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Desired drug candidates should have both a high potential binding chance and high specificity.
Recently, many drug screening strategies have been developed to screen compounds with
high possible binding chances or high binding affinity. However, there is still no good solution to
detect whether those selected compounds possess high specificity. Here, we developed a
reverse DFCNN (Dense Fully Connected Neural Network) and a reverse docking protocol to
check a given compound’s ability to bind diversified targets and estimate its specificity with
homemade formulas.We used theRNA-dependent RNApolymerase (RdRp) target as a proof-
of-concept example to identify drug candidateswith high selectivity and high specificity.We first
used a previously developed hybrid screening method to find drug candidates from an 8888-
size compound database. The hybrid screeningmethod takes advantage of the deep learning-
based method, traditional molecular docking, molecular dynamics simulation, and binding free
energy calculated by metadynamics, which should be powerful in selecting high binding affinity
candidates. Also, we integrated the reverse DFCNN and reversed docking against a diversified
102 proteins to the pipeline for assessing the specificity of those selected candidates, and finally
got compounds that have both predicted selectivity and specificity. Among the eight selected
candidates, Platycodin D and Tubeimoside III were confirmed to effectively inhibit SARS-CoV-
2 replication in vitrowith EC50 values of 619.5 and265.5 nM, respectively. Our study discovered
that Tubeimoside III could inhibit SARS-CoV-2 replication potently for the first time.
Furthermore, the underlying mechanisms of Platycodin D and Tubeimoside III inhibiting
SARS-CoV-2 are highly possible by blocking the RdRp cavity according to our screening
procedure. In addition, the careful analysis predicted common critical residues involved in the
binding with active inhibitors Platycodin D and Tubeimoside III, Azithromycin, and Pralatrexate,
which hopefully promote the development of non-covalent binding inhibitors against RdRp.
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INTRODUCTION

RdRp Is an Important Therapeutic Target of
SARS-CoV-2
The global pandemic caused by SARS-CoV-2 has continued for
more than 2 years and caused a huge threat to public health and
the global economy. Variants carrying numerous mutations in
the spike protein of SARS-CoV-2, which result in higher
transmissibility and immune evasion of the current vaccines,
and therapeutic monoclonal antibodies emerged during the
transmission (Tao et al., 2021; Flemming, 2022). Unlike S
protein, the RdRp of SARS-CoV-2 is highly conserved and
plays a critical role in the virus replications, making it a
potential therapeutic target to combat SARS-COV-2 (V’kovski
et al., 2021). There are already remdesivir (Yin et al., 2020) and
molnupiravir (Lee et al., 2021) drug that target RdRp, and our
previous work also identify Pralatrexate and Azithromycin which
may target RdRp and shows strongly block virus replication in
cells (Zhang et al., 2020b).

Drug Virtual Screening Has Been
Accelerated by Deep Learning
Drug virtual screening has a very long history, with many related
techniques have been developed, such as docking, Quantitative
Structure-Activity Relationship (QSAR), pharmacophore, and
structure-based ligand similarity. As emerging of deep learning
algorithms and the experimental protein-ligand interaction
dataset accumulates, deep learning-based protein-ligand
interaction will greatly promote virtual drug screening.
Currently, there are graphic-based protein-ligand interaction
models that use a graphic representation of ligand or protein
and can grasp the spatial and physical-chemical feature concisely;
also, the graphic convolution network was used as training
architecture (Torng and Altman, 2019). Also, a 4D CNN-
based protein-ligand interaction model directly uses the X, Y,
and Z coordinates of a protein-ligand complex, plus the extra
atom feature as input (Stepniewska-Dziubinska et al., 2018).
There are many other types of deep learning-based protein-
ligand interaction prediction models, such as DeepDTAF
(Wang et al., 2021), DeepBindRG (Zhang et al., 2019b), and
DeepAffinity (Karimi et al., 2019). We also developed several
protein-ligand interaction models, and some of them have
successfully been applied to virtual screening applications for
targets such as RdRp (Zhang et al., 2020b), 3C proteases (Zhang
et al., 2020a), and TIPE2 (Zhang et al., 2021). For those protein-
ligand binding prediction models, some predict binding affinity,
whereas some are binary predictions of the binding possibility.
Since the number of unbinding compounds usually dominates
over the binding compounds in the virtual screening scenarios,
binary prediction models that have considered the unbinding
data during the training are more suitable for virtual screening.

