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Coumarin and chalcone, two important kinds of natural product skeletons, both exhibit α-
glucosidase inhibitory activity. In this work, coumarin-chalcone derivatives 3 (a~v) were
synthesized, and their α-glucosidase inhibitory activity was screened. The results showed
that all synthetic derivatives (IC50: 24.09 ± 2.36 to 125.26 ± 1.18 μM) presented better α-
glucosidase inhibitory activity than the parent compounds 3-acetylcoumarin (IC50: 1.5 ×
105 μM) and the positive control acarbose (IC50: 259.90 ± 1.06 μM). Among them,
compound 3t displayed the highest α-glucosidase inhibitory activity (IC50: 24.09 ±
2.36 μM), which was approximately 10 times stronger than that of acarbose. The
kinetic assay of 3t (KI = 18.82 μM, KIS = 59.99 μM) revealed that these compounds
inhibited α-glucosidase in a mixed-type manner. Molecular docking was used to simulate
the interaction between α-glucosidase and compound 3t.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia resulting
from insulin resistance and insufficient insulin secretion by pancreatic β-cells. One of the key reasons
for the hyperglycemia is the enzymatic hydrolysis of carbohydrates. α-Glucosidase (EC 3.2.1.20)
plays an important role in carbohydrate digestion, in which the oligosaccharides and disaccharides
from dietary carbohydrates are broken down into monosaccharides. The α-glucosidase inhibitors
suppress the absorption and assimilation of monosaccharides and delay the digestion of
carbohydrates (Cohen and Goedert, 2004; Proença et al., 2017; Xu et al., 2019; Zhong et al.,
2019). Some commercially available α-glucosidase inhibitors, including miglitol, voglibose, and
acarbose, have been used in the clinical treatment of T2DM, but they still show several adverse effects
(Chai et al., 2015; Khursheed et al., 2019; Rocha et al., 2019). In addition, α-glucosidase is closely
related to hepatitis, cancer, and Pompe disease (Kasturi et al., 2018; Gulcin et al., 2019). Therefore, it
is always beneficial in medicinal chemistry to develop potent α-glucosidase inhibitors.

Coumarin is an important natural product skeleton with various pharmacological properties;
among these, its anti-hyperglycemic activity is the focus of our research (Kontogiorgis et al., 2012;
Katsori and Litina, 2014; Adib et al., 2018). Previous studies have shown that natural products
containing the coumarin moiety and synthesized coumarin derivatives exhibit anti-hyperglycemic
activity through the inhibition of α-glucosidase (Adib et al., 2018). For instance, Wang et al. (2016)
reported on a series of coumarin-thiazoles with the highest α-glucosidase inhibitory activity (IC50 =
6.2 μM). Salar et al. (2016) developed 3-thiazolyl coumarins with the most potent α-glucosidase
inhibitory activity (IC50 = 0.12 μM) (Salar et al., 2016)). Ibrar et al. designed coumarinyl
iminothiazolidinones with the most effective inhibitory activity (IC50 = 0.09 μM) (Ibrar et al.,
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2017). (Figure 1) Chalcone, an important sub-structure widely
existing in many natural products, has the ability to bind to a
variety of targets, resulting in many biological activities (Bak et al.,
2011; Feng et al., 2014; Kang et al., 2018; Djemoui et al., 2020;
Rocha et al., 2020; Dorn et al., 2010).

In medicinal chemistry, the hybrid of pharmacophore and
skeleton is an effective strategy for obtaining active lead
compounds. Until now, many coumarin-chalcone derivatives had
been synthesizedwithmany biological properties, such as antioxidant,
anti-cancer, antibacterial, and anti-inflammatory properties (Pingaew
et al., 2014; Seidel et al., 2014; Lee et al., 2018). However, there were
few reports on the application of α-glucosidase inhibitors. Therefore,
we synthesized coumarin-chalcone derivatives 3a~v and screened
their inhibitory activity against α-glucosidase.

