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The current study investigated host-guest complexation in 6-p-toluidinylnaphthalene-2-
sulfonate (TNS), a fluorescence probe used to investigate hydrophobic regions that
contain the water-soluble cationic pillar[6]arene (CP6). After complexation with CP6,
the fluorescence intensity of TNS was significantly increased. The decreases in the
fluorescence intensity of the TNS•CP6 complex when phenolic food-additives are
added have been used in indicator displacement assays to detect food additives in
the water.
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INTRODUCTION

Fluorescent indicator displacement (FID) assays make use of fluorescent indicators and emission
phenomena to detect important analytes by transiting different receptors to universal optical
sensors. FID assays can bind to a wide variety of target molecules (Rather et al., 2021; Sedgwick
et al., 2021). With the advancement of host-guest chemistry, macrocyclic host-based FID assays
have garnered widespread attention for their potential application in the field of analytical
testing, and several significant research results have been generated in recent years (Dsouza et al.,
2011; Ghale et al., 2014; Cao et al., 2019; Jiang et al., 2020). Macrocyclic hosts, primarily
cyclodextrins (Crini, et al., 2014; Pal, et al., 2015), calixarenes (Koh, et al., 1996; Hennig, et al.,
2007; Guo, et al., 2014; Zheng, et al., 2018), cucurbiturils (Praetorius, et al., 2008; Florea, et al.,
2011; Barrow, et al., 2015; Sonzini, et al., 2017), and pillararenes (Wang, et al., 2014; Bojtár, et al.,
2015; Bojtár, et al., 2016; Hua, et al., 2016; Bojtár, et al., 2017; Hua, et al., 2018; Cai, et al., 2021;
Wu, et al., 2021), are widely used as fluorescent probes in the majority of the FID-based sensing
systems.

Phenolic food additives have been widely used in the food industry for their significant
antioxidant, antimicrobial, and flavor-enhancing properties (Vinson, et al., 2012; Zhang, et al.,
2014). Whereas the insolubility of food additives in water and their long-term stability
contribute to their excessive use, ultimately resulting in their accumulation and negative
effects on the biosphere (Tobacman, et al., 2001; Savjani, et al., 2012). Encapsulating small-
molecule food-additives in non-toxic, water-soluble macrocyclic hosts improves their
bioavailability and solubility by regulating their physical and chemical properties (Munin,
et al., 2011). 2-Hydroxypropyl β-cyclodextrin (HP-β-CD) is one representative example, with a
binding affinity of ~ 102 M−1 to food-additives (Pal, et al., 2016). It is critical to investigate
artificial receptors with extremely high affinity for food additives to improve sensitivity and
detection efficiency in compound detection.

Edited by:
Yong Yao,

Nantong University, China

Reviewed by:
Yincheng Chang,

Beijing University of Chemical
Technology, China

Xie Han,
Wuhan University of Science and

Technology, China

*Correspondence:
Qunpeng Duan

qpduan@haue.edu.cn

Specialty section:
This article was submitted to
Supramolecular Chemistry,

a section of the journal
Frontiers in Chemistry

Received: 22 April 2022
Accepted: 12 May 2022
Published: 31 May 2022

Citation:
Duan Q, Xing Y and Guo K (2022) The
Detection of Food Additives Using a
Fluorescence Indicator Based on 6–
p–Toluidinylnaphthalence-2-sulfonate

and Cationic Pillar[6]arene.
Front. Chem. 10:925881.

doi: 10.3389/fchem.2022.925881

Frontiers in Chemistry | www.frontiersin.org May 2022 | Volume 10 | Article 9258811

ORIGINAL RESEARCH
published: 31 May 2022

doi: 10.3389/fchem.2022.925881

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.925881&domain=pdf&date_stamp=2022-05-31
https://www.frontiersin.org/articles/10.3389/fchem.2022.925881/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.925881/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.925881/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.925881/full
http://creativecommons.org/licenses/by/4.0/
mailto:qpduan@haue.edu.cn
https://doi.org/10.3389/fchem.2022.925881
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.925881


We developed a new FID assay with a water-soluble cationic
pillar[6]arene (CP6) for the detection of three important phenolic
food additives, namely p-coumaric acid (CA), trans-ferulic acid
(FA), and gallic acid (GA). Because of its enhanced fluorescence
in non-polar environments, the widely used fluorescent probe, 6-
p-toluidinylnaphthalene-2-sulfonate (Dotsikas, et al., 2000) (TNS
in Scheme 1), was used as the fluorescent indicator in our FID
system. Due to the complexation of TNS and CP6, we use an FID
strategy to perform sensitive fluorescence detection on CA, FA,
and GA.