Current Virtual Screening Problem
A more effective integrated virtual screening strategy should be
proposed. Deep learning-based protein-ligand prediction,

molecular docking, and molecular dynamics simulation can be
used for virtual screening. Each has different pros and cons in
terms of efficacy and accuracy. However, the virtual screening
database can be very large since the potential druglike compound
size can be large as 1060. Hence, maintaining the efficiency and
accuracy of the virtual screening is essential. The virtual drug
screening can also be used for de novo compounds by integrating
the deep learning-based de novo compounds generative model
(Gupta et al., 2018). Many more advanced deep learning
generative models based on RNN architecture have been
gradually developed (Moret et al., 2021; Creanza et al., 2022).
Among them, the beam search algorithm proposed by Michael
Moret, et al., has great potential to generate more reasonable
novel compounds (Moret et al., 2021). Beam search sampling
overcomes the need for external scoring methods and extends the
applicability of machine learning-driven molecular design. And
they have tried to better adapt them to VS procedures and take
into account some of VS limitations. Also, a new strategy called
sampling with substitutions (SWS) usually generates molecules
structurally similar to bioactive compounds or with given desired
properties (Creanza et al., 2022). It generates molecules
structurally similar to bioactive compounds or with given
desired properties. It partly solves the problem that exploring
a new chemical space could make the following synthesis difficult
and expensive. Those newly developed methods also have the
potential to preserve drug-likeness and synthetic accessibility of
the generated de novo compounds. They can help discover de
novo compounds with better binding affinity or other desired
properties, such as better specificity or drug-likeness.

Furthermore, the current virtual screening often has not fully
considered compounds’ specificity. Without specificity, there is a
risk of potential side effects and cause the drug failure in a later
stage. Currently, most virtual screening procedures don’t
consider specificity, which can lead to obtaining pain
compounds that have side effects and fail to pass the clinic
test. Some researchers proposed a local-specific test strategy
(Yan and Wang, 2012). However, estimating the given
compound’s binding affinity with many diversified targets is
necessary to test the relative global specificity. Hence, assessing
the specificity of the compound by computational methods
efficiently requires high-speed protein-ligand prediction tools
(such as DFCNN) in the first stage. If a compound can bind a
target that has significantly high affinity compared to other
proteins, then such binding can be defined as high specificity
and high affinity. Contrary, if a compound can bind to many
proteins tightly, then it has a risk of low specificity.

Our Current Work
This work identifies candidates from three TargetMol datasets
(Targetmol-Approved_Drug_Library, Targetmol-
Natural_Compound_Library, and Targetmol-
Bioactive_Compound_Library) that can potentially bind to a
larger range of RdRp cavity. The hybrid pipeline has effectively
integrated deep learning-based method (DFCNN, DeepBindBC),
docking (Autodock Vina), specificity checking (through reverse
DFCNN, reverse docking against 102 representative proteins from
DUD.E), and force field-based screening (pocket MD simulation and
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metadynamics simulation). In a step-by-step manner, the high
binding affinity compounds are accumulated while the specificity
is also considered. The proposed pipeline enables the screening of
large compounds dataset with high efficiency while increasing the
chance to obtain high affinity and high specificity compounds. With
the proposed screening strategy, we obtained eight candidates of
SARS-CoV-2 for experimental validation. Finally, we identified that
Platycodin D and Tubeimoside III could inhibit SARS-CoV-
2 replication in vitro with IC50 values of 619.5 and 265.5 nM,
respectively. Unlike our previous work, we used a large pocket
definition and considered the specificity during the screening; the
obtained active compounds should be more specific and more
diversified.

METHODS

The Target and Compounds Database
Our previous work obtained the RdRp-ligand complex (Zhang
et al., 2020b). In that work, the RdRp sequence and its modeled
structure were obtained from https://zhanglab.ccmb.med.umich.
edu/C-I-TASSER/2019-nCov/. The RdRp-ligand model was
constructed by I-TASSER (Zhang, 2008), whose ligand was
taken from the template protein (PDB ID: 3BR9) (Zhou et al.,
2008) by COFACTOR algorithm (Roy et al., 2012) within
I-TASSER using structure comparison and protein-protein
networks. Unlike previous work, we extract the amino acids
within 1.2 nm of the ligand as the binding pocket instead of
1 nm since the RdRp cavity is very large. The three TargetMol
datasets (Targetmol-Approved_Drug_Library, Targetmol-
Natural_Compound_Library, and Targetmol-Bioactive_
Compound_Library) were used as virtual screening libraries.
These datasets have diversified compounds including active
compounds, natural compounds, and approved compounds.
Moreover, most of the compounds can be easily pursued, we
deposited the compound structures in GitHub (https://github.
com/haiping1010/targetmol_datasets) for the convenience of
other users.