RESULTS AND DISCUSSION

Chemistry
Coumarin-chalcone derivatives 3(a~v) were prepared according
to a well-known method (Roussel and Fraser, 1993; Vazquez-
Rodriguez et al., 2015; Shang et al., 2018;Wang et al., 2019). In the
presence of piperidine, salicylaldehyde 1) reacted with ethyl
acetoacetate to produce 3-acetylcoumarin (2). Then 3-
acetylcoumarin 2) and the substituted aldehydes underwent
the aldol condensation reaction under the catalysis of
piperidine to give coumarin-chalcone derivatives 3(a~v)
(Scheme 1). Compounds 3(a~v) had been reported previously
and the title compounds were characterized by 1H NMR.

α-Glucosidase Inhibition Assay
Coumarin-chalcone derivatives 3(a~v) were screened for their
inhibitory activities against α-glucosidase using 4-nitrophenyl-α-

D-galactopyranoside (p-NPG) as a substrate and the results are
summarized in Table 1. The parent compounds 3-
acetylcoumarin only showed low inhibitory activity with IC50

values of 1.5 × 105. Interestingly, all synthetic derivatives showed
moderate to good inhibitory activity towards α-glucosidase with
IC50 values ranging from 24.09 ± 2.36 to 125.26 ± 1.18 µM. The
results revealed that the inhibitory activities of synthetic
compounds were significantly enhanced by hybridizing the
two molecular skeletons. Furthermore, all the title compounds
presented higher inhibitory activity than that of the positive
control acarbose (IC50: 259.90 ± 1.06 μM). Among them,
compounds 3j, 3q and 3t demonstrated the highest inhibitory
activity (IC50: 30.30 ± 2.53, 29.74 ± 2.68, and 24.09 ± 2.36 μM,
respectively): 10 times stronger than that of acarbose.

Structure Activity Relationships
The structure activity relationships (SARs) of compounds 3(a~v) was
analyzed based on their α-glucosidase inhibitory activities. Compound
3a (IC50: 125.26 ± 1.18 μM) without any substituent was selected as
the template compound. It could be seen that the introduction of
various substituents resulted in an obvious change in inhibitory
activity. For compound 3b (IC50: 95.23 ± 1.35 μM) with a 4-
methyl group, its inhibitory activity slightly increased compared to
3a. For compounds 3(g~i) with the fluorine group, 3(l~n) with the
trifluoromethyl group, 3(o~q) with the chlorine group, and 3(r~t)
with the bromine group, all presented stronger inhibitory activity than
compound 3a, indicating that electron-withdrawing groups such as
fluorine, trifluoromethyl, chlorine, and bromine could lead to an
increase in inhibitory activity. Among them, 3i with the 4-fluorine
group (IC50: 35.68 ± 0.28 μM), 3n with the 4-trifluoromethyl group
(IC50: 53.58 ± 1.95 μM), 3q with the 4-chlorine group (IC50: 29.74 ±
2.68 μM), and 3t with the 4-bromine group (IC50: 24.09 ± 2.36 μM)
showed higher inhibitory activity than the 2- and 3-position groups.
For compounds 3j and 3k with difluoro groups, the introduction of
2,4-difluoro groups (3j, IC50: 30.30 ± 2.53) resulted in the stronger
inhibitory activities. While for compounds 3(c~e) with methoxy
group, the 2-position group (3c, IC50: 60.89 ± 2.74) was better
than 3-position group and 4-position group.

Furthermore, the sequencing of inhibitory activity was identified:
3t (with 4-bromine group) > 3q (with 4-chlorine group) > 3i (with
4-fluorine group) > 3n (with 4-trifluoromethyl group), predicting
that stronger electron-withdrawing groups led to weaker inhibitory
activity as for the compounds with electron-withdrawing groups. In
addition, in the electron-withdrawing groups, inhibitory activity was

FIGURE 1 | α-glucosidase inhibitors containing coumarin.

