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In the first paper of this series, the authors derived an expression for the
interaction energy between two reagents in terms of the chemical reactivity
indicators that can be derived from density functional perturbation theory.
While negative interaction energies can explain reactivity, reactivity is often
more simply explained using the “|du| big is good” rule or the maximum
hardness principle. Expressions for the change in chemical potential (1) and
hardness when two reagents interact are derived. A partial justification for the
maximum hardness principle is that the terms that appear in the interaction
energy expression often reappear in the expression for the interaction hardness,
but with opposite sign.

KEYWORDS

DFT-density functional theory, chemical reactivity, HSAB (hard-soft-acid-base)
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1 Introduction

Nearly 35 years ago, Parr recognized that density-functional theory (DFT) could be
used not only as a formal alternative to wavefunction-based quantum chemistry and as a
computational tool, but also as an interpretative tool through which chemical reactivity
could be elucidated (Parr et al,, 1978; Parr and Yang, 1989). The special power of the
electron-density perspective arises because the mathematical structure of DFT naturally
accommodates fractional numbers of electrons and therefore partial electron transfer
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(Janak, 1978; Parr and Bartolotti, 1982; Perdew et al., 1982; Yang
et al., 2000; Ayers, 2008; Fuentealba and Cardenas, 2013;
Miranda-Quintana and Bochicchio, 2014; Miranda-Quintana
and Ayers, 2016a; Ayers and Mel, 2018), while in the
wavefunction theory, the number of electrons is linked to the
dimensionality of the wavefunction, and is inherently an integer.
Ironically, the great utility of DFT for conceptual purposes arises
from the same feature that is most problematic for computational
applications (Merkle et al., 1992; Mori-Sanchez et al., 2006;
Ruzsinszky et al., 2007; Cohen et al., 2008a; b;Mori-Sanchez
et al.,, 2008; Yang et al., 2016). However, the difficulty of treating
fractional electrons computationally in DFT is not important in
the context of this paper, where one can assume that an exact (or
otherwise accurate ab initio) density functional is used (Levy,
1979; Lieb, 1983; Bartlett et al., 2005; Ayers, 2006).

The use of density functional theory for chemical reactivity
(DFT-CR), often called conceptual DFT or chemical DFT (Parr
and Yang, 1989; Chermette, 1999; Geerlings et al., 2003; Ayers
et al., 2005; Chattaraj et al., 2006; Gazsquez, 2008; Liu, 2009a;
Johnson et al., 2012; De Proft et al., 2014; Fuentealba and
Cardenas, 2015; Miranda-Quintana, 2018), is
established,  both conceptually,
computationally. The greatest successes of DFT-CR are

now well
mathematically, and
probably linked to the definition of a quantitative scale for the
chemical hardness, (Parr and Pearson, 1983), which has led to
increased understanding of the hard/soft acid/base (HSAB)
theory (Nalewajski, 1984; Nalewajski et al., 1988; Chattaraj
et al, 1991; Gazquez and Mendez, 1994; Mendez and
Gazquez, 1994; Chattaraj, 2001; Melin et al, 2004; Ayers,
2005; Ayers et al., 2006; Anderson et al., 2007a; Ayers, 2007;
Cardenas and Ayers, 2013; Miranda-Quintana R. A., 2017) and
an entirely new principle for chemical reactivity and molecular
stability, the maximum hardness principle (MHP) (Pearson,
1987; Zhou and Parr, 1989; Parr and Chattaraj, 1991; Pearson
and Palke, 1992; Pearson, 1994; Chattaraj, 1996; Pearson, 1999;
Ayers and Parr, 2000; Torrent-Sucarrat et al., 2001, 2002;
Miranda-Quintana R. A., 2017). One of the subtlest results in
DFT-CR is that the HSAB principle is, in fact, an inexorable
consequence of the maximum hardness principle (Chattaraj
et al, 1991; Parr and Chattaraj, 1991; Chattaraj and Ayers,
2005; Chattaraj et al, 2007), with a similar result also
connecting the HSAB and minimum electrophilicity principles
(Chattaraj and Nath, 1994; Chattaraj et al., 2001; Chattaraj, 2007;
Noorizadeh, 2007; Liu, 2009b; Morell et al., 2009; Pan et al., 2013;
Miranda-Quintana, 2017a; Miranda-Quintana and Ayers, 2018b;
2019). Here it is important to clarify that what is usually
understood as a “principle” in chemistry is different from the
definition in physics. For example, Heisenberg’s uncertainty
principle does not admit violations. The principles of chemical
reactivity, on the other hand, may have exceptions. Therefore,
instead of speaking of principles, one should speak of “rules of
thumb” for chemical reactivity. However, for consistency with
the literature, here we will use both terms as synonyms.