Molecular Vector-Based and
Structure-Based Drug Screening
Similar to our previous work (Zhang et al., 2020b; Zhang et al.,
2021), we have used a hybrid screening strategy that first uses
molecular vector-based as initial drug screening and structure-
based screening for further selection. The molecular vector-based
relies on our previously developed DFCNN (Zhang et al., 2019a).
The parameter setting for the DFCNN is the same as our previous
work, which is drug repurposing against RdRp of SARS-CoV-2
(Zhang et al., 2020b), except that this time we used a large pocket
definition, which defines residues with 1.5 nm from the predicted
ligand as a pocket. The structure-based screening depends on
DeepBindBC and autodock vina (Trott and Olson, 2010). The
DeepBindBC prediction relies on the interface information of
docked protein-ligand interface. By incorporating the cross-
docking (docking proteins and ligands from different
experimental complexes) conformation as negative training

data, DeepBindBC can distinguish non-binders. The pocket is
determined by the location of the ligand in the template protein.
We set the cavity volume space with 3.5, 3.5, and 3.5 nm in x, y,
and z dimensions from the pocket mass center. Other settings are
the same as our previous work (Zhang et al., 2020b, 2021).

The Reverse DFCNN Prediction and
Reverse Docking to Access the Specificity
of the Selected Compounds
To fast estimate the specificity for large amounts of compounds,
we first use the DFCNN to make the reverse prediction against
102 proteins from DUD.E. We have defined a function to
estimate the DFCNN-based specificity. The formula is used as
follows:

specificity � log10(103/(Nc1 + 1))
where Nc1 is the counted number of compounds that have a
DFCNN score larger than 0.99 during the reverse DFCNN
prediction with 102 protein targets.

However, the DFCNN has not considered the spatial
information; hence we carried a reverse docking by Autodock
Vina for further relative specificity. The relative specificity is
calculated by following formulas.

Relative specificity � log10(103/(Nc2 + 1))
where Nc2 is the counted number of compounds that have an
autodock vina score smaller than the mean autodock vina score of
102 protein-compound complexes during the reverse autodock
vina docking with 102 protein targets. Notably, the smaller
autodock vina score indicates better binding affinity.

Force Field-Based Screening
Further drug screening was carried out by pocket molecular
dynamics (MD) simulations and metadynamics similar to our
previous work (Zhang et al., 2020b; Zhang et al., 2021), except
that we used a large pocket definition (residues with 1.5 nm from
the docked compounds was kept as pocket). This study selected
26 compound binding complexes, which were predicted
candidates by previous deep learning screening and specificity
checking, for MD simulation. Metadynamics simulations can
estimate binding free energy surfaces to explore whether
protein-ligand prefers to bind in solution. Metadynamics
simulations facilitate the sampling of the free energy landscape
and a specific collective variable of interest by adding a history-
dependent biasing potential (Laio and Gervasio, 2008; Saleh et al.,
2017). The detailed procedure of pocket molecular dynamics and
metadynamics simulation was described as follows.

The initial protein-compound complexes were from the top
score conformation Autodock Vina docking, the ligand was
edited by pymol software (DeLano, 2002) to make it in the
correct protonation state at pH 7. In this study, we selected
26 compound binding complexes that have a high DFCNN score
(larger or equal to 0.99), low Vina score (low than −9 kcal/mol),
large DeepBindBC score (larger or equal than 0.99), and especial
high reverse DFCNN based specificity (larger or equal than 1.3)
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and reverse Autodock Vina based relative specificity (larger or
equal than 0.6). We also refined a pocket molecular dynamics
simulation (pocket MD, Supplementary Figure 11B) to facilitate
the simulation process by only keeping the binding pocket region
for simulation. Binding free energy calculation can be estimated
by metadynamics simulations to explore whether protein-ligand
will bind in solution. Metadynamics relies on the addition of a
bias potential to sample the free energy landscape along with a
specific collective variable of interest (Laio and Gervasio, 2008;
Saleh et al., 2017). Note that the binding free energy calculations
from Metadynamics may only be suitable for detecting the
general trend of binding in virtual screening.

The pocket MD is same as the classical MD simulation, except
that we only using the pocket region to reduce system size for
simulation (Zhang et al., 2020b), which is inspired by a previous
dynamic undocking (DUck) method (Ruiz-Carmona et al., 2017).
An in-house script was used to extract the pocket region of the
protein (here, we used 1.2 nm within the binding ligand), the N
terminal and C terminal ends were capped with the ACE and
NHE terminals, respectively. We applied position restrains to the
ACE and NHE terminals to maintain the relative conformation of
the pocket. MD simulation was carried out by Gromacs with
AMBER-99SB force field (Hornak and Simmerling, 2003; Hess
et al., 2008). The topology of the ligand and the partial charges of
ligand was generated by ACPYPE (Sousa Da Silva and Vranken,
2012), which relies on Antechamber (Wang et al., 2006). First, we
created a dodecahedron box and put the target-ligand complex at
the center. A minimum distance from the protein to box edge was
set to 1 nm. We filled the dodecahedron box with TIP3P water
molecules (Jorgensen et al., 1983), the counter ions were added to
neutralize the total charge using the Gromacs program tool (Van
Der Spoel et al., 2005). The long-range electrostatic interactions
under the periodic boundary conditions was calculated with
Particle Mesh Ewald approach (Darden et al., 1993). A cutoff
of 14 Å was used for van der Waals non-bonded interactions.
Covalent bonds involving hydrogen atoms were constrained by
applying the LINCS algorithm (Hess et al., 1997).