SCHEME 1 | The synthetic route to coumarin-chalcone derivatives 3
(a~v). Reagents and conditions: (A) ethyl acetoacetate, piperidine, ethanol,
65°C, 20 min (B) substituted aldehydes, piperidine, ethanol, reflux, 24 h.
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related to the substituted position as follows: the inhibitory activity of
compounds with the withdrawing groups at para-position was
superior to that at meta-position, which is better than that at
ortho-position. The introduction of thiophene (3u) or indole (3v)
ring only slightly improved the inhibitory activity compared with
compound 3a.

Inhibitory Mechanism Analysis
Generally, according to the type of inhibition, enzyme inhibitors
can be divided into reversible inhibitors and irreversible

inhibitors (Abuelizz et al., 2019). In order to obtain the
principle of the combination of enzyme inhibitors and
enzymes, it is necessary to study the interaction between
enzyme inhibitors and enzymes. Compounds 3j, 3q and 3t
with strongest inhibitory activity were chosen for the research
of inhibition kinetics against α-glucosidase (the inhibitory
mechanism analysis of compound 3t was shown in Figure 2
and figures for the inhibitory mechanism analysis of compounds
3j and 3q have been shown in the supporting information). A
series of plots of enzymatic reaction rate (v) vs. α-glucosidase

TABLE 1 | α-Glucosidase inhibitory activities of compounds 3 (a~v).

Compound R IC50 (μM) Compound R IC50 (μM)

3a 125.26 ± 1.18 3b 95.23 ± 1.35

3c 60.89 ± 2.74 3d 96.39 ± 1.37

3e 105.18 ± 1.98 3f 75.53 ± 0.98

3g 48.36 ± 1.42 3h 45.68 ± 1.28

3i 35.68 ± 0.28 3j 30.30 ± 2.53

3k 49.68 ± 3.28 3l 71.52 ± 2.14

3m 64.71 ± 1.82 3n 53.58 ± 1.95

3o 59.68 ± 1.73 3p 52.62 ± 2.45

3q 29.74 ± 2.68 3r 38.56 ± 1.87

3s 35.56 ± 2.18 3t 24.09 ± 2.36

3u 109.23 ± 2.69 3v 103.31 ± 1.45

3-Acetylcoumarin 1.5 × 105
Acarbose 259.90 ± 1.06
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concentration in the presence of inhibitors were generated to
identify the type of inhibition that is listed in Figure 1. The
presence of 3j, 3q and 3t did not change the number of enzymes

but reduced the enzyme activity, which indicated that their
inhibition mechanisms on α-glucosidase were reversible.

The inhibit type of inhibitors on α-glucosidase include four
types, named competitive inhibition, non-competitive
inhibition, mixed inhibition, and anti-competitive inhibition
(Abuelizz et al., 2019). The inhibition modes of compounds 3j,
3q and 3t against α-glucosidase were investigated using
Lineweaver-Burk double reciprocal plot. As shown in
Figure 3, the straight lines of 1/v vs. 1/(S) in the presence
of compounds 3j, 3q and 3t intersected at a point in the second
quadrant respectively, illustrating that the inhibit type of 3j, 3q
and 3t was mixed-type inhibition. Subsequently, the KI values
and KIS values of 3j, 3q and 3t were calculated based on the
slope or intercept vs. PNPG concentration and summarized in
Table 2. The higher KIS values compared to KI values indicated

FIGURE 3 | Lineweaver-Burk plots of compounds 3t on α-glucosidase (A). Plot of slope vs. the concentration of compounds for the calculation of the inhibition
constant KI (B). Plot of intercept vs. the concentration of compounds for the determination of the inhibition constant KIS (C).

TABLE 2 | Type of inhibition mechanism, as well as KI and KIS values of
compounds 3j, 3q and 3t.