Frontiers in Chemistry

02

10.3389/fchem.2022.929464

Almost all applications and theory in DFT-CR have been
based on a one-reagent approach: the response functions of a
reactant molecule are computed, and then used to predict its
reactivity. Despite the usefulness of this approach, it sometimes
fails. That is, sometimes understanding the inherent reactivity of
a molecule is insufficient; one must discern how well-matched
two reagents are. Early attempts at quantifying well-matched-
ness were made by Berkowitz, Geerlings, and then, much later, by
one of the present authors (Berkowitz, 1987; Langenaeker et al.,
1995; Ayers et al., 2006; Anderson et al., 2007a; Ayers, 2007;
Anderson et al., 2007b; Ayers and Cardenas, 2013). In the first
paper of this series (Miranda-Quintana et al., 2022b), we derived
a general expression for the interaction energy between two
reagents using DFT-CR and drew the links to other, more
computational, ~DFT  theories like  density-functional
embedding (Cortona, 1991; Vaidehi et al, 1992; Wesolowski
and Warshel, 1993; Govind et al., 1999; Wesolowski, 2004;
2006),
equalization molecular mechanics (Yang and Mortier, 1986;
Mortier et al., 1985; Mortier et al., 1986; Yang and Mortier,
$1986; Mortier, 1987; Rappe and Goddard, 1991; Bultinck et al.,
2002a; Bultinck et al., 2002b; Verstraelen et al., 2013), and
density-based energy decomposition analysis (Wu et al., 2009).

Wesolowski  and  Leszczynski, electronegativity

While the interaction energy provides the most fundamental
perspective on chemical reactivity, sometimes it is simpler to
understand chemical reactivity using alternative reactivity rules.
For example, the “|dy| big is good” (DMB) rule of Parr and Yang
(Parr, 1994; Miranda-Quintana R. A. and Ayers P. W., 2018;
Miranda-Quintana et al., 2018) states that favorable chemical
interactions are usually associated with a large change in the
chemical potential (Miranda-Quintana et al., 2018; Miranda-
Quintana and Ayers, 2019; Miranda-Quintana et al.,, 2021).
Likewise, Sanderson’s electronegativity equalization principle
(Mortier et al., 1986) and Pearson’s HSAB (Pearson, 1968a;
Pearson, 1968b; Nalewajski, 1984; Nalewajski et al., 1988;
Chattaraj et al, 1991; Miranda-Quintana R. A, 2017;
Miranda-Quintana R. A. et al, 2017), and the more recent
minimum electrophilicity principles (Fuentealba et al., 2000b;
Morell et al, 2009; Miranda-Quintana R. A., 2017) put these
reactivity descriptors in center stage by telling us how to use them
to understand and predict chemical reactivity (Sanderson, 1951;
Parr et al, 1978). It is not farfetched to say that the biggest
triumph of DFT-CR is not only to provide mathematically
precise definitions for the reactivity descriptors, but to also
give us a robust framework to derive new ones (Ayers et al.,
2018; Geerlings et al., 2020). However, more often than not, these
derivations have been solely based on the venerable parabolic
model of Parr and Pearson (Parr and Bartolotti, 1982; Parr and
Pearson, 1983; Chattaraj et al., 1995; Ayers and Parr, 2008; Alain
Miranda-Quintana and Ayers, 2016; Heidar-Zadeh et al., 2016b;
Miranda-Quintana and Ayers, 2016b; Cardenas et al.,, 2016;
Franco-Pérez et al, 2018). While powerful and hugely
influential, this model can be the