We performed the energy minimization steps with a step-size
of 0.001 ns, 100 ps simulation with isothermal-isovolumetric
ensemble (NVT), and 10 ns simulation with isothermal-
isobaric ensemble (NPT) for water equilibrium. After that, a
100 ns NPT production run (step size 2 fs) was carried out. The
Parrinello-Rahman barostat and the modified Berendsen
thermostat were used for simulation with a fixed temperature
of 308 K and a pressure of 1 atm. RMSD and hydrogen bond
number of the trajectory were calculated using Gromacs tools.

The simulation was continued using the metadynamics
approach for exploring the free energy landscape. The
interface coordination number of atoms of protein-ligand
complex was used as a collective variable (CV). The protein-
ligand interface coordination numbers correlate with the
numbers of atom contact, and larger coordination number
usually indicates that the protein-ligand is in a binding state.

The coordination number C is defined as follows by Plumed:

C � ∑
i∈A

∑
j∈B

Sij (1)

and

Sij �
1 − (rij−d0r0

)
n

1 − (rij−d0r0
)
m (2)

In the simulation, n was 6, m was 12, d0 was 0 nm and r0 was
0.5 nm. d0 is a parameter of the switching function. rij is the
distance between atom i and atom j. The degrees of contacts
between two groups of atoms can be estimated by the above
function (1) (Tribello et al., 2014). Metadynamics simulation for
each protein-ligand system was performed for 100 ns (except
protein-Azithromycin, which was extended to 300 ns in order to
reach the 0 Coordination Number and achieve convergences).
During the metadynamics simulation, Gaussian values were
deposited every 1 ps with a height of 0.3 kJ/mol. The widths of
the Gaussians were 5 for the coordination number. The free
energy landscapes of the metadynamics simulations along the CV
were generated by the Plumed program and plotted using
Gnuplot (Williams et al., 2012).

Tools Used in the Analysis
The USCF Chimera, VMD, ICM-browserPro, and Discovery
Studio Visualizer 2019 were used to generate the structure and
visualize the 2D protein-ligand interactions (Humphrey et al.,
1996; Pettersen et al., 2004; BIOVIA, 2005; icm_browser_pro,
2020).

Viral Stock Titration by 50% Tissue Culture
Infective Dose
TCID50 was measured as previously reported (Yang et al., 2022).
Briefly, Vero cells in 96-well plates were grown to 80% confluence
and infected with 10-fold serial dilutions of the stock SARS-CoV-
2 (hCoV-19/China/SZTH-025/2021, GISAID No.
EPI_ISL_11799984) for 1 h at 37°C. Then the inoculum was
removed, and cells were overlaid with fresh DMEM plus 2%
FBS. Plates were assessed for the lowest dilution in which 50% of
the wells exhibited cytopathic effects on the fifth-day post-
infection (d.p.i). The values of TCID50 were calculated
according to the Reed-Muench method (Reed and Muench,
1938).

Evaluating the Antiviral Activities of the
Candidate Drugs in Vero Cells
The antiviral activities of the drugs were evaluated as previously
reported with some modifications (Zhang et al., 2020b). Vero
cells were seeded at 4 × 104 cells per well in 24-well plates and
allowed to adhere for 24 h, the virus (MOI ≈ 0.02) and different
doses of the indicated drugs were added to allow infection for 1 h
at 37°C. Then viral inoculum was removed, and cells were washed
2 times with PBS. Then the cells were further cultured with fresh
DMEM with 2% FBS and the indicated concentrations of drugs.
At 48 h post-infection (h.p.i), the cell supernatant was collected,
and viral RNAs were extracted using the QIAamp RNA Viral Kit
(Qiagen, Heiden, Germany) for further quantification analysis
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using quantitative reverse transcription-polymerase chain
reaction (qRT-PCR) was performed using a commercial kit
(Mabsky Biotech Co., Ltd.). All the experiments involving
infectious SARS-CoV-2 were handled in BSL-3 facilities at the
Shenzhen Third People’s Hospital. The dose-response curves
were plotted from viral RNA copies versus the drug
concentrations using GraphPad Prism 8 software.