Compound Inhibition mechanism KI (μM) KIS (μM)

3j Mixed type 19.53 25.94
3q Mixed type 16.13 20.34
3t Mixed type 11.02 20.71

FIGURE 2 | Inhibition mechanism determination of compounds 3t on α-
glucosidase.
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that the affinity of compounds 3j, 3q and 3t with free enzyme
was higher than that with enzyme-substrate complex.

Molecular Docking Simulation
To better understand the inhibition mechanism of compounds
3j, 3q and 3t, the binding modes of α-glucosidase with 3j, 3q
and 3t were simulated using Sybyl 2.1.1 (United States) and
Pymol software. The crystal structure of Saccharomyces
cerevisiae isomaltase (PDB: 3AJ7) with 72.4% of sequence
identity with α-glucosidase was chosen as the target protein
(Wang et al., 2017; Asgari et al., 2019; Morocho et al., 2019;
Salar et al., 2016). As can be seen in Figures 4A–D, compounds
3j, 3q and 3t had the similar interaction with the active pocket
of α-glucosidase.. Figures 4E–G show that the carbonyl group
of coumarin of 3j, 3q and 3t all formed two hydrogen bonds
with Thr310 and Arg315, respectively. Compounds 3j, 3q and
3t all made an π-π interaction with Phe303; and all established
hydrophobic interactions with Pro310, Asp307, Asp352,
Gln353, and Asn350.

CONCLUSION

In summary, the α-glucosidase inhibitory activity of
coumarin-chalcone derivatives 3(a~v) was evaluated. The
results showed that all compounds presented outstanding α-
glucosidase inhibitory activities (IC50: 24.09 ± 2.36 to 125.26 ±
1.18 μM) than the positive control acarbose and parent
compounds 3-acetylcoumarin and benzaldehyde.
Compounds 3j, 3q, 3t displayed the highest α-glucosidase
inhibitory activity (IC50: 30.30 ± 2.53, 29.74 ± 2.68, 24.09 ±

2.36μM, respectively), which was approximately 10 times
stronger than acarbose. Inhibition mechanism results
revealed that these compounds inhibited α-glucosidase in a
mixed-type manner. Molecular docking verified the
interactions of α-glucosidase with compounds 3j, 3q, and 3t.

EXPERIMENT

Chemicals and Instruments
Ethyl acetoacetate, salicylaldehyde and absolute ethanol were
analytical pure grade and purchased from Aladdin (Shanghai)
Reagent Co., Ltd. Piperidine; glacial acetic acid, petroleum ether
and ethyl acetate were supplied by Titan (Shanghai) Technology
Co., Ltd.; α-Glucosidase from Saccharomyces cerevisiae (EC
3.2.1.20), 4-nitrophenyl-α-D-galactopyranoside (p-NPG), and
Dimethyl sulfoxide (DMSO) were supported by Sigma-Aldrich
(United States) Chemical Co., Ltd. Melting points were tested on
a micro melting-point instrument. 1H NMR spectra were
measured (CDCl3) by Bruker DPX-500 MHz AVANCE with
TMS as an internal standard. Mass spectroscopy was
performed on a (LCQTM). The absorbance was recorded by a
micro-plate reader.

Synthesis of 3-Acetylcoumarin
To a solution of Salicylaldehyde 1 (1.0 mmol) in ethanol
(10 ml), ethyl acetoacetate (1.0 mmol) and piperidine
(1.0 mmol) were added and the mixture was stirred at 65°C
for 20 min. When the reaction was judged to be complete by
TLC, the crude product was obtained by filtration, followed by
washing with petroleum ether to produce 3-acetylcoumarin 2.

