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MALDI-MSI Towards Multimodal
Imaging: Challenges and Perspectives

Michael Tuck®, Florent Grélard?, Landry Blanc’ and Nicolas Desbenoit*

Univ. Bordeaux, CNRS, CBMN, UMR 5248, Pessac, France

Multimodal imaging is a powerful strategy for combining information from multiple images.
It involves several fields in the acquisition, processing and interpretation of images. As
multimodal imaging is a vast subject area with various combinations of imaging
techniques, it has been extensively reviewed. Here we focus on Matrix-assisted Laser
Desorption lonization Mass Spectrometry Imaging (MALDI-MSI) coupling other imaging
modalities in multimodal approaches. While MALDI-MS images convey a substantial
amount of chemical information, they are not readily informative about the
morphological nature of the tissue. By providing a supplementary modality, MALDI-MS
images can be more informative and better reflect the nature of the tissue. In this mini
review, we emphasize the analytical and computational strategies to address multimodal
MALDI-MSI.

Keywords: MALDI mass spectrometry imaging, multimodal imaging, analytical strategy, computational strategy,
biological applications

INTRODUCTION

Matrix-assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) has
established itself as one of the most attractive ex vivo techniques for the spatial
characterization of molecules (Science, 2021). Marked by a steady stream of incremental
improvements over the last 30 years, MALDI-MSI has become a premiere tool for biomedical
researchers. It has been applied to numerous fields of study, from pharmacokinetics, to tumor
detection and even sub-cellular metabolomics. MALDI-MSI excels in chemical specificity
without prior molecular tagging, however it requires specific sample preparation and its spatial
resolving capabilities relative to microscopy and even other MSI techniques are considered
low. This unique set of compromises has pushed the field to combine MALDI-MSI with other
imaging modalities (Masyuko et al., 2013; Matsumoto et al., 2021; Tuck et al, 2021;
Lauwerends et al., 2022), whether they be other MSI techniques, other multidimensional
modalities like vibrational spectroscopy, high spatial resolution imaging such as
immunofluorescence microscopy (IF) or Imaging mass cytometry (IMC) (Hoch et al,
2022), and even in vivo techniques commonly seen in the clinic like magnetic resonance
imaging (MRI). Any of these imaging techniques can supplement the information given by
MALDI-MSI and alleviate its limitations. The goal is usually to perform the joint statistical
analysis of the combined images, establishing spatial correlations between them.
Complementary images convey different types of information, processing workflows are
often suited to specific needs, with limited generalizability. The multimodal integration
can be performed by various computational methods, and it is challenging to make an
educated choice. Here, we attempt to review the advancements in MALDI-MSI and how
they pertain to the nascent field of multimodal imaging. We classify computational methods so
as to facilitate decision-making at the data processing stage.
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MALDI-MSI

MALDI-MSI has the ability to simultaneously detect thousands
of ions in a single acquisition in situ, including proteins, peptides,
glycans/polysaccharides, lipids, metabolites and pharmaceuticals
(Buchberger et al., 2018). The multiplexed nature of the technique
is afforded without tagging or prior knowledge of the tissue and
with a mild sample preparation. Time-of-flight secondary ion MS
(TOF-SIMS, Massonnet and Heeren (2019), laser ablation
inductively-coupled plasma (LA-ICP, Perry et al. (2020b)),
desorption electrospray ionization (DESI, Soudah et al. (2021)
are other MS imaging techniques, however MALDI-MSI has
emerged as the most popular as it strikes a favorable balance
between sample preparation, chemical specificity/sensitivity and
spatial resolution. Since its inception (Hillenkamp et al., 1975;
Spengler and Hubert, 1994; Caprioli et al., 1997), MALDI-MSI
has advanced incrementally in spatial resolution (Heiles et al.,
2020), acquisition time (Prentice and Caprioli, 2016), and mass
resolution (Spraggins et al., 2016). And yet, despite its continued
amelioration, it remains shy of its potential as a molecular
microscope, articulated in its earliest days (Caprioli, 2014).