MATERIALS AND METHODS

The reagents used were marketable and applied directly without
further purification. CP6 (Duan et al., 2019) was synthesized by
following the known procedures. Nuclear magnetic resonance
(NMR) spectra were obtained using the Bruker Avance III HD
400 spectrometer with the deuterated solvent as the lock and the
residual solvent as the internal reference. Fluorescence spectra were
obtained by using the Agilent Cary Eclipse fluorescence
spectrophotometer. To prevent the dilution effect during
titration, CP6 stock solutions were produced using the same
TNS solution. The measurement was repeated three times for
each experiment. Displacement assays for CA, FA, and GA were
performed at pH 6.8 with CP6 at varying concentrations of CA,
FA, and GA, respectively. All the experiments were conducted at
room temperature (298 K).

RESULTS AND DISCUSSION

Fluorescent Probe
6-p-Toluidinylnaphthalene-2-Sulfonate
Complexed With Cationic Pillar[6]Arene
UV-vis absorption spectroscopy was used to confirm the host-
guest complexation of fluorescent probe TNS with CP6.

Following successive additions of CP6 to the phosphate-
buffered solution (PBS) of TNS at pH 6.8, hyperchromic
effects at the maximum absorption wavelengths of 223,
263, and 318 nm occurred with a significant bathochromic
shift (Figure 1A). The variations appeared to be greater than
those when α-CD (Nishijo et al., 1992) or β-CD (Nishijo et al.,
1995; Dotsikas et al., 2000) addition was used. The results
indicate that TNS can form a stable complex with CP6.
Additionally, a fluorescence titration on TNS with an
increased CP6 concentration was performed in PBS with a
pH of 6.8 at room temperature. According to Figure 1B, as the
concentration of CP6 increased, a significant increase in
fluorescence intensity was observed, along with a shift in
the fluorescence maximum to shorter wavelengths. The
results indicate that TNS molecules exist in a hydrophobic
environment. Encapsulating TNS in CP6 protects it from
solvent collisions while also providing a distinct local
environment for TNS in terms of polarity, which
significantly enhances (approximately 400 times)
fluorescence intensity. Additionally, the significant pale
blue fluorescence was evident in UV light (the inset of
Figure 1B).

1H NMR tests were used to investigate the host-guest
complexation. Because the solubility of the complex in neat
D2O was insufficient to reach the mM level, DMSO-d6
cosolvents were added. As illustrated in Figure 2, the
naphthyl proton signals of TNS in the inclusion complex
underwent varying degrees of upward shifts. The largest
shift occurred in the direction away from the sulfonate
group, whereas the smallest shift occurred in the direction
toward the sulfonate group. Proton signal variations in the
methylphenyl group are insignificant, indicating that this
group may be located outside the cavity. When combined
with the protons’ shift and broadening in the sulfonate-
naphthyl group, it is concluded that the fluorescence probe
molecule is partially in the CP6 cavity, where the shielding
effects of the aromatic host produce the characteristic signal
broadening (Li et al., 2010). Additionally, the 2D ROESY data

FIGURE 1 | UV-vis and fluorescence titration on TNS with CP6 in PBS (pH 6.8). (A) Absorption spectra (20 µM TNS, 0–6.5 equiv. CP6) (B) fluorescence spectra
(20 µM TNS, 0–2.6 equiv. CP6, λex = 318 nm). The inset illustrates enhanced fluorescence in water when excited at 365 nm with a UV lamp set to 298 K.
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(Supplementary Figure S1) establish a correlation between
the naphthyl protons (Ha-f) in the entrapped TNS and the
aromatic proton H1 in CP6, revealing the interpenetrated
geometry.

To quantify the binding of TNS to CP6, the association
constant (Ka) was determined to be (4.51 ± 0.90) × 105 M−1

using titration tests and a non-linear curve-fitting to the
fluorescence spectra (Supplementary Figure S4). The
complex formed by CP6 and TNS had a 1:1 binding

stoichiometry (Supplementary Figure S3A). We deduced
that the complex formed between CP6 and TNS in aqueous
solution as a result of multiple electrostatic interactions
between the cationic ammonium groups on CP6 and the
sulfonate anion on TNS, hydrophobic interactions, and π-π
stacking interactions between the benzene rings on host CP6
and naphthalene ring on guest TNS. The cooperativity of these
non-covalent interactions is attributed to the binding affinity
in the host-guest system.