FIGURE 4 |Molecular docking of compounds 3d, 3f and 3iwith α-glucosidase. (A) Compound 3q in the active pocket (B); Compound 3t in the active pocket (C);
compounds 3j, 3q and 3t in the active pocket of α-glucosidase (D); 2D view of 3j with α-glucosidase (E); 2D view of 3q with α-glucosidase (F); 2D view of 3t with α-
glucosidase (G).
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Yellow solid; yield 72.3%; 1H NMR (500 MHz, Chloroform-d)
δ 8.54 (s, 1H), 7.70–7.66 (m, 2H), 7.42–7.36 (m, 2H)
2.76 (s, 3H).

Synthesis of Coumarin-Chalcone
Derivatives 3(a~v)
To a solution of 3-acetylcoumarin 2 (1.0 mmol) in ethanol
(10 ml) substituted aromatic aldehydes (1.0 mmol) and
piperidine (1.0 mmol) were added, and then the mixture was
refluxed for 24 h. The crude product was obtained by filtration,
and subsequently by recrystallization by ethanol to give the title
compounds 3(a~v).

(E)-3-cinnamoyl-2H-chromen-2-one (3a). Yellow solid; yield
51.7%; 1H NMR (500 MHz, Chloroform-d) δ 8.60 (s, 1H), 7.92
(dd, J = 40, 20 Hz, 2H), 7.71–7.65 (m, 4H), 7.44–7.39 (m, 4H),
7.35 (t, J = 8, 7.5 Hz, 1H).

(E)-3-[3-(p-tolyl) acryloyl]-2H-chromen-2-one (3b). Yellow
solid; yield 45.9%; 1H NMR (500 MHz, Chloroform-d) δ 8.58 (s,
1H), 7.84 (dd, J = 20, 15 Hz, 2H), 7.69–7.62 (m, 4H), 7.39 (d, J =
5 Hz, 1H), 7.35 (td, J = 7.5, 1 Hz, 1H), 6.93 (dt, J = 10, 3 Hz, 2H),
3.85 (s, 3H).

(E)-3-[3-(2-methoxyphenyl) acryloyl]-2H-chromen-2-one
(3c). Yellow solid; yield 37.7%; 1H NMR (500 MHz,
Chloroform-d) δ 8.56 (s, 1H), 8.22 (d, J = 15 Hz, 1H), 7.98 (d,
J = 15 Hz, 1H), 7.73–7.62 (m, 3H), 7.42–7.32 (m, 3H), 6.99 (t, J =
10, 10 Hz, 1H), 6.93 (d, J = 10 Hz, 1H), 3.92 (s, 3H).

(E)-3-[3-(3-methoxyphenyl) acryloyl]-2H-chromen-2-one
(3d). yellow solid; yield 42.1%; 1H NMR (500 MHz,
Chloroform-d) δ 8.59 (s, 1H), 7.93 (d, J = 20 Hz, 1H),
7.71–7.65 (m, 2H), 7.41 (d, J = 5 Hz, 1H), 7.39–7.31 (m, 2H),
7.28 (d, J = 10 Hz, 1H), 7.19 (t, J = 5, 2 Hz, 1H), 6.97 (ddd, J = 8,
2.5, 1 Hz, 1H), 3.86 (s, 3H).

(E)-3-[3-(4-methoxyphenyl) acryloyl]-2H-chromen-2-one
(3e). Yellow solid; Yield 49.7%; 1H NMR (500 MHz,
Chloroform-d) δ 8.58 (s, 1H), 7.88 (dd, J = 30, 15 Hz, 2H),
7.69–7.64 (m, 2H), 7.58 (d, J = 10 Hz, 2H), 7.40 (d, J = 10 Hz,
1H), 7.35 (t, J = 10, 5 Hz, 1H), 7.22 (d, J = 10 Hz, 2H), 2.39 (s, 3H).

(E)-3-{3-[4-(methylthio)phenyl] acryloyl}-2H-chromen-2-
one (3f). Yellow solid; yield 55.2%; 1H NMR (500 MHz,
Chloroform-d) δ 8.59 (s, 1H), 7.87 (dd, J = 40, 20 Hz, 2H),
7.70–7.64 (m, 2H), 7.61–7.57 (m, 2H), 7.40 (d, J = 10 Hz, 1H),
7.35 (td, J = 10, 1.5 Hz, 1H), 7.24 (d, J = 10 Hz, 2H), 2.52 (s, 3H).