Cytotoxicity Testing Assay
The cytotoxicity of Platycodin D and Tubeimoside III on Vero
cells was evaluated by the Cell Counting Kit-8 (CCK-8, Beyotime
Biotech) according to the manufacturer’s protocols. In brief, Vero
cells grown in 96-well plates were treated with various
concentrations of compounds or mock-treated for 24 h,
followed by 4 h incubation in the media supplemented with
10% CCK-8. Viable cells were counted according to the
absorbance at 450 nm.

RESULTS

The overall workflow is illustrated in Figure 1, which is composed
of several stages, including pocket determination and compound
libraries preparation. (Figure 1A); preliminary screening by deep
learning and docking (Figure 1B); specificity checking by Reverse
DFCNN and Reverse Docking; Fine screening by pocket MD and
metadynamics simulation; most important, we experimentally
validate the candidates in the final step. Notably, among eight
compounds that were finally obtained from our hybrid screening

strategy, two compounds (Platycodin D and Tubeimoside III) are
active in inhibiting the SARS virus with IC50 values of 619.5 nM
265.5 nM, respectively. Overall, the hybrid virtual screening
procedure is designed for compounds with a high chance of
binding and high specificity against a given target.

The obtained candidates from preliminary screening are
shown in Table 1. Since the pipeline methods have different
advantages and are often complementary to each other, for
instance, the DFCNN achieves extremely high efficiency by
only considering the physical-chemical feature of pocket and
ligand through vector representation. At the same time, the
Autodock Vina and DeepBindBC have also considered spatial
information. Hence, we selected those compounds based on their
high DFCNN score (larger or equal to 0.99), low Vina score (low
than −9 kcal/mol), large DeepBindBC score (larger or equal than
0.99), and especial high reverse DFCNN based specificity (larger
or equal than 1.3) and reverse Autodock Vina based relative
specificity (larger or equal than 0.6). The specificity check aims to
eliminate those compounds that may bind to multiple off-targets,
hence guaranteeing the relative safety of the candidates in the late
stage of drug development.

The Final Candidates From MD Simulation
and Metadynamics Simulation
The 26 candidates from the preliminary screening were
considered for 100 ns pocket MD simulations. Among
them, we focused on the eight candidates that showed
stability in the last 50 ns simulation, which fulfilled

FIGURE 1 | The pipeline of the virtual screening procedure against RdRp. (A) build RdRp-ligand model, and prepare three compounds libraries (Targetmol-
Approved_Drug_Library, Targetmol-Natural_Compound_Library, and Targetmol-Bioactive_Compound_Library); (B) Deep learning and docking-based screening by
DFCNN, Autodock Vina and DeepBindBC; (C) Specificity checking by reverse DFCNN and reverse docking against 102 diversified targets from DUD.E dataset; (D) Fine
screening by pocket MD simulation and Metadyanmics simulation; (E) Experimental validation of final selected candidates.
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conditions of average RMSD < 0.5 nm, standard deviation <
0.1 nm or RMSD < 0.6 nm, and standard deviation < 0.5 nm.
The RMSD values of these eight pocket-compound complexes
are shown in Supplementary Figure S1A. Furthermore, we
find many hydrogen bonds formed between the pocket and
ligand of these eight candidates, which show in
Supplementary Figure S1B. Among the eight compounds,
the Anidulafungin is an approved drug, and recent reports
have shown that Anidulafungin has anti-SARS-nCov-2 active
with IC50 of 4.64 μM (Jeon et al., 2020), and other researcher’s
docking results support that it may bind to NSP12 (RdRp)
(Dey et al., 2021). The other seven compounds are mostly
from TCM herbal ingredients; for instance, the
Ginsenoside_Rb1 and Ginsenoside_Rd can be isolated from
ginseng (Lu et al., 2009), and Notoginsenoside_Fc is an
ingredient from the leaves of Panax notoginseng (Yang
et al., 1983).

We also carried 100 ns metadynamics for the 26 pocket-ligand
complexes to further evaluate the ligand-pocket binding free
energy landscape. The results show that most of the protein-
ligands prefer to bind except for a few cases such as
Syringaresinol-di-O-glucoside, Ginsenoside_Ro, as shown in
Figure 2. Since the eight compounds selected in the previous
stage all show preferring to bind according to the free energy
landscape, we choose them as the final candidates for
experimental validation.

To explore the detailed interaction between pocket and ligand,
we have analyzed their interaction in atomic details. We noticed
that Anidulafungin and Tubeimoside_III are compounds that
contain a large cyclic substructure, which is consistent with our
previous work that Azithromycin is an active inhibitor against
SARS-nCov-2 that contain cyclic structure (Zhang et al., 2020b),
and highly possible through binding to RdRp through our
screening prediction. The interaction patterns of these two
candidates from the last frame of MD simulation are shown in
Figure 3.