Sample Preparation

MALDI-MSI involves a simple but carefully considered sample
preparation, particularly in multimodal experiments. Tissue
sections 10-20 um thick are thaw-mounted to a suitable
substrate, typically a glass/metal slide. The surface of the
sample should be flat to ensure optimal laser focus, yet a
height profile can be used to account for topographical
changes. (Bartels et al, 2017). A chemical matrix is then
applied. Matrix choice and application is always a compromise
between preferred analyte classes, their extraction and potential
delocalization. The matrix might affect the ionization mode,
adducts seen, and size of detectable analytes (Yang et al,
2018). Matrix is commonly applied by spraying or
sublimation, which might affect spatial resolution via crystal
size, analyte extraction/delocalization and reproducibility.
Matrices have been thoroughly interrogated (Perry et al,
2020a) and application methods reviewed (Calvano et al., 2018).

Quantitation

MALDI is widely viewed as qualitative. Indeed, the intensities of
two MALDI-MS images cannot be directly compared because of
the physics of ionization and the nature of complex tissue: the
ionization efficiencies for different analyte classes differ and the
signal can be suppressed due to different (biological) matrix
effects (Unsihuay et al., 2021). Many challenges are not unique
to MALDI-MSI; Kertesz and Cahill (2021) review quantitation of
various MSI technologies.

Researchers have devised increasingly diligent approaches
towards quantitative MSI (qQMSI). This includes normalization/in-
solution strategies like externally-sprayed standards as reference
peaks or tissue extinction coefficient (TEC) (Hamm et al,, 2012;
Dilmetz et al., 2021), and computational strategies such as “virtual
calibration” (Song et al., 2019). Also, in experimental approaches,
calibration curves are employed to correlate signal intensity to
known concentration of standards. Calibration curves in mimetic
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tissue, though more laborious, have seen good agreement with liquid
chromatography-MS (Barry et al,, 2019). The thoroughness of the
mimetic model has made it attractive to many qMSI groups,
particularly in the small molecule realm.

MALDI-MSI Advancements

MALDI-MSI was conceived on TOF instrumentation but has
since benefited from high mass resolving power provided by
Fourier transform mass spectrometry (FTMS). Higher resolving
power results in better analyte annotation, more peaks detected
and less chemical matrix interference (Bowman et al., 2020). The
addition of ion mobility has been a major advancement of
MALDI-MSI as this enables the separation of isobaric species
(Spraggins et al., 2019; Soltwisch et al., 2020).

Spatial resolution is another front for MALDI-MSI
advancement. Alterations in laser geometry pushed the bounds
of possibility, with commercial sources now capable of 10 um
spatial resolution that can often be tuned further to near one
micron (Kompauer et al., 2016). Even subcellular resolutions have
been achieved with transmission geometry (Zavalin et al., 2012).
The spatial resolution of MALDI-MS images depends on the laser
diameter and the stage step-size. It can be assessed precisely by
determining the size and shape of the laser ablation marks on a
grid with a resolution pattern (Fagerer et al., 2015).

Increased spatial resolution comes at the expense of sensitivity.
MALDI-2 was developed to address such concerns (Soltwisch
et al,, 2015). Here, a secondary laser is directed at the MALDI
plume and pulsed after an initial MALDI event. This ionizes
neutrals and can increase sensitivity 100-fold for some molecular
species (Barré et al., 2019; Soltwisch et al., 2020). This technology
sparked renewed interests in transmission geometry, where
researchers recently obtained ultra-high spatial resolutions,
down to 600nm, with informative sensitivity by employing
MALDI-2 (Nichaus et al., 2019; Spivey et al., 2019). MALDI-2
has also been combined with ion mobility (Soltwisch et al., 2020).

Data Preprocessing and Visualization
MALDI-MS images are large datasets and enclose complex data.
Various approaches are designed to reduce their complexity. For
instance, peak picking and alignment reduce the dataset size while
preserving relevant information along the spectral dimension
(Alexandrov, 2012). As for their visualization, there are multiple
commercial and open-source software available (Weiskirchen
et al,, 2019), many of which handle the standardized imzML
data format (Rompp et al., 2011; Schramm et al., 2012).
Spectral visualization strategies, such as Kendrick mass defect
analysis, have also been used to deconvolute imaging analysis
(Kune et al., 2019; Blanc et al., 2021). These efforts confront a
major challenge in MALDI-MSI: a lack of chemical separation.

Data Analysis
Data analysis involves methods which facilitate the interpretation
and comparison of images. Method choice depends on the
experimental design, the nature of the signal, and the scientific
goal of the experiment.