(E)-3-[3-(2-fluorophenyl) acryloyl]-2H-chromen-2-one
(3g). Yellow solid; yield 45.0%; 1H NMR (500 MHz,
Chloroform-d) δ 8.60 (s, 1H), 8.01 (dd, J = 30, 15 Hz, 2H),
7.74 (t, J = 10, 10 Hz, 1H), 7.71–7.65 (m, 2H), 7.42–7.34 (m,
3H), 7.19 (t, J = 10, 10 Hz, 1H), 7.12 (t, J = 10, 10 Hz, 1H).

(E)-3-[3-(3-fluorophenyl) acryloyl]-2H-chromen-2-one
(3h). Yellow solid; yield 35.3%; 1H NMR (500 MHz,
Chloroform-d) δ 8.61 (s, 1H), 7.95 (d, J = 20 Hz, 1H), 7.81 (d,
J = 15 Hz, 1H), 7.71–7.66 (m, 2H), 7.45–7.36 (m, 5H), 7.19 (tdd,
J = 8.2, 2.6, 1 Hz, 1H).

(E)-3-[3-(4-fluorophenyl) acryloyl]-2H-chromen-2-one (3i).
Yellow solid; yield 44.9%; 1H NMR (500 MHz, Chloroform-d) δ
8.61 (s, 1H), 7.90 (d, J = 20 Hz, 1H), 7.84 (d, J = 20 Hz, 1H),

7.71–7.65 (m, 4H), 7.41 (d, J = 10 Hz, 1H), 7.37 (td, J = 8.1, 0.4 Hz,
1H), 7.14–7.08 (m, 2H).

(E)-3-[3-(2,4-difluorophenyl) acryloyl]-2H-chromen-2-one
(3j). Yellow solid; yield 44.7%; 1H NMR (500 MHz,
Chloroform-d) δ 8.61 (s, 1H), 7.96 (d, J = 15 Hz, 2H),
7.78–7.71 (m, 1H), 7.71–7.65 (m, 2H), 7.41 (d, J = 10 Hz, 1H),
7.39–7.35 (m, 1H), 6.98–6.92 (m, 1H), 6.91–6.84 (m, 1H).

(E)-3-[3-(3,4-difluorophenyl) acryloyl]-2H-chromen-2-one
(3k). Yellow solid; yield 37.3%; 1H NMR (500 MHz,
Chloroform-d) δ 8.64 (s, 1H), 7.91 (d, J = 15 Hz, 1H), 7.78 (d,
J = 15 Hz, 1H), 7.70 (dd, J = 10, 5 Hz, 1H), 7.56–7.50 (m, 1H),
7.45–7.38 (m, 4H), 7.23 (dt, J = 10, 10 Hz, 1H).

(E)-3-{3-[2-(trifluoromethyl) phenyl]acryloyl}-2H-
chromen-2-one (3l). Yellow solid; yield 39.8%; 1H NMR
(500 MHz, Chloroform-d) δ 8.63 (s, 1H), 7.94 (dd, J = 10,
5 Hz, 2H), 7.74–7.58 (m, 4H), 7.53–7.48 (m, 1H),
7.45–7.34 (m, 3H).

(E)-3-{3-[3-(trifluoromethyl) phenyl]acryloyl}-2H-
chromen-2-one (3m). Yellow solid; yield 39.9%; 1H NMR
(500 MHz, Chloroform-d) δ 8.62 (s, 1H), 7.86 (dd, J = 10,
5 Hz, 3H), 7.71–7.65 (m, 3H), 7.57–7.53 (m, 1H),
7.44–7.34 (m, 3H).

