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Bimetallic materials are one of the most promising catalysts for the electrochemical
reduction of CO2, but there are still many challenges to be overcome on the route to
industrialization. Herein, a series of carbon nanofiber-supported bimetallic cobalt–copper
catalysts (CoxCuy/CFs) are designed and constructed through the electrospinning
technique and a subsequent pyrolysis procedure. Small-sized Co–Cu nanoparticles are
homogenously distributed on the porous carbon nanofibers, which can significantly
improve the utilization rate of metal sites and greatly reduce the loading amount of
metals. Moreover, different product distributions and catalytic performance can be
obtained in CO2 reduction via adjusting the metal proportion of CoxCuy/CFs.
Especially, Co3Cu/CFs can bring forth a 97% total faradaic efficiency (FE) of CO (68%)
and HCOOH (29%) at –0.8 VRHE cathode potential in 0.5 M KHCO3 electrolyte.
Furthermore, the hierarchical pores can firmly confine the small Co–Cu nanoparticles
and keep them from easy agglomeration during electrolysis, eventually leading to 60 h of
stability for Co3Cu/CFs in CO2 electroreduction. This study might provide a facile and
economic method to fabricate efficient bimetallic catalysts for CO2 electroreduction and
other electrocatalysis applications.
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INTRODUCTION

CO2 electroreduction can convert greenhouse gas CO2 into renewable fuels and industrial building-
block chemicals, which has been advocated as a promising candidate for the artificial carbon cycle
(Qiao et al., 2014; Sharifian et al., 2021; Zhang et al., 2021). Electrochemical reduction of CO2 can be
motivated by vast amounts of excess electricity from renewable energy resources, for example, wind,
tide, and solar power plants (Benson et al., 2009; Fu et al., 2019). However, the CO2 molecule has a
very high chemical stability; hence, appropriate catalysts are needed to activate them (Hori et al.,
2008; Appel et al., 2013).

Therefore, a series of catalysts have been constructed to enhance the efficiency of CO2

electroreduction, including molecular catalysts (Appel and Helm, 2014; Nichols and Machan,
2019; and Bonin et al., 2017), heterodoped carbon catalysts (Sun, 2021; Kumar et al., 2013),
oxide-derived catalysts (Duan et al., 2021; Duan et al., 2018), single-atom catalysts (Yang et al., 2019;
Chen Jia et al., 2021;Wei et al., 2022; and Zhang et al., 2022), andmultimetallic catalysts (Lin Jia et al.,
2021; Vasileff et al., 2018; and Jia et al., 2022). Among these available catalysts, bimetallic catalysts
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have exhibited remarkable performance in CO2 reduction.
Bimetallic materials not only change the electronic structures
of the single component (Yang et al., 2021) but also create new
active sites to regulate the binding energy of key intermediates
during CO2 reduction (Jeoung and Dobbek, 2007; Yu et al., 2021;
Cheng et al., 2021). Meanwhile, carbon materials (e.g., carbon
black, graphite powder, and carbon nanotubes) are utilized as
supports or carriers for bimetallic catalysts in actual electrolysis,
which can improve the dispersion and conductivity (Jia et al.,
2022). However, these carbon materials need pretreatment,
including purification or surface functionalization, which
might damage the porous structure and electrical conductivity
(Liu et al., 2014). Therefore, it is still urgent to design a simple and
effective approach to carbon supported with excellent activity in
CO2 electroreduction.

In this study, we report the facile synthesis of several Co–Cu
bimetallic catalysts, that is, Co–Cu bimetallic nanoparticles/
porous carbon nanofiber (CoxCuy/CF) composites using the
electrospinning technique and thermal treatment. In the
composites, CoxCuy nanoparticles are uniformly and stably
dispersed on the abundant poles of carbon nanofibers, rather
than simply being absorbed or drop-coated on the surface. This
structure can largely expose the CoxCuy nanoparticles onto the
reaction interface of CO2 electroreduction and greatly improve
the efficiency of electronic transmission. Furthermore, we also
systematically investigated the effect of the mole ratio of Co and
Cu components on the product distribution and faradaic
efficiency. The results indicated that the Co3Cu/CF catalyst
with a mole ratio of 3:1 displayed an outstanding catalytic
activity and long-term stability in CO2 electroreduction.