Dimension reduction techniques, such as principal component
analysis (PCA, Trindade et al. (2018a)), non-negative matrix
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factorization (NMF, Trindade et al. (2018b)) or t-distributed
stochastic neighbor embedding (t-SNE, van der Maaten and
Hinton (2008)) can further abate the data. PCA and NMF are
linear matrix decomposition techniques, whereas t-SNE is a
probabilistic, non-linear dimension reduction technique. PCA and
NMF decompose the original, large, MALDI-MS image into two
smaller matrices, whose product approximates the original image.
Common global information shared across ion images are stored in
so-called component images. Component images usually highlight
important structures in the tissue. PCA loadings are weights that
attribute more or less importance to ion images with each
component image, enacting the coupling of spatial and spectral
information. NMF differs from PCA in that it imposes a non-
negativity constraint on the components, making them easier to
interpret. By contrast to PCA and NMF, t-SNE retains local
structures by preserving distances between points in a lower-
dimensional embedding. This reduction makes for visualizations
that are faithful to the original image data. However, the resulting
mapping is different across multiple runs and requires larger
computational resources than PCA. Abdelmoula et al. (2018) use
a variant of t-SNE, called hierarchical SNE (Pezzotti et al., 2016), to
visualize structures with different levels of details across ion images.

Clustering methods give simplified representations of the
datasets, where similar spectra are grouped together. The
output can be visualized as a 2D image where each pixel has
an intensity equal to its cluster number. Similarities between
spectra can be estimated by various metrics, such as the Euclidean
distance, which captures similarities among raw intensities, or the
cosine distance, which captures similar trends in the spectra. The
k-means algorithm groups spectra according to a predefined
number of clusters (Palmer et al., 2015), whereas hierarchical
clustering yields a tree of subregions, arranged from broad
structures to finer details (Urbini et al., 2017). Alexandrov and
Kobarg (2011) proposed a clustering algorithm which limits the
impact of noise in MALDI-MS images, where pixels are grouped
by the similarities between their neighborhoods.

Supervised machine learning methods, i.e., methods that use
annotated datasets, can recognize co-localized ions from
manually annotated images. Ovchinnikova et al. (2020) found
spatial correlations between ion images with a deep learning
model using visual similarities.

Univarijate analysis can be used to find differently-abundant
ions across conditions, such as different regions in the images or
different samples. T-test is used to highlight statistical differences
for a specific m/z between two different samples (Yajima et al.,
2018), or regions within a tissue section, whereas the analysis of
variance (ANOVA) test can be used to compare three or more
regions (Blanc et al., 2018). When the normality assumption is
not verified, typical in MSI datasets, non-parametric tests, such as
Mann-Whitney U-test or Wilcoxon signed-rank tests can be used
(Guo et al., 2014). To determine if an ion is a biomarker for a
condition, Receiver Operating Characteristic (ROC) curve
analysis can be applied (Hoo et al., 2017).

Data analysis usually returns several m/z features of interest.
Metabolite databases can be polled to infer their chemical
structure. The choice of the database depends on the type of
analyte (e.g., LipidMaps for lipids, UniProt for proteins, CSDB for
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glycans, etc). A website dedicated to MSI called
METASPACE2020 allows for the interrogation of different
databases.

MULTIMODAL MALDI-MSI

Balanced by optimism in MALDI-MSI and caution with its
limitations, researchers have turned to other imaging
modalities to compensate. In addition to previously mentioned
limitations, MALDI-MSI ion images are not directly indicative of
the histological setting, as immunohistochemistry (IHC) could
be. Consequently, MALDI-MSI will tend to move toward
multimodal imaging which can compensate for these
limitations by combining chemical and histological
information from various modalities, and which results in a
more informative dataset.

Multimodal imaging can be used for guided acquisitions. For
instance, the acquisition of MALDI-MS images can be guided
with microscopy images, so as to restrict the imaged area and
reduce the acquisition time and data size (Patterson et al., 2018a;
Blanc et al,, 2018). Rabe et al. (2018) guide the MALDI-MSI
acquisition by performing a segmentation of brain tissue based on
Fourier transform infrared spectroscopy (FT-IR), reducing time
and data size by nearly 98%.

