy of
concillium for dexamethasone

cases only (%)

The accuracy of
concillium with modified

networks (%)

14 or more 7.1 7.6 5.7 8.3
votes for
13 or more 17.1 19.5 11.4 17.1
votes for
12 or more 30.9 34.3 22.8 28.0
votes for
11 or more 43.0 43.7 41.4 40.5
votes for
10 or more 61.5 62.1 60 56.9
votes for
9 or more 77.4 78.6 74.2 69.0
votes for
8 or more 84.9 85.7 82.8 82.8
votes for
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After these simplifications the network is fully characterized by
tmax, α, β, tstart, tend, tillum (3), the role of oscillator #2 and if it is the
normal one, its illumination time tillum (2). We optimized the values
of these parameters using Q as the training dataset. The fitness
function of evolutionary optimization was the maximum accuracy
between the network output coded in the number of activator
maxima observed on one of the oscillators and the record type z
(Gizynski and Gorecki, 2017a; Gizynski et al., 2017; Gorecki and
Bose, 2020). The time evolution of networks was obtained by solving
Eqs 9, 10 numerically using 5-th order Cash-Karp algorithm (Cash
and Karp, 1990) with dt = 10–3 time steps. For a given network, all
three oscillators were considered as potential candidates for output
one. The oscillator that produced the highest accuracy on the training
dataset was regarded as the output one. The applied evolutionary
algorithm is a standard one (Goldberg, 1989), and it has been
described in our previous papers (Gizynski and Gorecki, 2017a;
Gizynski et al., 2017; Gorecki and Bose, 2020). The optimization
started with 100 networks with randomly generated parameters. The
next generation of networks included 5 top fit networks of the
previous generation and 95 networks formed by recombination of
parameters of two networks selected from 40 best networks of the
previous generation. Each network obtained by recombination was
then allowed to mutate. Mutations included the values of all
parameters and the type of oscillator #2. The optimized network
was obtained after 500 evolutionary steps.

3 RESULTS

The evolutionary optimization described in the previous
Section was used to design networks with a high correlation

between the number of activator maxima observed on one of
the oscillators and the result of drug therapy. As an example,
we show such a network for linking the RPS7 normalized gene
expression value with the success of therapy. For this input, the
evolutionary optimization produced the network illustrated in
Figure 4B. It is composed of two input oscillators, marked with
In13, that accept the value of p13,k. The rightmost oscillator,
marked with the double circle, is the output one. The circle
marking this oscillator is also a base for a pie chart
representing the ratio tillum (3)/tmax by the surface of the
red slice. Figure 4C shows the distribution of a number of
activator maxima observed on the output oscillator for
responsive and nonresponsive multiple myeloma treatment.
On this basis, we can define the rule that ensures the highest
accuracy on the training dataset Q. For this network, the
rule is:

- if 1,3,4,5,9 or 10 activator maxima are observed on the
output oscillator, then the patient belongs to the
responsive group.

- if another number of activator maxima is observed, then
unsuccessful treatment with the drugs is expected.

If applied to the training dataset Q, this rule gives 71.1% of
correct answers, which is 5% higher than the trivial rule based
on the distribution of gene expression values (cf. Figure 1).
Of 239 cases included in the dataset Q, we obtained 91
correctly determined nonresponsive cases and 79 correctly
determined responsive ones. We also observed 35 wrongly
determined nonresponsive cases and 34 wrongly determined
responsive ones. The distribution of correctly and incorrectly
classified points from the training dataset is illustrated in
Figure 5. Here again, the y-coordinate is random, and it is the
same as introduced to differentiate the values of p13,k in
Figure 2.

We optimized 3-oscillator networks for all genes listed in
Table 1. The parameters of all optimized networks are listed
in Table 3. The gene numbers in Table 3, Table 4, and
Figure 6 correspond to those in Table 1. The rules that
translate the number of activator maxima on the output
oscillator and the therapy result are given in Table 4. The
accuracy of optimized information processing networks is
shown in Figure 6, and in Table 4. It is in the range
between 66.5% (genes SERP1, CXCL5 and IL15) to 71.1%
(gene RPS7).