seen  as simplest
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representation of electron transfer during a chemical reaction.
This simplicity has often been (rightfully) argued as one of its key
advantages, but this also means that elementary proofs of the
HSAB (Pearson, 1968a; Chattaraj et al, 1991), minimum
electrophilicity, maximum hardness, and DMB principles
usually ignore electrostatic and polarization effects, and do
not include charge transfer effects beyond second order
(Chattaraj et al., 1991; Parr and Chattaraj, 1991; Ayers and
Parr, 2000; Ayers, 2005; Chattaraj and Ayers, 2005; Ayers and
Cardenas, 2013; Miranda-Quintana et al., 2018; Ayers et al,
2022). Recently, some of these approximations have been relaxed
(Alain Miranda-Quintana et al., 2016; Miranda-Quintana and
Ayers, 2016a; Miranda-Quintana R. A., 2017; Miranda-Quintana
et al,, 2021; Miranda-Quintana et al., 2022a), which strengthens
the support for these principles, but the more realistic two-
reagent picture remains largely unexplored (Ayers et al., 2006;
Ayers, 2007; Chattaraj et al., 2007; Miranda-Quintana R. A. et al,,
2017).
The chemical potential (Parr et al., 1978),

(&)
E=\5xy
ON/,

measures the intrinsic Lewis acid/base strength of a molecule and

1)

can be considered to be minus one times the electronegativity.
The essence of the rule, then, is that favorable molecular
interactions between acids and bases “quench” the acidity/
basicity of the reagents as much as possible (forming, in the
extreme case, nearly inert salts). Alternatively, favorable chemical
changes are associated with large changes in molecular
electronegativity. Even though the “|dy| big is good” rule was
first formulated more than 30years ago, its theoretical
provenance has only recently begun to be elucidated
(Miranda-Quintana et al., 2018; Miranda-Quintana and Ayers,
2019; Miranda-Quintana et al., 2021).

The maximum hardness principle (MHP) is a particularly
interesting case, with roots that seem less transparent than many
of the aforementioned reactivity rules. (Pearson, 1987; Pearson
and Palke, 1992; Pearson, 1993; Chattaraj, 1996; Pearson, 1999).
The maximum hardness principle indicates that more stable
conformations are associated with a large hardness,

(oE
=\on2 ),

A corollary of this principle is that the harder a molecule is,

2

the more stable it is. The problem is that the mathematical
assumptions under which the maximum hardness principle has
been proved (fixed molecular geometry and either constant
electron number or constant chemical potential) do not match
the conditions under which the principle is usually applied,
because the MHP is most commonly used to study molecular
rearrangements (Torrent-Sucarrat et al., 2001; 2002). For
example, there has been substantial recent interest in using
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the
associated with the initial approach of two reagents) to study

initial hardness response (the change in hardness
pericyclic reactions (De Proft et al., 2006; Ayers et al., 2007; De
Proft et al., 2008; Geerlings et al., 2012).

In the remainder of this paper, we differentiate the energy
expression in Eq. 33 of the first paper in this series with respect to
the number of electrons. This gives the change in chemical
potential (related to the first derivative) hardness (second
derivative) due to the interactions between two reagents.
These expressions are then used to mathematically justify the
“|du| big is good” and maximum hardness principles.

The key expression [Eq. 33 from (Miranda-Quintana et al.,
2022b)] is

In this equation, AU,p is the change in the total energy
(U =E + V,,, where V,,, is the nuclear-nuclear repulsion
energy) when the reagents A and B come together. AN is the
change in the number of electrons in the reagent. Superscript
“0” indicates that the term is evaluated for the isolated
reagent; subscripts index the reagents. As explained in
(Miranda-Quintana et al., 2022b), Eq. 3 can be iterated.
The only difference between Eq. 3 and the equation Eq. 33
in (Miranda-Quintana et al., 2022b), is that last it was
assumed that AN, = -ANjp. That is, every electron that
leaves one reagent goes to the other reagent, and the
number of electrons in the combined system does not
change. In this paper, we will extend this analysis to
consider changes in the total number of electrons,

AN = AN, + AN 4)

Most of the reactivity indicators that enter into Eq. 3 are well-
known in DFT-CR: the Fukui function f(r) (Parr and Yang,
1984; Yang et al., 1984; Ayers P. W. and Levy M., 2000; Heidar-
Zadeh et al., 2016a; Fuentealba et al., 2016), the dual descriptor
f@(r) (Fuentealba and Parr, 1991; Morell et al., 2005, 2006;
Ayers et al., 2007; Cardenas et al., 2009b; Geerlings et al., 2012),
and the electron density p(r). The change in energy and density
upon polarization of one reagent by another are defined
through,