MATERIALS AND METHODS

Chemicals and Characterizations
All reagents were used as received without further purification.

Electrochemical tests were performed with a CHI 760e
electrochemical Station (Shanghai Chenhua Instruments
Company). Gaseous products were detected by gas
chromatography (Shimadzu, GC-2014c) with a flame
ionization detector (FID) and a thermal conductivity detector
(TCD). Liquid products were detected using a nuclear magnetic
resonance spectrometer (NMR, Ascend 400, Bruker, Germany).
The micromorphology, crystalline structure, and element
mapping were obtained by a field emission scanning electron
microscope (FE-SEM, FEI JEOL-7800F) and a high-resolution
transmission electron microscope (HR-TEM, JEM-2100F). The
metal amount in the as-synthesized catalyst was detected using
inductively coupled plasma-optical emission spectrometry (ICP-
OES, OPTIMA2100DV). N2 adsorption/desorption curves were
achieved by a specific surface and porosity analyzer
(Micromeritics ASAP 2460) and calculated using the
Brunauer–Emmett–Teller (BET) equation. X-ray diffraction
(XRD) patterns were recorded with an X-ray powder
diffractometer (Rigaku MiniFlex 600) with Cu Kα radiation (k
= 1.5406 Å). Raman spectra were acquired with a laser Raman
spectrometer (LabRAM HR Evolution, HORBIA FRANCE SAS)

with a 633-nm laser excitation. X-ray photoelectron spectra
(XPS) were recorded on an X-ray photoelectron spectrometer
(ThermoVG Scientific ESCALAB 250) with Al Kα X-ray as the
source.

Synthesis of Catalysts
All the five samples in this study were prepared by
electrospinning technology. The preparation steps are as
follows: 7 ml of N, N-dimethylformamide, 0.5 g
polyacrylonitrile (PAN), and 0.75 g ZIF-8 nanoparticles were
put into a beaker and stirred until they were evenly mixed
into a white viscous solution. Then, 0.2183 g of
Co(NO3)2·6H2O (0.00075 mol) and 0.061 g of Cu(NO3)2·3H2O
(0.00025 mol) were added, and stirring was continued for at least
20 h or until the mixture was fully mixed to obtain a purple
viscous spinning precursor solution. This precursor solution was
injected into the syringe and electrospun to polymer fibers. After
spinning, the polymer fibers were put into vacuum drying oven at
60°C for at least 12 h, and the dried polymer fiber was pre-
oxidized in a muffle furnace. Then those pre-oxidized fibers were
carbonized in nitrogen atmosphere. The initial temperature was
set at 25°C, raised to 900°C at the rate of 5°C/min, and maintained
for another 2 h. The as-synthesized catalyst was named as
Co3Cu/CFs.

Another four catalysts with different metal ratios can be
obtained by changing the molar ratio of metal precursors Co
(NO3)2·6H2O and Cu (NO3)2·3H2O, including 1/0, 1/1, 1/3, and
0/1. The as-prepared samples were named as Co/CFs, CoCu/CFs,
CoCu3/CFs, and Cu/CFs.

Electrochemical Measurements
All the five catalysts were powdered and drop-coated onto a
carbon paper (SGL Carbon Corporate) to get a useful working
electrode. CO2 reduction activity was tested in a typical H-type
electrochemical cell separated by an anion exchange membrane
between anodic and cathodic chambers, with a Pt foil as the
counter electrode and an Ag/AgCl as the reference electrode;
0.5 M KHCO3 solution was employed as the electrolyte and
bubbled with high purity CO2 or N2 (99.995%). The original
potentials measured in this manuscript were converted to the
reversible hydrogen electrode (RHE) via the Nernst equation:

E(RHE) � E(Ag/AgCl) + 0.199 + 0.059 × pH. (1)
Products from CO2 reduction were analyzed at various

cathodic potentials with a fixed time of 15 min, and the
gaseous components were directly injected into gas
chromatography. The liquid-phase products were detected via
1H NMR spectra. The Faraday efficiencies of the products were
calculated via the following equations. Q is the total charge
transferred through the working electrode at different
potentials; m is the number of electrons transferred, which is
2 for HCOOH, CO, and H2, and 8 for CH4; n is the mole numbers
of products; and F is the Faradaic constant (96,485 C mol−1).