To increase the accuracy in determining the success or failure
of drug therapy, we called a concilium of optimized networks.
Each member of concilium is a network specialized in finding
correlations between the expression value of one gene and the
success of drug therapy and has one vote. The final decision is
taken on the basis of majority voting. The accuracy of
determining if the therapy using the bortezomib or
dexamethasone drugs is efficient or not for different majority
rules applied to the concilium is shown in the second column of
Table 5. We can see that the decision based on the opinions of
more than half of concilium members is accurate for almost 85%
of cases included in the training dataset. Of 239 cases included in

FIGURE 7 | Location of correct and incorrect predictions on the result of
drug therapy predicted by a concilium of networks of oscillators optimized for
all genes. The values of p13,k are represented by the x-coordinate of marked
points. The y-coordinate is the same as in Figure 2.
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the dataset Q we obtained 117 correctly determined
nonresponsive cases and 86 correctly determined responsive
ones. We also observe 9 wrongly determined nonresponsive
cases and 27 wrongly determined responsive ones. Their
distribution is illustrated in Figure 7.

But do we need oscillator networks? Correlations between
the values of single gene expression corresponding to
responsive and nonresponsive cases from the training
dataset and the results of drug therapy can be extracted
from the histograms of single gene expression values, as it
was done for the RPS7 gene (cf. Figure 1). For this gene, the
accuracy of such a method is 62.3% which is not much lower
than that of the optimized classifier (71.1%). So why not try to

make the conciluim based on histograms for all genes? We
have tested such an approach by dividing the whole range of
gene expression values into 10 subintervals and introducing
the rule based on the majority of cases in subintervals for each
gene. Next, we applied the majority voting strategy for all
records of Q. The accuracy of such concilium was 66.9%. Of
239 cases included in the dataset Q, we obtained 100 correctly
determined nonresponsive cases and 60 correctly determined
responsive ones. We also observed 26 wrongly determined
nonresponsive cases and 53 wrongly determined responsive
ones. Therefore the accuracy of such concilium is much
smaller than the concilium based on networks of oscillators
optimized for correlations between the single gene expression
value and the outcome of therapy.

4 CONCLUSION AND DISCUSSION

In this paper we discussed the application of information
processing network formed by chemical oscillators for
determination of the outcome of the multiple myeloma
therapy with bortezomib or dexamethasone drugs. The
network input information comes form the gene
expression values. Information was processed by simple
networks, each made of 3 oscillators. Each network was
optimized to find correlations between the expression value
of a particular gene and the outcome of the therapy.
Individual classifiers gave the accuracy in the range
between 66.5 and 71.1% (cf. Figure 7). To improve the
determination of the therapy outcome we considered the
concilium of 15 classifiers and accepted the majority
decision. Such strategy increased the accuracy to almost
85%, which seems to be a promising result for the further
development of the method.

In the mid columns of Table 5 we presented the accuracy of
the concilium method based on classifiers optimized for the

TABLE 6 | The accuracy of modified oscillator networks for correlations between the gene expression value and the therapy result. The table also defines modification
introduced to the optimized network.