1
AEpq = 3 JJ Av(r)Av(r’)x(r, r’)drdr’ 5
:%JMWMMWﬂmumn

where x(r,r’) is the linear-response (or polarizability) kernel
X(r,r’). For convenience, Eq. 3 is written in terms of the
nuclear charge density instead of the external potential, (Ayers
et al., 2009)

()
v(r) = _J|r—r'|dr

The molecular electrostatic potential (Politzer, 1980; Politzer
and Truhlar, 1981; Sjoberg and Politzer, 1990; Gadre et al., 1992;

(6)
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Shirsat et al., 1992; Murray et al., 1996; Suresh and Gadre, 1998;
Politzer and Murray, 2002),

D(r) = JMdﬂ (7)

-]

is not traditionally considered a reactivity indicator in DFT-CR,
but it can be placed in a DFT context by differentiating the total
energy (including V,,,) with respect to the external potential
(Ayers and Parr, 2001; Anderson et al., 2007a). The non-additive
kinetic and exchange-correlation energies in the first line of Eq. 3
capture electron-pairing and steric effects, (Gordon and Kim,
1972; Wesolowski and Warshel, 1993; Wesolowski and Warshel,
1994; Liu, 2007; Wu et al., 2009)

T:mniadd [Pa>Ps) = Ts[pas] = Tslpal = Ts[ps]
E;?n_add [Pa>P] = Exc[pag] = Exc[pal = Exc[ps]-

®)
&)

1.1 The interaction hardness and chemical
potential

To elucidate the MHP, we need to compute the change in
hardness due to the interactions between A and B. To do this, we
define the interaction hardness

Mg = Nag = Ma = 13 (10
and notice that this quantity can be computed by differentiating
the interaction energy,

A - 0°AU 45
fan = ON? vag (r)
_(9Us (U (U5 ()
oN? oNz |, oNZz |,
vap (1) W, (1) V) ()

The treatment of the chemical potential is a bit more

nuanced, because since it is an intensive property the correct

expression is (Miranda-Quintana et al., 2018):
1

Al yp = Uap — ) (b + 1) (12)

with

0AU
Aptyp = ( aNAB)
vag (r)

0 0
_ (s 1 [fauy . ou’, 13)
ON 2]\oNn /, oN |,
va (1) W, (1) W (@)

The total energy can be used in the previous equations

because the nuclear-nuclear repulsion energy does not depend
on the number of electrons.

As complicated as it is, Eq. 3 already contains assumptions,
most notably assumptions about the “effective external potential”
that electrons in one reagent feel due to the electrons and nuclei
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in the second reagent (Ayers and Parr, 2001; Ayers et al., 2005;
Cohen and Wasserman, 2007; Cohen et al., 2009; Liu et al., 2009;
Elliott et al., 2010; Osorio et al., 2011). We also must assume that
the higher-order terms in the Taylor series (which are implicitly
neglected or averaged over in a Taylor-series-with-remainder
strategy) are negligible. Extension to include higher-order terms
can be made, with commensurate increased complexity in Eq. 3
(Senet, 1996; Geerlings and De Proft, 2008; Cardenas et al.,
2009a; Heidar-Zadeh et al.,, 2016b). Finally, we must assume
that the derivatives exist, which implicitly requires that the
system is not quasi-degenerate for perturbations of the
strength relevant for the analysis. Quasi-degeneracy (even
exact degeneracy) can be treated, however, if the derivatives
are reinterpreted as differentials (Cardenas et al., 2011; Bultinck
et al., 2013a; Bultinck et al., 2013b; Pino-Rios et al., 2017; Cerdon
et al., 2020; Bultinck and Cardenas, 2022; Céardenas et al., 2022).
Other effects (e.g., temperature-dependence, spin-specificity) can
likewise be treated without essential difficulty, merely by an
extension of definition and notation (Galvan et al., 1988;
Ghanty and Ghosh, 1994; Ayers and Yang, 2006; Garza et al.,
2006; Perez et al., 2008; Franco-Perez et al., 2015a; Franco-Perez
et al, 2015b; Alain Miranda-Quintana and Ayers, 2016;
Miranda-Quintana R. A. and Ayers P. W., 2016; Franco-Perez
et al., 2017a; Franco-Perez et al., 2017b; Franco-Pérez et al., 2017;
Robles et al.,, 2018; Gazquez et al.,, 2019). The following analysis
can also be treated at an atom (or functional-group) condensed
level: the integrations over space are merely replaced by sums
over atom labels (Yang and Mortier, 1986; Fuentealba et al.,
2000a; Ayers et al., 2002; Tiznado et al., 2005; Bultinck et al.,
2007; Fuentealba et al., 2016; Echegaray et al., 2017). That
provides a more computationally practical form for these
results and draws the link to electronegativity equalization
methods more strongly.