(E)-3-{3-[4-(trifluoromethyl) phenyl]acryloyl}-2H-
chromen-2-one (3n). Yellow solid; yield 41.4%; 1H NMR
(500 MHz, Chloroform-d) δ 8.63 (s, 1H), 7.86 (d, J = 15 Hz,
1H), 7.78 (d, J = 10 Hz, 2H), 7.72–7.65 (m, 3H),
7.44–7.36 (m, 3H).

(E)-3-[3-(2-chlorophenyl) acryloyl]-2H-chromen-2-one
(3o). Yellow solid; yield 51.2%; 1H NMR (500 MHz,
Chloroform-d) δ 8.61 (s, 1H), 8.03 (d, J = 15 Hz, 1H), 7.79 (d,
J = 15 Hz, 1H), 7.70–7.66 (m, 3H), 7.58 (d, J = 10 Hz, 1H),
7.46–7.35 (m, 4H).

(E)-3-[3-(3-chlorophenyl) acryloyl]-2H-chromen-2-one
(3p). Yellow solid; yield 36.4%; 1H NMR (500 MHz,
Chloroform-d) δ 8.61 (s, 1H), 7.95 (d, J = 15 Hz, 1H), 7.78 (d,
J = 15 Hz, 1H), 7.71–7.64 (m, 3H), 7.55 (d, J = 10 Hz, 1H),
7.43–7.34 (m, 4H).

(E)-3-[3-(4-chlorophenyl)acryloyl]-2H-chromen-2-one (3q).
Yellow solid; yield 45.2%; 1H NMR (500 MHz, Chloroform-
d) δ 8.61 (s, 1H), 7.93 (d, J = 15 Hz, 1H), 7.81 (d, J = 15 Hz, 1H),
7.70–7.65 (m, 2H), 7.63 (dt, J = 8.5, 2.5 Hz, 2H),
7.42–7.34 (m, 4H).

(E)-3-[3-(2-bromophenyl)acryloyl]-2H-chromen-2-one (3r).
Yellow solid; yield 40.8%; 1H NMR (500MHz, Chloroform-d) δ
8.62 (s, 1H), 8.24 (d, J = 15Hz, 1H), 7.90 (d, J = 15 Hz, 1H), 7.83 (dd,
J = 10, 5 Hz, 1H), 7.72–7.66 (m, 2H), 7.63 (dd, J = 10, 5 Hz, 1H),
7.41 (d, J = 10Hz, 1H), 7.39–7.34 (m, 2H), 7.28–7.22 (m, 1H).

(E)-3-[3-(3-bromophenyl)acryloyl]-2H-chromen-2-one (3s).
Yellow solid; yield 41.8%;1H NMR (500MHz, Chloroform-d) δ
8.61 (s, 1H), 7.94 (d, J = 15 Hz, 1H), 7.82–7.75 (m, 2H), 7.70–7.65
(m, 2H), 7.59 (d, J = 10 Hz, 1H), 7.53 (ddd, J = 3, 1.5, 1 Hz, 1H),
7.43–7.35 (m, 2H), 7.29 (t, J = 10, 10 Hz, 1H).

(E)-3-[3-(4-bromophenyl)acryloyl]-2H-chromen-2-one (3t).
Yellow solid; yield 44.5%; 1H NMR (500MHz, Chloroform-d) δ
8.61 (s, 1H), 7.95 (d, J = 15 Hz, 1H), 7.79 (d, J = 15Hz, 1H),
7.70–7.65 (m, 2H), 7.54 (s, 4H), 7.41 (d, J = 10Hz, 1H), 7.36 (td, J =
5, 1 Hz, 1H).
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(E)-3-[3-(thiophen-2-yl)acryloyl]-2H-chromen-2-one (3u).
Yellow solid; yield 40.7%; 1H NMR (500 MHz, DMSO-d6) δ
12.00 (s, 1H), 8.68 (s, 1H), 8.01 (d, J = 15 Hz, 1H), 8.10–8.04
(m, 2H), 7.98 (td, J = 10, 3.5 Hz, 2H), 7.78–7.73 (m, 1H), 7.69 (d,
J = 15 Hz, 1H), 7.54–7.49 (m, 2H), 7.44 (td, J = 10, 1.5 Hz, 1H),
7.30–7.22 (m, 2H).