Multimodal imaging often combines several imaging
modalities and yields integrated multimodal datasets, opening
new possibilities for data mining. The methods used depend on
the complementary modality associated with MALDI-MSI, the
processing strategies and scientific goal (Table 1). Integrated
multimodal datasets are typically obtained by a three-step-
workflow: multimodal acquisition, registration, or the spatial
alignment of imaging datasets, and data analysis to highlight
correlations between imaging datasets (Figure 1). The objective is
to use information from both modalities to evidence
complementarities and correlations with different data
processing strategies, as described by Bemis et al. (2019): (1)
class discovery to find commonalities (spectral or spatial) without
a priori information, (2) class prediction, using existing
information to infer spatial or biological knowledge in a new
dataset and (3) class comparison, which compares intensity
averages in regions of interest (ROIs) to find differentially-
abundant ions.

Acquisition Workflow

Biological questions drive the choice of modalities and their
implementation. Multimodal acquisitions involve some
critical parameters to be considered in terms of analytical
strategy: the use of a same sample section or adjacent
section, the level of destructiveness of complementary
modalities and the order of operations in which the
acquisitions occur. Use of same section is advised to
establish cellular or subcellular correlations. Adjacent
sections are advised when all modalities are destructive, or
when it is desirable to keep the sample preparation processes
separate. However, the resulting integrated dataset is not
reliably interpretable.
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TABLE 1 | Collection of publications that combine MALDI-MSI with another modality. It attempts to classify each paper by its multimodal strategy and scientific goals. The list
is separated in vivo/ex vivo and grouped by the spectral nature of its complementary modality, i.e., whether it is mono-, multi-channel, i.e., spectra with discrete bands, or
hyperspectral, i.e., spectra with continuous bands.

Modality(ies)

In- MRI
vivo

MRI

MRI

MRI

MRI

MRI

Ex- H&E

vivo

H&E

H&E

Autofluorescence

Microscopy

Autofluorescence
Microscopy

IHC

IHC

IF H&E

Ex- Imaging Mass

vivo  Cytometry

FT-IR

FT-IR

FT-IR

Multimodal strategy

Scientific goal

Acquisition(s) and
registration
method(s)

Adjacent sections, &
iconic: linear & non-
linear

Adjacent sections, &
iconic: linear

Adjacent sections, &
iconic: linear & non-
linear

Adjacent sections, &
iconic: linear & non-
linear

Adjacent sections
Iconic: linear
Adjacent sections, &
iconic: linear

Adjacent and same
sections, &
landmarks: linear
Adjacent sections, &
registration not
explained

Same section, &
landmark

Same and adjacent
section, landmark, &
iconic: Linear &
nonlinear

Same & adjacent
section, Landmark, &
iconic: Linear and
nonlinear

Same section, &
registration not
explained

Same section, &
landmark

Same section, &
landmark

Same sections, &
landmark

Same cells
Registration not
explained

Same section, &
landmark: linear

Same section, &
registration not
explained

Same section, &
registration not
explained

Same section, &
Iconic: linear

Same section, iconic

Data analysis

Strategy(ies)

Class discovery

Class
prediction, &
class
comparison
Class prediction

Class discovery

Class
comparison
Overlay
visualization

Class prediction

Class
comparison, &
class prediction
Class prediction

Class
comparison

Class discovery

Class
comparison

Class
comparison
N/a

Class
comparison, &
class discovery
Class discovery

Class
comparison, &
class discovery

N/a

Class discovery

Class
comparison, &
Class discovery
Class
comparison, &
class prediction

Method(s)

HSNE, & Pearson
correlation

Automated anatomical
interpretation &
Wilcoxon rank test

NMF & inverse NMF, &
distance in reduced
space

Bisecting k-means, &
Pearson correlation

Unpaired t-test

N/a

PLS

Various multivariate
analysis, ROC curve, &
Kruskal-Wallis test
PLS regression

Histogram of average
intensities in multiple
ROIs

Weighted correlations

ROC curves, & Mann
Whitney U test

Overlay visualization, &
2D correlation
Overlay visualization

k-means clustering, &
t-test

Spatial correlation:
Euclidean distance,
Pearson correlation, &
multivariate analysis:
K-means clustering
Correlation Network,
Spearman rank order
correlation, & Mann
Whitney U test

Overlay visualization

Random forest classifier

k-means clustering, &

t-test

PCA Data Integration/

Laplacian Pyramid
Sharpening, & ANOVA

Result(s)

Colocalizing
signal (3D)