SCHEME 1 | Chemical structures and cartoon representations ofCP6, TNS,CA, FA, andGA, as well as an illustration of the procedure for fluorescence indicator
displacement.

FIGURE 2 | Partial 1H NMR spectra (400 MHz, D2O:DMSO-d6 = 3:1, 298 K) for (A) 5 mM CP6, (B) 5 mM CP6 and 15 mM TNS, (C) 15 mM TNS.
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Detection of Food-Additives Using
Fluorescent Indicator
TNS complexedwithCP6 exhibits a significant fluorescence response,
allowing it to be used for FID detection. The binding affinities of CP6
toCA, FA, andGAwere determined in this study using FID detection
(Scheme 1), and the fluorescent indicator TNS was first reversibly
bound to the receptor CP6. The solution was then added with a
weakly fluorescent or non-fluorescent analyte, which competitively
displaced the highly fluorescent TNS from the indicator CP6 cavity,
altering the optical signal (You et al., 2015). Notably, titration of a
preformed TNS•CP6 complex with increasing concentrations of
competitor food additive molecules results in a reversal of the
fluorescence intensity, which is used to determine the competitor
molecules’ binding affinity. Competitive displacement was used to
investigate the binding of threemajor phenolic food-additives, namely
CA, FA, and GA, to CP6. Figure 3A illustrates a typical fluorescence
displacement titrationwithCA as a strong competitor. The quenching
of fluorescence in the presence of CA was easily observed with the
naked eye using a simple UV-lamp (the inset of Figure 3A).

To avoid the effect of changes in pH and dilution on the
displacement assay, the pH of complex and food-additive
solutions was set to 6.8, and the concentrations of TNS and CP6
in food-additive solutions were kept constant. We used that
previously reported competitive binding formula to fit the
reduced fluorescence intensities at the band maximum against
the concentration of competitor food additives (Bakirci et al.,
2006). Using TNS•CP6 as the reporter pair, we determined the
association constants (Ka) for CA, FA, and GA to be (1.24 ± 0.29) ×
104M−1, (1.19 ± 0.16) × 104M−1, and (2.78 ± 0.18) × 102M−1

(Supplementary Figures S5–S7), respectively. Except for GA, the
binding affinities are approximately two orders of magnitude greater
than those of previously studied HP-β-CD to the other two food
additives, which are around 102M−1 (Pal et al., 2016).

Additionally, the observed fluorescence response can also be
used to quantify CA, FA, and GA. The fluorescence intensity

plots increase linearly as the CA, FA, and GA concentrations
increase (Supplementary Figure S8), respectively.
0.047–2.3 mM, 0.047–0.14 mM, and 0.047–2.5 mM were the
linear ranges. The results indicate that the limit of detection
(LOD) values was 0.012, 0.08, and 0.17 µM, respectively, using a
3σ/slope method (MacDougall et al., 1980).

NMR research with GA, CA, and FA was used to determine the
complexation of food additives. Supplementary Figure S9 illustrates
the 1HNMR spectra forGA in the presence ofCP6. As illustrated in
the figure, shielding caused a shift in the benzene proton signal of
GA, conclusively confirming the inclusion complex between CP6
and GA. Additionally, the 2D NOESY data (Supplementary Figure
S2) show NOE cross-peaks between the benzene proton (Ha) in
entrappedGA and the protons H1–4 inCP6, indicating the inclusion
of a benzene ring in the CP6 cavity. The signals in the NMR spectra
of CA and FA changed similarly upon the addition of CP6
(Supplementary Figures S10,S11).

CONCLUSIONS

To summarize, we demonstrated a new fluorescence activation
switch based on host-guest complexation between the fluorescent
indicator probe TNS and cationic pillar[6]arene CP6. In TNS
solution, the complexation significantly enhanced the
fluorescence. A fluorescence switch-off displacement assay was
used to detect three commonly used non-fluorescence phenolic
food additives in the water. The study used molecular recognition
and fluorescence indicator displacement assays to develop a
prospective strategy for phenolic food additive detection.
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