Gene no. New parameter = old parameter
±1% of old
parameter

Output oscillator Accuracy (%)

1 tmax + 1% 2 64.8
2 β + 1% 1 66.9
3 β − 1% 1 66.9
4 tstart + 1% 1 62.7
5 t3illum − 1% 2 65.6

6 tend + 1% 1 64.0
7 β + 1% 2 67.3
8 t2illum − 1% 1 66.9

9 α − 1% 2 62.3
10 t3illum + 1% 3 63.1

11 t2illum + 1% 2 62.3

12 tend + 1% 3 69.4
13 β − 1% 3 69.8
14 tmax + 1% 2 66.1
15 t3illum − 1% 3 69.0

FIGURE 8 | The distribution of normalized expression values of the
RPS7 and CFLAR genes corresponding to responsive (red) and
nonresponsive (blue) results of drug therapy respectively. The point
coordinates are (p13,k, p8,k), k = 1, 239.
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whole training dataset to therapies in which one of the drugs
(bortezomib or dexamethasone) was used. The idea was to find
if the therapy prediction accuracy depends on the drug. The
results are similar, so we can conclude that for both drugs, the
patient genetic profile is similarly correlated with the therapy
success. It would be interesting to make a similar concilium
separately for each drug, but the solution to this problem
requires a much larger database of clinical trials than the one
we had access to.

To check how sensitive to fluctuations of parameters are the
results produced by the concilium formed of optimized
networks, we considered random modifications in
parameter values. For each optimized network, we selected
one parameter at random and decreased or increased its value
by ± 1%. The details on applied modifications and their
influence on the accuracy of each network are given in
Table 6. In all cases, the accuracy decreased by 2–3%. A
similar decrease of accuracy is observed for the decision of
concilium (82.8% for the concilium of modified networks).
Still, such accuracy is high enough to claim that concilium
strategy for determination of drug effectiveness is robust to
random changes in parameters and fluctuations in the
medium.

We can suggest two ways in which the accuracy in the
determination of therapy effectiveness can be increased:

One of them is to consider the voting strategy with more
complex networks formed by a larger number of oscillators that
are used to determine correlations between a single gene
expression value and the therapy outcome. One can expect
that “wiser” members of concilium can produce more
accurate answers. However, the strategy of employing top
specialists does not guarantee top results. Our simulations
have shown that the synergy between concilium members is
also important and should be taken into account. We continued
optimization for some networks processing gene expression
values and obtained higher accuracy than that listed in
Table 4. However, if we replaced the optimized network for
the gene SERP1 that led to the accuracy of 66.5% (cf. #1 in
Table 3) by a wiser member (accuracy 67.7%, tmax = 80, tstart =
3.52, tend = 32.23, = 0.71, β = 0.09, normal oscillators 2 and 3,
t2illum � 3.38, t3illum � 4.24) than the accuracy of concilium
decreased to 83.6%.

Alternatively, one can consider networks that are processing
expression values for more than a single gene. However, the
pairs of gene expression values corresponding to responsive and
nonresponsive therapies do not show clear separation in the
square [0, 1] × [0, 1] (cf. Figure 8). Therefore, it can be
anticipated that a large oscillator network is necessary for the
data classification, and its optimization will be numerically
complex.

Finally, let us make more general comments on the
importance of the presented results:

First, they demonstrate a high computing potential of
networks composed of interacting oscillators. The
distributions of gene-expression values corresponding to
responsive and non-responsive patients do not show a clear
separation, as illustrated in Figure 2 and indicated by the

histogram in Figure 1. We can expect that classification of
these data with classical neural networks is inefficient and
requires a large number of nodes. We demonstrated that the
cases separation with a reasonable accuracy exceeding 65% can
be done with a network of just 3 oscillators. Suppose the
effectiveness of oscillator networks is confirmed on other
problems. Then, as a natural development of this approach,
we can expect a new class of integrated circuits made with
semiconductors with easy control of the geometry of
interactions and parameters of oscillators. They can operate
similar to Intel Neural Compute Stick designed to support
computation with classical neural networks9.

Second, the semiconductor devices work properly in a
narrow range of temperatures around the room ones,
whereas the range of conditions in which chemical
oscillations are observed is much wider. Therefore, we can
think of designing chemical computers for the specific
environment they are supposed to function, for example, for
space research applications. Furthermore, chemical computers
operate on the energy of their reagents, so they do not need
additional energy supply.
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