To obtain expressions for y4 5 and 17,5 that are simple enough
to be useful, some further assumptions are needed. Before
proceeding, let us rewrite Eq. 3 using a shorter, more
convenient notation that will help us with the upcoming

manipulations:

1 1
AU 45 [AN 4, ANg] = i, AN 5 + g ANg + EqA(ANA)Z + 5113 (AN +

1
hapAN AANg + 04 (AN )*ANp + 05AN 4 (ANp)? + —cap (AN 4AN)?
4
(14)

Here h4p is the Coulomb interaction between the fragments’
Fukui functions, c,p is the Coulomb interaction between the
fragments’ dual descriptors, and 0, is the Coulomb interaction
between the dual descriptor of fragment A and the Fukui
function of fragment B. To obtain this expression, we just
grouped terms according to the powers of ANy, AN, and
neglected the terms that are N-independent (since we are
dealing with derivatives with respect to N these terms won’t
be relevant). For instance, 4, denotes the chemical potential of
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fragment A in the presence of B and includes not only a
contribution from the chemical potential of the isolated
fragment A, but also contributions from the interaction of A
and B (e.g., the term ffA (r)q)% (r)dr). From Eq. 14 it is easy to
see that the energy will be minimized if the coefficient of the
AN ,ANp term is as big as possible (since AN4ANg < 0); while
the coefficient of the (AN,ANg)? term is as small as possible
(ideally, a negative number). That is:

has = ” Fa@f5) o

(15)
e—r|
(2) 2) (.1
Cap = ”Ls,(r)drdr’ <0 (16)
e x|

In order to evaluate Eq. 11 we need to know the interaction
energy as a function of the number of electrons. The number of
electrons enters the expression for the interaction energy (Eq. 3)
through the reactivity indicators and through the extent of
electron transfer. We assume that the reactivity indicators in
Eq. 3 do not depend on the number of electrons; this is reliable if
the expression in Eq. 3 has already been iterated to convergence
or, failing that, that the result of the first iteration (where all the
reactivity indicators are computed for the isolated reagents)
suffices. Typically, we would take AN4 + ANg =0, and then
solve for the amount of charge transfer that minimizes the
interaction energy. However, this leads to expressions that are
far too complicated to analyze. Minimizing Eq. 3 requires solving
a cubic equation, and even when there is a clear indication of
which root should be taken, the resulting expressions are of little
help. Hence, we need to introduce a second approximation,
assuming that the dependence of AN, and ANy on the
number of electrons is linear,

AN, = AN +d,0 )
ANg = ANY + dgé

Here, AN %, AN % are just some convenient reference values
used as starting points to expand the correct changes in particle
numbers in A and B, respectively.

To calculate the chemical potential and hardness of the
product, it is convenient to consider an excess charge on the
products, namely (Miranda-Quintana R. A., 2017):

ANA+ANB:6 (18)

So this implies that

AN 4 ZANgﬁ'dA(S

ANB:—AN%‘F (l—dA)6 (19)

Now we can substitute Eq. 19 in Eq. 14, consider an
infinitesimal 8, and truncate at second order:
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2

1
—cap (2ds — 1) (ANS Y + AN [da (7, + 15) — 2hasda + has — 5]+
AU 4[AN 4, ANg] =6 4

pada — pipda +pp + (ANQ) [ = 304dy + 0,4 + 05 (3d, - 2)]

1, [ canl6(da = Dea+ 1 (ANS) + 21, (da)’ ~ 4handa (ds = D+
4 | 20, (da = 1) + 4ANS [3(da)’ (65 — 04) + 20ads — 405d5 + 5]
(20)

Notice that we have omitted the terms that do not depend on
0. The linear and quadratic coefficients are the equations for the
chemical potential and (twice the) hardness of the reaction
product, respectively. Namely,

1

i { 56an (2 = 1) (AN3)’ + ANG [da (1 + 115) = 2hands + has — 1]+ }

AB
tiada — pipda + g + (ANS) [ = 36ady + 6,4 + 05 (3d, — 2)]

(21)

_ L[ eapl6(da — Dda + 11 (AN + 21, (da)? — hapdaa (da — 1)+
148 =3 21, (da — 17 + 4ANS, [3(da)? (85 — 0.4) + 20ds — 465d.s + 6]

(22)

These are the fundamental expressions of this manuscript, as
they serve as the basis for our forthcoming analyses.