Brain atlas, & region-
specific ions

Colocalizing signal
Colocalizing
signal (3D)
Region-specific
ions (3D)
Integrated
dataset (3D)
Pansharpening, &
out-of-sample

prediction
Biomarker discovery

QOut-of-sample
prediction
Guided-acquisition.
Region-specific ions

Colocalizing signal

Biomarker discovery

Integrated dataset
Region-specific ions

Integrated dataset

Colocalizing signal

Region-specific ions

Integrated dataset

Integrated dataset,
& colocalizing signal

Integrated dataset,
& guided acquisition

Pansharpening,
image fusion, &
region-specific ions

Omics

Proteins

Proteins

Polysaccharides

Proteins

Proteins
Proteins

Lipids, proteins,
metabolites, &
drugs
Metabolites

Proteins

Lipids

Lipids, metabolites

Proteines

Lipids

Lipids

Lipids

Lipids

Metabolites, lipids

Lipids

Lipids,
carbohydrates, &
nucleic acids
Metabolites, &
lipids

Lipids, & peptides/
proteins

Biological background

Murine kidney and
pancreas, human
colorectal cancer,
microbial colonies, &
human oral carcinoma
Human brain

Plant: wheat grain

Murine kidney

Murine brain

Murine

Murine brain

Human Urachal Cancer

Murine brain, & kidney

Murine brain, kidney,
spleen & P. yoelii-
infected livers, human
kidney

Murine kidney, & brain

Human breast cancer &
liver

Murine brain — Hunter’s
disease

Murine brain —
Alzheimer’s disease
Murine brain —
Alzheimer’s disease

Single cells

Murine pancreas cancer

Murine Brain, Human
tonsil & breast cancer

Eisenia fetida

Murine brain, & human
gastrointestinal stroma
tumors

Murine brain

References

Abdelmoula et al.
(2019)

Verbeeck et al.
(2017)

Grélard et al., (2021)

Oetijen et al., (2013)

Sinha et al. (2008)

Attia et al., (2012)

Van De Plas et al.
(2015)

Neumann et al.,
(2021)

Prentice et al., (2018)

Patterson et al.,
(2018a)

Patterson et al.,
(2018b)

Rujchanarong et al.,

(2021)

Dufresne et al.,
(2017)

Kaya et al., (2017b)
Kaya et al., (2017a)

Nikitina et al., (2020)

Prade et al., (2020)

Yagnik et al., (2021)

Ritschar et al., (2022)

Rabe et al. (2018)

Neumann et al.,
(2018)

(Continued on following page)
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TABLE 1 | (Continued) Collection of publications that combine MALDI-MSI with another modality. It attempts to classify each paper by its multimodal strategy and
scientific goals. The list is separated in vivo/ex vivo and grouped by the spectral nature of its complementary modality, i.e., whether it is mono-, multi-channel, i.e., spectra

with discrete bands, or hyperspectral, i.e., spectra with continuous bands.

Modality(ies) Multimodal strategy Scientific goal References
Acquisition(s) and Data analysis Result(s) Omics Biological background
l'emS:tSr:l:;;:;’l Strategy(ies) Method(s)
Raman Same section, Class discovery ~ PCA-PCA correlation Integrated dataset, Lipids, & peptides/  Cell Spheroids Ahlf et al., (2014)
Spectroscopy landmark, & fiducial & colocalizing signal  proteins
aided
Raman Same section, & Class prediction ~ PCA on combined Colocalizing signal Lipids, & peptides/  Murine brain Ryabchykov et al
Spectroscopy landmark: linear dataset, & 2D proteins (2018)
correlation
Raman Same section, & Class prediction NMF Data fusion Pansharpening Metabolites, & Murine brain Race et al., (2020)
Spectroscopy TOF-  landmark: linear lipids
SIMS
LA-ICP Same & adjacent Class discovery,  Pearson correlation Colocalizing signal, Metals, lipids, Murine spleen, & liver Castellanos-Garcia
sections, & iconic: class k-means, Student’s region-specific ions proteins et al., (2021)
Linear and nonlinear comparison t-test
TOF-SIMS Same section, & Class discovery  Visual comparison Guided acquisition, Lipids Human colon cancer Desbenoit et al.,
landmark & colocalizing signal (2018)
TOF-SIMS Same section, & N/a ROI selection Guided acquisition Metabolites Biofilms Lanni et al., (2014)
inherently registered
TOF-SIMS Same section, & Class discovery ~ Thresholding, Guided acquisition, Lipids Cells Comi et al., (2017)
Microscopy landmark granulometry, & visual & colocalizing
assessment signals
TOF-SIMS Same sections, Class prediction  CCA, & NMF Pansharpening Lipids Murine brain Borodinov et al.,
landmark: linear (2020)
DESI IMC H&E - IF Same & adjacent Class discovery 2D correlation Colocalizing signal Drugs Murine Pancreatic Strittmatter et al.,
sections, & landmark: cancer (2022)