FE � Qproduct

Qtotal
� m × n × F

Qtotal
(2)
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RESULTS AND DISCUSSIONS

Characterizations of Catalysts
The specific preparation process of the material is described in
Figure 1. First, Co(NO3)2·6H2O, Cu(NO3)2·3H2O, ZIF-8
nanoparticles as well as PAN were dissolved in DMF to prepare
a precursor solution, and then an electrospinning technology was
used under constant conditions to get PANnanofibers with different
Co/Cu mole ratios. Then, the Co–Cu/PAN nanofibers were heated
to 900°C under a N2 atmosphere for carbonization. Notably, there
are no extra surfactants or reductants involved in the whole

procedure. The polymer linkers were pyrolyzed and carbonized
to generate the main body of carbon nanofibers, and ZIF-8
nanoparticles collapsed to form the abundant mesopores and
macropores through these nanofibers (Yang et al., 2020a). Co2+

and Cu2+ ions were reduced by organic linkers, and the bimetallic
nanoparticles were engendered with a smaller particle size due to the
confinement of the polymer and ZIF-8 nanoparticles. The
compositions of these bimetallic nanoparticles were tuned by the
feeding ratio of Co(NO3)2·6H2O and Cu(NO3)2·3H2O precursors,
eventually generating Co3Cu/CFs, Co/CFs, CoCu/CFs, CoCu3/CFs,
and Cu/CFs.

FIGURE 1 | Synthesis strategy of Co–Cu bimetallic nanoparticle-decorated carbon nanofibers.

FIGURE 2 | (A–C) SEM and (D–E) TEM images with different resolutions of Co3Cu/CFs, respectively; (F) HR-TEM images of Co3Cu/CFs: inset shows the lattice
fringes of Co and Cu; (G) HAADF-STEM and elemental mapping images of Co3Cu/CFs.
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As shown in Figure 2, the surface morphology and
nanostructure of the as-synthesized Co3Cu/CF catalyst were
recorded by FE-SEM and HR-TEM, respectively. The diameter
of the carbon nanofibers in Co3Cu/CFs ranges from 500 to
600 nm. The length is in the scale of hundreds of
micrometers, and the interlaced nanofibers furtherly form a
network structure (Figures 2A,B). Moreover, abundant hollow
pores, in the size range of dozens of nanometers, could be easily
seen throughout Co3Cu/CFs (Figures 2C,D). N2 sorption
isotherms (Figure 3A) further demonstrate that Co3Cu/CFs
have type Ⅳ sorption isotherm, belonging to the mesoporous
structure. Co–Cu nanoparticles, in an ~20 nm diameter range, are
evenly immobilized within the hollow pores of carbon nanofibers
(Figures 2D,E).

In addition, Figure 2F shows the clear HR-TEM image of an
independent Co–Cu bimetallic nanoparticle, and the interplanar
spacing of crystalline lattices marked with red lines is measured as
2.04 Å and 2.46 Å, corresponding to the Co (111) and Cu (111)
planes (Liu et al., 2014; Kim et al., 2017), respectively.

Furthermore, the high-angle annular dark field STEM
(HAADF-STEM) and elemental mapping images indicate that
Co3Cu/CFs contain Co and Cu elements. The good match
between the emerging positions of Co and Cu elements
directly proves the formation of Co–Cu bimetallic
nanoparticles. According to the SEM, HR-TEM
(Supplementary Figure S1,S2), and N2 sorption isotherms
(Supplementary Figure S3, Supplementary Table S1), Co/
CFs, CoCu/CFs, CoCu3/CFs, and Cu/CFs display similar
interlaced nanofibers, abundant hollow pores, and uniform
nanoparticles. Hence, the regulation of metal ratio would not
significantly change the surface morphology and nanostructure.
The actual Co/Cu ratios in the as-synthesized catalyst were
detected by ICP-OES. CoCu/CFs, Co3Cu/CFs, and CoCu3/CFs
own Co/Cu ratios of 1/0.95, 3/0.96, and 0.98/3, respectively,
which are close to the original ratios in precursor solutions.