1.2 The maximum hardness principle

A key point in Eq. 17 is how to estimate ANY and d,.
Perhaps the simplest route is to just use the standard parabolic
model result, thus:

0 0
Ug — ¥
ang bty
A B (23)
0
dA — ’13
My + 1y

In the case of the hardness, this leads to a relatively simple

expression:
- [(0B 72 @04 0+ 62 £ 0% (@)
( () api™ (@411 () )
027, (P [0 L1 £ (4
+(ry) Bpy 7 [P 1] f (r)
* ” [r—r|

+21151p j"[ £ |(:)_ :r}r ) drdr’

drdr’

1Y g
Man = (m) iy 2y — ) fa (0 F(r) )

” ( -y 2y~ ) s 0 FD(x)

L2 - Hy)

!
o fe-r] e
NG W) ()" - 4ty + (13)")
O + 1)’
2 Q@) (.
« ijA (r)fB,(r)drdr'
[e—r]
1y (M + 113)
(24)
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where, for the sake of completeness, we have reverted back to the
original notation, showing all the contributions to the interaction
hardness in terms of both reagents.

Since 7,75 >0, and the reaction energy tends to decrease
when hyp increases (Eq. 15), it is straightforward to corroborate
that the “Fukui function” pairing that minimizes the energy (cf.
Eq. 15) also guaranties a maximum hardness value.

Analyzing the term corresponding to the electrostatic
of  the dual

(;1%)2, is a bit more involved. Since the

interaction

(’7?4) — 4y +
energy tends to decrease when cup decreases (Eq. 16), the

descriptors, namely

interaction between the dual descriptors that minimizes the
energy will maximize the hardness if

()" = 4y + ()" <0 (25)
However, this will be true only when:
2-3 < < 2+13 (26)

This might seem like an odd result, since at it (falsely) seems
like it introduces an asymmetry between the reactants. However,
because (2 —1/3)(2 + v/3) = 1, one can rearrange this equation
so that the symmetry of the expression with respect to
permutation of the reactant labels is  clear:
2- \/_< B<2+4/3e2- \/_< L <243 Notice that Eq. 26
means that the MHP will hold "when the hardnesses of the
reactants are not very different. This implies that there could
be cases where minimizing the energy actually implies that the
hardness will tend to decrease. Equation 26 is consistent with
other results from the literature which indicates that in double-
exchange reactions of acids and bases, the HSAB and DMB rules
are be fulfilled only when the differences in hardness of the
reactants are not too large (Cardenas and Ayers, 2013; Miranda-
Quintana et al., 2018). This is not especially concerning as the
restriction on the hardness values is rarely implicated. For
example, excluding the (very hard) noble gas atoms, Eq. 26 is
violated by very few atom pairs within the periodic table
2016), and the pairs that do violate the
constraint (e.g. Cesium and Fluorine) are so extreme that

(Cardenas et al.,

there is little need for additional tools to elucidate their reactivity.

These results provide some support for the MHP, but they rely
on the parabolic model (Eq. 23). We can obtain a more realistic
estimate of AN and d, if we work instead with a simplified
14 where we neglect all cross-terms
AN AN, (AN 4)’ANg, AN 4 (ANg)*, (AN 4AN)*).
Thus, we are still working with a parabolic model, but now the

version of Eq.
(ie.,

descriptors have some information regarding the perturbation
induced by the other reagent. Therefore now we will have

ANO Up — Uy
+
Ha T Hp 27)
d, = g
Nat1p
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Now the expression for the energy reads:

Can (1 = 1) (a = #5)" |, o (5 = 10) (14— t15)

2(n, + '13)4 (4 + 'IB)
AU 4p[AN 4, ANg] = & +

Hallp +."’B’7A (44 _.‘43)2 [114 (64 = 208) + 1, (85 — 26,1)]
(14 +115) (14 + ’73)3

Cap (’7A — 4NN+ '7%;) (= HB)ZJF
20,415 (114 + ’75)3 +dhapt i (114 + 1)+

2

4(n, + ’73)4
44+ 1) (s = 15) 1504 (M = 214) = 105 (14 = 2115)]
(28)
Hence
P {m(ﬂi =4y + ) (g = 1)+ 2014005 (1 + 1) + Shann oy (1, + 114) I,
A 2+ )t L4004+ 1) (g = 16) (1504 (1 = 21,) = 1,05 (11, = 205)]

(29)

In this case we can obtain support for the MHP in the same
way as we did before: the coefficient of the hsp term is positive,
therefore the “Fukui function pairing” that minimizes the energy
also guaranties a maximum hardness value.