Other three candidates with ligand average RMSD < 0.5 nm
and standard deviation < 0.1 nm during the last 50 ns MD
simulation are Ginsenoside_Rb1, Notoginsenoside_Fc, and
Platycodin_D. Their interaction with the RdRp pocket from
the last frame conformation of the 100 ns MD simulation is
shown in Supplementary Figure S2. We observed that these
three candidates contain glucan substructures and form many
hydrogen bonds with the RdRp. Compared with our previous
screening work, it is the first time we discovered that glucan
substructure might be able to play an essential role in interacting
with RdRp large pocket.

With different selecting criteria, we may obtain some other
potential drug candidates as well. Here, we tried the criteria of
ligand average RMSD < 0.6 nm and standard deviation < 0.5 nm
in the last 50 ns MD simulation and obtained the other three
candidates, which are shown in Supplementary Figure S3.

TABLE 1 | The result list with corresponding prediction scores after gradually screening by DFCNN, Autodock Vina, DeepBindBC, DFCNN specificity checking, and
Autodock Vina relative specificity checking.

Name DeepBindBC Vina (kcal/mol) DFCNN Sp1* C1* Sp2* C2*

Tubeimoside_I 1.000 −12.8 0.996 1.708 1 2.013 0
Tubeimoside_III 1.000 −14.4 0.991 1.708 1 2.013 0
Anidulafungin 0.999 −10.8 0.990 1.531 2 1.708 1
Ciwujianoside-B 1.000 −12.3 0.994 1.531 2 1.230 5
Platycodin_D 1.000 −12.2 0.997 1.398 3 1.146 6
Chikusetsusaponin_IV 1.000 −11.5 0.998 1.398 3 1.041 8
Polygalasaponin_V 1.000 −12.4 0.998 1.531 2 1.041 8
Officinalisinin_I 1.000 −11.3 0.993 1.708 1 1.000 9
Ginsenoside_Rb1 1.000 −10.6 0.990 1.708 1 0.954 10
Protodioscin 1.000 −11.4 0.995 1.398 3 0.954 10
Dipsacoside_B 1.000 −11.6 0.997 1.531 2 0.903 11
Deapi-platycodin_D 1.000 −11.6 0.996 1.398 3 0.845 13
Ginsenoside_Ro 1.000 −11.7 0.997 1.531 2 0.845 12
Pulsatilla_saponin_D 1.000 −12 0.998 1.398 3 0.845 12
anemarsaponin_B 1.000 −10.9 0.993 1.531 2 0.778 16
Esculentoside_H 1.000 −10.8 0.997 1.531 2 0.778 14
Timosaponin_BII 1.000 −10.7 0.993 1.708 1 0.778 14
Astragaloside_IV 1.000 −10.9 0.997 1.398 3 0.699 19
Eleutheroside_E 1.000 −9.2 0.992 1.531 2 0.699 19
Ginsenoside_Rd 1.000 −10.3 0.993 1.398 3 0.699 18
Asiaticoside 1.000 −11.1 0.998 1.398 3 0.602 22
Ginsenoside_Rc 1.000 −10.4 0.992 1.708 1 0.602 20
Hederacoside_D 1.000 −11.2 0.997 1.531 2 0.602 22
Notoginsenoside_Fc 1.000 −10.1 0.990 1.708 1 0.602 22
Rebaudioside_A 1.000 −10.9 0.995 1.398 3 0.602 24
Syringaresinol-di-O-glucoside 1.000 −9.2 0.992 1.531 2 0.602 24

Sp1: DFCNN specificity.
C1: the number of DFCNN scores in the predictions against 102 protein targets larger or equal than 0.99.
Sp2: Vina relative specificity.
C2: the number of vina scores in the docking against 102 protein targets is larger or equal to the known compound-RdRp vina score.
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Similarly, they also contain a glucan substructure, and all form
many hydrogen bonds with the RdRp pocket.

Platycodin_D and Tubeimoside_III Inhibit
the Replication of SARS-CoV-2 In Vitro
To further confirm the efficiency of virtual screening, we
tested the antiviral activity of the eight candidate drugs

in vitro, including Anidulafungin, Ginsenoside_Rb1,
Notoginsenoside_Fc, Platycodin_D, Tubeimoside_III,
Ginsenoside_Rd, Polygalasaponin_V, and Rebaudioside_A.
Similar to our previous study (Zhang et al., 2020b), Vero
cells were infected with SARS-CoV-2 at an MOI of 0.02 in the
presence of varying concentrations of the tested drugs, and the
inhibition rates were evaluated by quantification of viral copy
numbers in the cell supernatant via qRT-PCR (Figure 4). The

FIGURE 2 | The calculated free energy landscape from the 100 ns metadynamics simulations.
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results showed that Platycodin_D and Tubeimoside_III could
efficiently inhibit the replication of SARS-CoV-2, with half-
maximal effective concentration (EC50) values of 619.5 and
265.5 nM, and EC90 of 3,162 and 1,258 nM, respectively.