linear

DESI Same section, Class discovery  Visual comparison
Registration not
explained

MALDI-MSI Adjacent sections, & Class Multiblock OPLS
iconic: linear prediction, class

comparison

MALDI H&E Same section, & Class lon Fold change
inherently registered comparison calculation

LDI Same section, & N/a Overlay visualization

Landmark

The significance of MALDI-MSI sample preparation in
multimodal experiments cannot be overstated as there will be
consequences for downstream analysis. Due to sample preparation,
MALDI-MSI is often conducted after a less destructive imaging
modality. In some cases, complementary images can be acquired
after MALDI-MSI to facilitate the registration process. Neumann et al.
(2018), Patterson et al. (2018b), and Jones et al. (2020) demonstrated
multimodal imaging of MALDI-MSI followed by another technique,
which is unintuitive in most instances.

Registration

Registration is usually the first step of multimodal computational
workflow. It consists in aligning two or more images, such that
the enclosed objects are superimposed.

Pre-Processing
Before registration, images should be comparable and have the
same number of spatial dimensions. Standardization ensures that

Colocalizing signal Lipids, & proteins Murine brain, human

glioma

Eberlin et al., (2011)

Pansharpening,
region-specific ions

Lipids, & proteins Murine hippocampus &

Rat prostate

Wehrli et al. (2020)

Integrated dataset,
region-specific ions,
& multi-omics
Integrated dataset,
& region-specific
ions

N-glycans, &
peptides/proteins

human carcinomas, &
tissue microarrays

Heijs et al., (2016)

Metabolites, Lipids ~ Murine brain, & lung Fincher et al., (2020)

the images are in the same intensity range. Images involved in the
registration process may come from unprocessed images (e.g., ion
image in MALDI) or from segmentation methods, which extract
objects of interest in images. For instance, segmentation maps
from dimension reduction techniques (e.g., component image),
or from clustering, can be used. Segmentation methods are
frequently based on pixel intensities or use the geometrical
properties of the objects. In a multimodal context, MALDI-
MSI segmentation can involve simple thresholding (Anyz
et al, 2017), region growing (Grélard et al, 2021), methods
assisting in selecting spatially coherent ion images (Alexandrov
and Bartels, 2013), or deep learning (Abdelmoula et al., 2022).

Methods

Registration methods aim at estimating the transformation which
maps a moving, or deformable image onto a fixed, or reference
image. If possible, the moving image is chosen as the one with the
lowest resolution, so as to preserve the data from the fixed image
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with higher resolution. MALDI-MSI datasets are large and it is
desirable not to interpolate new signal intensities. Thus, MALDI-
MSI are generally chosen as the fixed image. The transformation
can be rigid (translation and rotation), affine (rigid with scaling,
and shearing), projective (affine with perspective) or non-linear.
Non-linear transformations account for local deformations in the
image. They are advised for adjacent sections and to accurately
model the damages during sample preparation.

Registration methods can be classified in two categories,
depending on the information they use: landmarks, or pixel
intensities (iconic methods).

Landmarks are features in the image that are salient and easily
recognizable. Landmarks can be extraneous marks added during
sample preparation or during acquisition, or unique features
visible in both images. They can be selected automatically or
manually. The minimum number of landmarks depends on the
transformation model and the dimensionality: for the 2D case, a
minimum of three points is necessary for an affine
transformation, and up to four for a projective transformation.
Manual methods require user intervention in selecting
landmarks. They are useful for images with different spatial
resolutions, or when it is difficult to find intensity similarities.
It is also the preferred method for partial registration, as the
registration of an image subset onto an image depicting a larger
part of the tissue. Borodinov et al. (2020) registered MALDI
images onto a TOF-SIMS image by manually selecting matching
pairs of fiducial markers etched by an ion beam. Ryabchykov et al.
(2018) registered Raman images onto larger MALDI-MS images
by manually selecting common features from PCA component
images.