As for the dual descriptor interactions, now the MHP will be
true if:

2-v3<B o3 (30)
Na

As we saw previously, this result also indicates that just

maximizing the hardness might not always lead to more

favorable interactions between various reagents. Only when

the harder reactant is no more than ~3.7 times higher than

the hardness of the softer reagent might the formation of the
hardest product will be favored.

1.3 The “|dp| big is good” principle

Given the generally more complicated nature of the
expressions involved in the treatment of the DMB principle,
we will only consider the reference ANY and v,4 presented in Eq.
27. Substituting these expressions into Eq. 20:

can(#y— .”3)2

(WB_WA)(HA_VB){ 2hyp }
Ap,p= 1-
Has 2(’7A+’73) (17A+T13)3 +(’7A+’73) *
(#a=t43)" [14 (B4 = 265) + 17, (05 —26,)]
(’7A+’73)3

(31)

As it was the case in the last part of the discussion on the
MHP, we will discard the cross-terms corresponding to the
(AN 4)*ANg, AN 4 (ANg)? factors, which means that we can

write:
) {1 _

With this approximation, the energy model reduces to:

CAB (.“A - ‘“B)Z
(1 +15)’

(15 = ma) (pa -
2(11, +113)

+ 2hap }
(114 +75)

(32)

Apyp =
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AU 15[0] ~ - (w4 - .’”3)2 {2(’7A + 7/3)2 (1 + 11 + 2hap) = can (s = I‘B)Z}
2(n4 +1y) 2(n, + 773)3

can (5 = 14) (g — Hs)s*
S i
21, +15)

has (15 = 1) (44 = #5) " Uallg + Bplla
(14 + ’73)2 (4 +15)

& { can (1T = 405 + 13) (g — )+ }
4
4(ny + 1) 201,15 (1 + ’73)3 +4hapt a1 (M4 + 1p)

(33)
Here we have elected to explicitly include the constant (the
d-independent term):
AU ap = AU 43[0] =
_ (ua— .MB)Z {2(’7A + ’73)2 (1 + 15+ 2hap) — cap (ua - HB)Z}.

2(n, +13) 2(n, + ’73)3
(34)
Equations 32 and 34 can be rewritten as:
2
can (g — tp) 2has
Apyy = Ay(PP){I - + (35)
o 0 (114 + ’73)3 (14 +15)

2 : 2hap) — —u,)
AU 45 = AUI(:;P){ (14 +115)" (14 ‘;’(7’1; ++ ’1A§3) can (i — tp) },
AT
(36)

where the (PP) index indicates that these are the expressions
obtained using the Parr-Pearson parabolic model. (Parr and
Pearson, 1983)

Without losing any generality, we can assume that A is the
acid, namely: u, < pg. Then, since, the terms in brackets in Eqs
35, 36 are always positive (cf. Eq. 16, proving the DMB is
equivalent to showing that:

A
<ZTZ> >0when#, <, (37)
A
<2)TZ> <Owhen#, >, (38)
which can be rephrased as:
0AU
S R .

Closely following the strategy employed in previous
approaches to DMB (Miranda-Quintana et al., 2018), we can
take (notice that equivalent expressions for the change in reactant
B can be obtained by simply exchanging the indices in the
following equations)

OAU AU 0y, AU 3,

= 4
oAy ou, aAf on, 0Au (40)
resulting in:
0AU
—— =T +Ty, 41
ahu 14 (41)
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where:
2[(’1A+’713)2 (’7A+’73+2hAB)_CAB(!"A_!"B)2] }
T= ~HUp 2 2 (42)
(s~ ){ (14— ”B)[(WA + 1) (14 + 1y + 2hap) = 3can (4 — pg) ]
[(’7A + ’73)2 (14 + Mg+ 2hap) = 2ca5 (4, — .“B)Z]
Ty= (s~ tp)