Although both Platycodin_D and Tubeimoside_III showed
high cytotoxicity in the CCK8 assay (Figure 4), the two
drugs showed little cytotoxicity even at the concentrations
of EC90.

FIGURE 3 | The predicted Anidulafungin and Tubeimoside_III interact with the RdRp pocket. (A) the last frame of RdRp pocket-Anidulafungin complexes from
100 ns MD simulation and its 2D interaction plot. (B) the last frame of RdRp pocket-Tubeimoside_III complexes from 100 ns MD simulation, and its 2D interaction plot.
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DISCUSSION

Compound specificity is extremely important for drug
development. In contrast, our first-stage drug screening has
seriously ignored this or lacks an effective way to assess this.
Due to low specificity would not cause the failure of direct later
experimental validation of protein-ligand binding affinity and cell
activity. However, the ultimate goal of drug screening is to find
compounds that can pass the preclinical stage and have good
potential to pass the clinical stage and finally benefit patients
through providing the on-market available drugs. Experimentally
evaluating the compound specificity is expensive. This work
demonstrates that with the increased efficiency and accuracy
of protein-ligand prediction models, it is possible to evaluate the
specificity by reverse compound-target assessment in the early
stage of drug development. Dual or multi-targeting inhibitors are
important for some complicated diseases (Ramsay et al., 2018),
such as cancer, some research pointed out that next-generation
anticancer agents may be dual or multi-targeting inhibitors
(Raghavendra et al., 2018). A similar strategy as the reverse
target searching in specificity check may provide new insight
for screening and designing dual or multi-target compounds.

Obtaining compounds for one given target is already a
challenging task, to obtain dual or multi-target compounds
would require a much more efficient new method and
strategy, our proposed DFCNN and autodock vina-based
evaluation multi-ligand VS multi-target binding relationship
may provide some clues for future development of dual or
multi-target compounds.

To assess whether any specific active binding sites in the large
cavity of RdRp are more likely to bind active inhibitors, we
compare the binding site of Platycodin_D and Tubeimoside_III
and our previous obtained Azithromycin and Pralatrexate from
their last frame of MD simulation. Figure 5 shows that many
common key residues (close contact residues within 0.5 nm of the
binding compound) are among the four active compounds. For
instance, there are three common key residues (GLN573,
LEU576, LYS577) among Azithromycin, Platycodin_D, and
Pralatrexate, indicating the region occupied by these three
residues is critical for active ligand binding. Unlike the
Azithromycin, Platycodin_D, and Pralatrexate, which bind
mainly in a small cavity region, the Tubeimoside_III has
interacted with more key residues around the whole cavity,
which forms a cycle. Tubeimoside_III also has some common

FIGURE 4 | The antiviral activities of Platycodin_D and Tubeimoside_III against SARS-CoV-2 and cytotoxicity in Vero cell. (A,C) Vero cells were infected with SARS-
CoV-2 at anMOI of 0.02 in the presence of the indicated concentrations of the tested drugs for 48 h, and the viral yield in the cell supernatant was then quantified by qRT-
PCR. The dose-response curves were plotted from viral RNA copies versus the drug concentrations using GraphPad Prism 8 software. (B,D) Vero cells grown in 96-well
plates were treated with various concentrations of compounds or mock-treated for 24 h, followed by 4 h incubation in the media supplemented with 10% CCK-8.
Viable cells were counted according to the absorbance at 450 nm.
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key residues with the other three active compounds. Altogether,
the four compounds can potentially bind to the large cavity of
RdRp, which is a site for DNA binding. This analysis strongly
supports our hypothesis that ligands that can strongly bind to the
cavity of RdRp can block the DNA premier entry into the cavity,
hence potentially stopping the viral replications. Notably, a recent
paper underlined that phospholipidosis is a shared mechanism
underlying the antiviral activity of many repurposed drugs
(Tummino et al., 2021). In other words, the antiviral activity

found for many compounds could be an artifact. Since we first
obtain candidates through screening over RdRp, it should have a
much low chance to obtain compounds that inhibit viral through
phospholipidosis compared to those directly screening through
cell experiment. We carefully examine the four found active
compounds with those compounds with phospholipidosis
mentioned in the paper. Also, we have checked the literature
report about whether each compound involves phospholipidosis.
We find that azithromycin can induce phospholipidosis