As shown in the XRD patterns (Figure 3B), the sharp
diffraction peaks at 44.9°, 52.5°, and 76.2° can be seen in Co/
CF samples, which are attributed to the Co (111), (200), and (220)

FIGURE 3 | (A)N2 sorption isotherms of Co3Cu/CFs: inset displays the pore size distribution; (B) XRD patterns, (C) Raman spectra, and (D) XPS survey spectra of
the five catalysts; (E) Co 2p and (F) Cu 2p fine XPS spectra of Co3Cu/CFs.

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 9042414

He et al. CO2 Electroreduction on Bimetallic Catalysts

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


planes (JCPDS 89-7093), respectively. Those peaks at 43.3°, 50.5°,
and 74.2° of the Cu/CF samples are in accordance with the Cu
(111), (200), and (220) planes (JCPDS 89-7093), respectively. The
XRD patterns of Co3Cu/CFs, CoCu/CFs, and CoCu3/CFs possess
both Co and Cu diffraction peaks, further verifying the formation
of Co–Cu bimetallic nanoparticles. The Raman spectra
(Figure 3C) of the five samples contain characteristic peaks
around 1,350 cm−1 and 1,578 cm−1, related to the d band of
defective carbon and the G band of graphite carbon (Kumar
et al., 2013), respectively. Co3Cu/CFs have the largest intensity
ratio of D and G bands (ID/IG, 1.01), indicating more defects and
more potential active sites. The survey XPS spectra of Co3Cu/CFs
(Figure 3D, Supplementary Figure S4) confirm the presence of
Co, Cu, C, N, and O elements. The high-resolution Co 2p XPS
spectrum of Co3Cu/CFs (Figure 3E) exhibits four peaks,
including Co 2p3/2 (780.3 eV), Co 2p1/2 (795.6 eV), and two Co
satellite peaks. Two strong peaks in the Cu 2p XPS spectrum
(Figure 2F) that appear at 932.3 and 952.0 eV can be indexed to
Cu 2p3/2 and Cu 2p1/2, respectively. Notably, oxide peaks can be
detected in Co and Cu 2p XPS spectra of Co3Cu/CFs because of
the easy oxidation of metallic Co and Cu nanoparticles (Xie et al.,
2021; Kim et al., 2017). Similar C, N, Co, or Cu species could also

be observed in the XPS spectra of another four samples
(Supplementary Figure S5–S8).

CO2 Electroreduction Tests
The CO2 electroreduction performances of Co–Cu bimetallic
catalysts were investigated and compared with the
performance of pure Co or Cu catalysts in a typical H-type
electrochemical cell. All the catalysts were pre-activated using
cyclic voltammetry until stable profiles were obtained. Figure 4A
and Supplementary Figure S9 present the linear sweep
voltammetry (LSV) curves of five samples in N2-saturated or
CO2-saturated 0.5 M KHCO3. The cathodic current densities of
all five catalysts were measured to be approximately doubled in
CO2 than those in the N2-saturated electrolyte, indicating the
potential catalytic activity in CO2 reduction (Zhang et al., 2014).
In addition, LSV tests also prove that Co3Cu/CFs show the
highest current density among the five catalysts (Figure 4A).