(E)-3-[3-(1H-indol-2-yl)acryloyl]-2H-chromen-2-one (3v).
Yellow solid; yield 51.7%; 1H NMR (500 MHz, Chloroform-d)
δ 8.60 (s, 1H), 7.92 (dd, J = 40, 20 Hz, 2H), 7.71–7.65 (m, 4H),
7.44–7.39 (m, 4H), 7.35 (t, J = 8, 7.5 Hz, 1H).

α-Glucosidase Inhibition and Kinetics
Mechanism Analysis Assay
The α-glucosidase inhibitory activity assay of coumarin-chalcone
derivatives 3 (a~v) was conducted using p-NPG as a substrate.
(Pogaku et al., 2019; Saeedi et al., 2019; Xu et al., 2019). 10 μl of the
test compound and 10 μl of the enzyme (final concentration 0.1 U/
ml) were added to 130 μl of PBS (0.1M phosphate, pH 6.8), and
incubated at 37°C for 10 min. Then p-NPG (final concentration
0.25mM) was added and the absorbance change was measured by a
micro-plate reader at 405 nm. All experiments were assayed four
times. The percentage of inhibition was obtained using the formula:
Inhibition (%) = [(OD1 - OD0)/OD0] × 100%, where OD1 and OD0

represent the absorbance value of the experimental group and the
blank group respectively. Acarbose as a positive sample was also
tested. The IC50 value of each compound was obtained from the
fitting curve of inhibition vs. compound concentration.

The type of inhibition was identified by the plots of enzymatic
reaction rate (V) vs. α-glucosidase concentration. The test
method was similar to the above enzyme activity assay. In the
presence of different concentrations of compounds 3j, 3q and 3t,
respectively (0, 25, 30, and 40 μM), the absorbance change was
detected under different concentrations of α-glucosidase (0.075,
0.1, 0.125, and 0.15 U/mL).

The inhibition mode was also detected using a similar method
to that described above. In the presence of different concentrations
of compounds 3j, 3q and 3t, respectively (0, 25, 30 and 40 μM), the
absorbance change was measured under different concentrations
of p-NPG (0.25, 0.5, 0.75, 1 mM). The inhibition mode of the
inhibitor was obtianed using Lineweaver-Burk plots. The constant
KI was obtained by secondary plots of the derivatives concentration
(I) vs. Slope, constant KIS was obtained by secondary plots of the
derivatives concentration (I) vs. Intercept.

Molecular Docking
The molecular docking of α-glucosidase with compounds 3d,
3f, and 3i was simulated with Sybyl 2.1.1 (United States) and
Pymol software. First, compounds 3d, 3f, and 3i were prepared
by energy minimization with the Tripos force field by the
Powell gradient algorithm with Gasteiger-Hückel charges. The

maximum iterations for the minimization were set to 10 000.
The minimization was terminated when an energy gradient
convergence criterion of 0.005 kcal mol−1 Å−1 was reached.
The energy convergence criterion of 0.01 kcal/mol and the
maximum iterations for the minimization of 1,000 times were
reached. Next, the crystal structure of Saccharomyces cerevisiae
isomaltase (PDB: 3AJ7) was downloaded from the RCSB
Protein Data Bank. The protein was prepared by
biopolymer and implemented following the procedure of
removing water molecules, adding hydrogen atoms, and
repairing end residues. The active pocket of protein was
generated with the automatic mode. Then the molecular
docking of protein with 3d, 3f, and 3i was operated in the
default format. The Pymol software was used to draw the view
of protein with 3d, 3f, and 3i.
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