11, [Beas (s — pg)” + 2073 (Shas + 31,) |+
1y [5¢an (4 — p5)” = 275 (Bhas + 1) |+
2173 (14 (has = 1) = 1 (ap + 3173)]
(43)

It is easy to check that the sign of T only depends on the sign
of  ng—1y that
sgn (T 4) = sgn(yy —1,). For this we only need to analyze the

so we only need to show

sign of the expression:

Ta =1, [3cas (un - p5)" + 2075 (Shas + 315) ]~
2
[ 5can Uy — p15)" = 2175 (3has + 1) |-
2113 [M14 (has = 1) = 11 (has + 377)]

(44)

which we can rewrite in a form that makes its dependence on the
sign of #, — 1, more apparent,

. 3
Ta=2(n, - m)[ = 1 (s = 1) + 75 (Shas + 7iip) + 414175 = Sean (s = )’ |-

[2eanny (s = p5)" + 16173 (1 + an)
(45)

Ignoring, for the moment, the term on the second line, DMB
follows if:

=11 (has = 1) + 1 (Shas + 711g) + 417,15 = 3can (1, — )" >0
(46)

This inequality is very likely to hold in most cases
(particularly, in the weakly-interacting regime). The last three
terms are always positive. The first term is likewise positive if that
hag<#y. This can always be ensured by taking the initial
separation of reagents to be sufficiently large (Yanez et al,
2021). For instance, for Fukui functions localized on two
atomic sites separated by 5 A, hyp is less than 3 eV. Hence, it
is safe to assume that inequality 46) holds.

It remains to analyze the term —[2capyy(uy — pp)* +
16173 (115 + hag)] , which cannot be factored in terms of 77, — 77,,.

These results largely point out to the validity of the DMB
principle. The only potential incongruity comes in the form of
the hard-to-factor terms in the expressions of Ta and Tp.
However, these terms appear because we decided to perform a
more rigorous mathematical treatment of the foundations of this
principle. Should we have chosen to go with more qualitative
arguments (as it was the case for the MHP, and some other
discussions of reactivity principles), the evidence in favor of
DMB would have been even stronger. Just note that, in
15, 16, the hsp>0 and cup<0
conditions that guarantee a minimum interaction energy, are

accordance with Eqs

also the ones that, following Eq. 31, will tend to maximize |Ay|.
However, due to the central role of DMB in chemical reactivity, it
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is illustrative to perform a more detailed analysis of the
conditions supporting its validity. Our analysis here indicates
that the DMB principle is valid where certain terms become
negligible. The confounding terms become negligible when
reagents are sufficiently far apart, suggesting that failures of
the DMB principle to predict reactivity are most likely to
occur in cases where the activated complex in a chemical
reaction is tightly bound or does not exist (e.g., barrierless
This is with  the
established) reduction of the efficacy of conceptual density

reactions). consistent (already  well-
functional theory in such cases, due mainly to the importance

of higher-order terms in the perturbative expansion.

2 Summary

In this work we have shown that starting from an expression
for the interaction energy between reactants deduced in the first
part of this series of papers, it is possible to find a theoretical
support for the maximum hardness principle. The main
difference between this work and other related papers is that
here the perturbation of one reactant on another is explicitly
accounted for. In summary, the MHP is fulfilled if 1) the
electrostatic interaction of the Fukui functions of the reactants
is positive, (Berkowitz, 1987; Ayers P. W. and Levy M., 2000;
Osorio et al., 2011), 2) the electrostatic interaction of the dual
descriptors of the reactants is negative and, (Ayers et al., 2007;
Cardenas et al., 2009b), 3) the relation between the hardnesses of
the reactants is bounded by the inequality (30).

Similarly, we provided more arguments favoring the DMB
principle, which unsurprisingly also seems to hold when we take
in to account the full two-reagent picture. Contrary to the MHP
case, establishing the validity of the DMB principle requires more
caveats, and additional mathematical scrutiny is warranted.
However, even simple qualitative discussion of the form of the
expression for the change in reagents’ chemical potential support
its validity, and also support the favorability of large Coulomb
interactions between fragments’ Fukui functions and small
Coulomb interactions between fragments’ dual descriptors.

Overall, the two-reagent model discussed in this and the
previous contribution provides a more complete picture of
chemical reactivity, encompassing several previous approaches,
while also strengthening the arguments supporting several
reactivity principles. Further applications of this framework
are underway and will be presented elsewhere.
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