In order to further evaluate the catalytic activities and quantify
the product distribution from CO2 electroreduction, potential
dependent CO2 electrolysis using five catalysts was conducted in a
0.5 M KHCO3 electrolyte from –0.5 VRHE to –1.2 VRHE applied
cathode potential. Gas products were directly injected into gas

FIGURE 4 | (A) LSV curves of the five samples recorded in a CO2-saturated 0.5 M KHCO3 electrolyte; Faradaic efficiencies of (B)Co/CFs, (C)Co3Cu/CFs, and (D)
Cu/CFs in a 0.5 M KHCO3 electrolyte; (E) C1 product partial current densities of the five samples; (F) long-term tests of Co3Cu/CFs at −0.8 VRHE in a 0.5 M KHCO3

electrolyte.
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chromatography for on-line analysis, and liquid products in the
catholyte were detected using 1HNMR after each electrolysis. The
product distribution and faradaic efficiencies (FEs) are
summarized in Figure 4 and Supplementary Figure S10. For
comparison of the electrocatalytic activities, Co/CFs and Cu/CFs
with pure Co and Cu nanoparticles were also synthesized and
assessed in CO2 electrolysis. As shown in Figure 4B, Co/CFs
generated CO as the only product from the CO2 reduction and H2

from the hydrogen evolution reaction (HER), with a 57%
maximum FE for CO at –0.8 VRHE applied potential. As for
Cu/CFs (Figure 4D), it produced H2, CO, and CH4 during
electrolysis, with a 49% maximum FE for CO at –0.9 VRHE.
CH4 is one of the urgent products with the transfer of eight
electrons (Sharifian et al., 2021); however, highest FEs of CH4

only reach 7% at –0.8 VRHE. Both Co/CFs and Cu/CFs show
certain activities in CO2 electroreduction, but neither of them
could effectively suppress the HER process, and the FEs of H2

range from 43 to 74%. As displayed in Figure 4C and
Supplementary Figure S10, doping Co with Cu causes a
significant increment in CO2 catalysis. Compared to Co/CFs
and Cu/CFs, the CO2 reduction procedure on Co3Cu/CFs,
CoCu/CFs, and CoCu3/CFs became much more dominant
than the HER procedure. In particular, the maximum FE for
C1 production (HCOOH and CO) increases to 97% at –0.8 VRHE

using the Co3Cu/CFs catalyst, and the HER is totally suppressed
to only a 3% FE of H2. CoCu/CFs and CoCu3/CFs have a similar
tendency of FEs for CO2 electrolysis as that of Co3Cu/CFs, but

they acquire lower total FEs of CO and HCOOH throughout the
applied potential.

Chronoamperometry (CA) was used to evaluate the total
current density during CO2 electrolysis, and five samples
achieved very close total current densities from –0.5 VRHE to
–1.2 VRHE (Supplementary Figure S11). In addition, the partial
current densities (jC1) for C1 products (CO, HCOOH, and CH4)
were normalized by the total current densities and FEs at each
cathode potential. Co3Cu/CFs brought forth a significantly higher
partial current density than Co/CFs, Cu/CFs, CoCu/CFs, and
CoCu3/CFs within the potential range, and got a maximum jC1 of
78.1 mA cm−2 at –1.2 VRHE (Figure 4E). Therefore, Co3Cu/CFs
possess remarkable catalytic activity in CO2 reduction, and they
can also successfully suppress the HER procedure at relatively
high cathode potentials. Moreover, it is extremely important to
estimate the long-term durability of bimetallic catalysts because
increasing the applied potentials and heavy current densities
might seriously impact the structural stability (Vasileff et al.,
2018; Jia et al., 2022). Long-term tests of potentiostatic CO2

electrolysis were conducted using Co3Cu/CFs catalysts at
–0.8 VRHE cathode potential where the best FEs of C1
products were obtained. The gaseous products were detected
on-line every 6 h, and the corresponding CO FEs and current
densities versus time are plotted in Figure 4F. Both CO FEs and
partial current densities of the Co3Cu/CF catalyst exhibited only
small declines during the 60 h electrolysis, retaining
approximately 90% of the original values and manifesting

FIGURE 5 | (A) Tafel plots of five samples during the CO2 electroreduction process; (B) EIS Nyquist spectra of the five samples; (C) catalytic mechanism of Co3Cu/
CFs for the reduction of CO2 to CO and HCOOH.
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excellent stability in CO2 electroreduction. Co3Cu/CFs were
characterized after a long-term electrolysis by TEM
(Supplementary Figure S12), and the small Co3Cu/CFs did
not agglomerate together. As described previously (Figures
2D,E), the Co–Cu bimetallic nanoparticles are uniformly
dispersed and firmly confined within the hierarchical pores of
carbon nanofibers, and separated from easy agglomeration
during electrolysis.