Iconic methods are based on similarities in pixel intensities.
Transformation parameters are modified iteratively until a local
optimum of a function, called similarity metric, is reached. The
similarity metric measures how well two images match after
applying a deformation. Typical similarity metrics are the sum
of squared intensity differences (SSD), normalized cross-
correlation, and mutual information, which estimates the
statistical independence of the intensity distributions of the
two images. SSD can be applied when both images have the
same intensity range and similar contrast. Normalized cross-
correlation or mutual information are employed when images
have different contrast or dynamic range. Transformation
parameters are updated by an optimization algorithm
involving the similarity metric. For instance, linear gradient
descent updates transformation parameters based on the slope
of the metric. The resulting transformation strongly depends on
the initialization parameters.

Iconic methods are used in numerous MALDI-MSI
registration tasks. Anyz et al. (2017) aligned histological
staining (Hematoxylin Eosin, H&E) and MALDI-MS images.
Both images are different in terms of pixel intensities, so the
authors extract binary masks of the sample. These masks are
registered by an affine transformation, with an iterative gradient
descent optimization of the SSD metric. Castellanos-Garcia et al.
(2021) combined MALDI-MS with LA-ICP-MS images, so as to
merge the extensive molecular information with supplemental
metals analysis. They select matching ion images manually in

MALDI-MSI and Multimodal Imaging

order to estimate both linear, and non-linear transformations.
Abdelmoula et al. (2019) registered several 2D MALDI slices with
a 3D MRI image in order to obtain a volumetric representation of
the MALDI dataset. The MALDI image is reduced by the t-SNE
algorithm. The corresponding 2D MR image is selected from the
3D volume manually. Then, both linear and non-linear
registration methods are applied, using mutual information as
a similarity metric.

Hybrid approaches use both iconic and landmark-based
registration methods. Patterson et al. (2018a) registered
microscopy and MALDI-MS images, as follows: two
microscopy images, before and after MALDI-MSI, were
acquired. As they are the same modality, the authors use
iconic approaches to register them. The microscopy images are
then registered onto an upsampled version of the MALDI-MS
image using laser ablation marks as landmarks. This workflow
avoids introducing deformation artifacts in the MSI datasets, and
preserves the resolution of microscopy images.

The quality of the registration determines the reliability of the
results of the subsequent data analysis step. Registration
evaluation can be achieved through various metrics, such as
the Dice coefficient or the F-measure, which both estimate the
proportion of overlapping pixels between the deformed and fixed
images. When using non-linear transformations, it is important
to select parameters such as to obtain a compromise between
shape-matching and intensity fidelity. For instance, Grélard et al.
(2021) estimated the shape matching by F-measure, and the
intensity fidelity by computing the mutual information
between the images before and after applying non-linear
registration.

Data Analysis

The last step of a multimodal workflow is usually the joint
analysis of the images. This involves using information from
both modalities to evidence complementarities and correlations.
The algorithms depend on the scientific goal and can be classified
in three classes, as described previously: (1) class discovery, (2)
class prediction, and (3) class comparison.

Class discovery finds spatial or spectral similarities in an
image, and does not require supplementary information from
a complementary modality. It can be achieved by data dimension
reduction methods or clustering mentioned previously.
Abdelmoula et al. (2019) found segmentation maps of
registered MALDI-MS images by a hierarchical variant of the
t-SNE algorithm. Then, spatial correlations are established by
Pearson correlation coefficient between the segmentation map
and the ion images. Ryabchykov et al. (2018) found spatial
correlations between Raman and MALDI-MS images by
analyzing PCA component images and loadings. This analysis
highlights changes in lipid distributions.

Class prediction consists in inferring spatial or spectral
information, by using extraneous information which usually
come from expert annotations or from regions found in the
complementary modality. Borodinov et al. (2020) sharpened
MALDI-MS images, ie., they enhance their spatial resolution, by
combining them with TOF-SIMS images. They used Canonical
Correlation Analysis (CCA) on NMF component images to find
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FIGURE 1 | Typical processing and analysis workflow for multimodal MALDI-MSI. Top-row: the MALDI image (on the left), and the complementary images (on the
right) are processed so as to have comparable shapes, through various specific processing steps, including segmentation. Middle-row: the images are spatially aligned
through registration. Bottom-row: once the images are registered, they can be visualized on-top of each other to reveal similar spatial distributions (on the right). Patterns
can be objectified by a joint statistical analysis to, e.g., find spatial correlations, by investigating spatial clusters (class discovery), produce an enriched dataset from

both modalities (class prediction) or find region-specific ions in two different ROIs (class comparison).