The aforementioned experimental results demonstrate the
outstanding activities of Co3Cu/CFs in CO2 reduction. The
mechanism of the high performance was first investigated using
Tafel slopes within sufficiently low overpotential ranges. As
presented in Figure 5A, 105 mV dec−1 Tafel value is observed on
Co3Cu/CFs, confirming the first electron transfer from CO2 to
CO2•− as the rate determining step (Chen Jia et al., 2021).
Compared to those of Co/CFs (108mV dec−1), Cu/CFs (127mV
dec−1), CoCu/CFs (111mV dec−1), and CoCu3/CFs (137mV dec−1),
the lower Tafel value of Co3Cu/CFs indicates faster reaction kinetics
in CO2 reduction. As mentioned previously, four electron product
CH4 was only obtained with the Cu/CF catalyst, and the bimetallic
CoxCuy/CFs could produce CO and HCOOH. Metallic Cu owns
relatively strong binding energies of *COOH and *CO intermediates
compared to pure metallic Co, and these intermediates could be
stabilized and further reduced to hydrocarbons or alcohols (Duan
et al., 2018; Mun et al., 2019). In CoxCuy/CF samples, the catalytic
behavior of metallic Cu was totally altered via fusing it with Co
composition within the same nanoparticles. The binding energies of
*COOH and *CO intermediates were weakened enough to be
released from the catalyst surface, increasing the tendency toward
HCOOH and CO production.

The electrochemical active surface area and the conductivity
property of these five samples were also measured via double-layer
capacitance (Cdl) and electrochemical impedance spectroscopy
(EIS). Compared with Co/CFs (31.5 mF cm−2), Cu/CFs
(17.5 mF cm−2), CoCu/CFs (30.0 mF cm−2), and CoCu3/CFs
(21.5 mF cm−2), Co3Cu/CFs have a much higher Cdl value of
45.5 mF cm−2 (Supplementary Figure S13), manifesting the
larger ECSA and more active sites for CO2 reduction (Yang
et al., 2020b; Hao et al., 2022). In addition, the EIS curves in
Figure 5B prove that Co3Cu/CFs show a relatively small
impedance than those of the other samples, which is beneficial to
faster electron transport as well as better conductivity (Wei et al.,
2022; Liu et al., 2014). The larger ECSA and good conductivity of
Co3Cu/CFs is consistent with its higher current densities in LSV and
electrolysis tests. As illustrated in Figure 5C, Co3Cu/CFs possess
highly graphitized and multi-level porous carbon nanofibers, which
can accelerate the electron transmission and expose abundant
bimetallic Co–Cu sites for CO2 reduction, eventually leading to
the remarkable partial current densities for C1 products.

CONCLUSION

In summary, an efficient Co3Cu/CF catalyst was created with
bimetallic Co–Cu nanoparticles evenly distributed within porous
carbon nanofibers, which exhibited superior catalytic activities in
CO2 reduction. A total 97% total faradaic efficiency of CO and
HCOOH could be achieved with the Co3Cu/CFs catalyst at
–0.8 VRHE cathode potential in a 0.5M KHCO3 electrolyte. In
addition, Co3Cu/CFs could also bring forth a maximum
78.1mA cm−2 partial current density for C1 production and
maintain 60-h of stability in long-term electrolysis. In Co3Cu/CFs
catalysts, the doping of metallic Cu with Co can decrease the binding
energies of key intermediates and increase the selectivity of CO and
HCOOH. Moreover, the hierarchically porous carbon nanofibers are
in favor of electron transmission and exposing active sites for CO2

electroreduction. Consequently, this effective strategy of composition
tuning along with a tailored structure might inspire the design and
preparation of robust catalysts for CO2 electroreduction.
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