Complementary
modality

Class comparison

similarities. This decomposition and transformation enact the
reconstruction of MALDI ion images from the high-resolution
TOEF-SIMS images. van de Plas et al. (2015) sharpened MALDI-
MS images by microscopy images using Partial Least Squares (PLS)
regression. They used these images to find anatomical distributions
of ions in the sample, as well as predict distributions out of the
sample. Prentice et al. (2018) used out-of-sample prediction to
correlate microscopy to MALDI-MSI when the acquisition is not
practically obtainable. Wehrli et al. (2020) combined Raman and
MALDI-MS images and extract a high-resolution MALDI-MS
image. Since both images are hyperspectral, they use a multiblock
method derived from Orthogonal PLS.

Class comparison consists in comparing two or more ROIs in an
image to highlight patterns that have different intensity distributions
across the ROIs. This can typically be achieved by univariate analysis.
Verbeeck et al. (2017) automatically identified the spatial distributions
observed in registered ion images as a combination of the anatomical
structures described in the atlas built from MR images. They then used
Wilcoxon rank test to find differently expressed ions between healthy
and diseased brain hemispheres. Patterson et al. (2018a) found spatial
correlations between two MS datasets by weighing abundance
correlations by their degree of pixel overlap. Bemis et al. (2019)
proposed several models based on hierarchical Bayesian spatial models
to find differently abundant ions. They modeled the fact that
neighboring pixels have similar spectra, which retrieves differently
abundant ions that are missed by other models.

Class discovery, prediction and comparison can be integrated in
the same workflow. Jones et al. (2019) used various methods

encompassing all these analyses. They combined MALDI-MS
images with various microscopy images (fluorescence and H&E).
First, they manually selected ions that visibly colocalize with ROIs in
the tissue. This approach was insufficient as it led to subjective results,
and was not tractable on large datasets. They performed class
discovery by the spatially shrunken centroid clustering algorithm
and analyzed the clustering results further by looking up ions that
were representative of a cluster of interest. Class prediction achieved by
PLS regression, which allows to approximate MALDI ion images from
a linear combination of fluorescence microscopy channels. The
resulting regression made it easy to find biomarkers that were
specifically distributed in a specific fluorescence channel. Finally,
they performed class comparison on weighted averages in ROIs by
Student t-test.

PERSPECTIVES

Multimodal imaging strategies involving MALDI-MSI alleviate
technological issues related to scientific questions, leading to a
better understanding of the living. It offers new opportunities in
biology by allowing direct correlation between cellular and molecular
information, but requires diligent approaches for acquisition,
registration and computational data analysis to combine and get
the best of the different modalities. Once achieved, these
combinations raise new questions and initiate new studies, which
would not have been possible with a single modality as shown in
Table 1.
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After highlighting relevant methodological developments,
multimodal imaging better contributes or provides evidence
towards the biological understanding. Grélard et al. (2021)
correlated water distribution given by MR images with the
distribution of specific polysaccharides in MS images. This study
hints at the role of these molecules in the cell-wall porosity on tissue,
and corroborates previous observations made in vitro. Strittmatter
etal. (2022) combined MALDI and DESI to study the distribution of
a drug and its different metabolites, which cannot be established by a
single modality. Then, they combined MSI and IMC to show that
drug metabolites co-localize with immunohistochemistry markers for
DNA damage. Prade et al. (2020) correlated multiplexed fluorescent
immunohistochemical staining with MS images to identify ions
involved in metabolic networks. They showed discrepancies in
metabolic distributions according to different cell populations.

The capabilities achieved by multimodal imaging workflows
are numerous, and many are yet to be fully exploited. The
technical progress enacting higher spatial resolution for
MALDI-MS images is met with larger dataset sizes. These
datasets do not necessarily fit in memory, thus memory
requirements become a bottleneck to several research groups.
Bemis and Vitek (2017) developed an R package which loads
larger-than-memory datasets, using on-disk data structures. This
effort should be furthered in other programming languages as
well. This involves adapting the existing computational methods
such that it complies with these data structures, which would
require significant work and collaboration from the community.

The variety of processing algorithms makes it difficult to pick
suitable methods. Deep learning could facilitate the processing
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