FIGURE 5 | The close contact residues (within 0.5 nm) of the four active inhibitors from their last frame of MD simulation. The close contact residues of Azithromycin
(A, residue with green), Platycodin_D (B, residues with green), Pralatrexate (C, residues with magenta), and Tubeimoside_III (D, residues with magenta). The common
key residues between each of these compounds’ close contact residues are also listed.
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according to the reports (Liu et al., 2015). Hence, azithromycin’s
anti-SARS-CoV-2 effect in the cell may not only through binding
with the RdRp. For the other three compounds (Platycodin_D,
Tubeimoside_III, and Pralatrexate), no literature report show
they can induce phospholipidosis. Furthermore, their physical-
chemical feature is not like those compounds that can induce
phospholipidosis, which indicates compounds selected by our
method more tends to exert inhibiting effect by binding with the
protein target.

To assess the general features of those low specificity
compounds that have high potential affinity but low DFCNN
specificity (Supplementary Figure S4A) or autodock vina-based
relative specificity (Supplementary Figure S4B) and select those
compounds to have Vina relative specificity larger than 1 from
Table 1. For better comparison, we also list cases that have high
calculated specificity cases in Supplementary Figure S4C. We
observed that high specificity compounds are usually composed
of more unique groups. However, it is not easy to distinguish high
specificity from abundant compounds by direct visual
observation; hence, specificity calculation is necessary to
determine the compound’s specificity quickly. In this work,
two specificity scores were used, the first one using the
DFCNN, which mainly considers binding through the pocket
and ligand physicochemical property, and the second one which
use autodock vina docking, which can provide structure insight
about specificity. In terms of selectivity, we have used MD
simulation and metadynamics simulation, which provide
atomic details and dynamics information about structural
interaction between compound and target.

The RdRp (nsp12) is highly conserved among the subtypes,
and it only has one mutation (P323L) in Omicron (Ilmjärv et al.,
2021). To explore whether the mutation can influence the large
cavity, we have marked P323 residue with yellow in
Supplementary Figure S5 from the nsp12-nsp7-nsp8 complex
with PDB ID 7ED5 (Shannon et al., 2022). It should be noted that
it is far away from the Template-primer RNA binding cavity. This
strongly supports our assumption that active compounds binding
to RdRp of original SARS-CoV-2 should also become active
against Omicron. It is also interesting to note that the ligand
AT9 is covalent binding to the Template-primer RNA to stop its
elongation. At the same time, our hit compounds aim to prevent
the Template-primer RNA from entering the cavity.

Since we are exploring compounds inhibitory RdRp, the most
possible off-target would be some other polymerases that similar to
RdRp in humans.We have checked the 102 targets and found there is
one poly (ADP-ribose) polymerase (PARP) (PDB ID: 3l3m). It would
be much more helpful if it contains more other polymerases,
especially DNA polymerase in this study, since the compounds
that prefer binding with RdRp may also prefer binding with
human DNA polymerase, and lead to unwanted side effects. We
suspect this is the reason why the selected compounds still have slight
cell toxicity. And strongly suggest that in some specific cases, the user
should addmore relevant protein to the target pool, in order to obtain
compounds with high specificity. For instance, in the future, it should
use similar method to check whether the compounds will bind to
human DNA polymer when designing RdRp inhibitors, in order to
reduce the undesired side effects.

The compound ADME is very important. We have calculated
the ADME property of the final selected inhibitors by the online
SwissADME (http://www.swissadme.ch/). Most calculations
suggest that our selected compounds have too larger a
molecular weight. Hence, it is very important to analyze
structural features essential to simplify those inhibitors while
keeping their activities. Also, the topological polar surface area
(TPSA) of a molecule is also too large. Take Platycodin_D as an
example, removing some of its glycan groups may improve its
MADE property. But we should note that some on-market drugs
also break the Lipinski rule of five. Breaking one or more of
Lipinski’s rules, does not mean a drug candidate cannot be
effective. Moreover, compounds beyond the rule of five are
often better suited for investigation when targeting large and
flat binding sites (Egbert et al., 2019). Interestingly. the RdRp
pocket is actually very large.

CONCLUSION

In the present work, we identify highly potential RdRp inhibitors
that may bind at a different site of a large RdRp cavity by
screening more compounds. Also, we selected more specific
candidates by integrating the specificity checking procedures
into the screening pipeline. Moreover, we have discovered that
Platycodin_D and Tubeimoside_III have a strong inhibiting
effect against SARS-CoV-2 with IC50 values of 619.5 and
265.5 nM, respectively. Notably, our methods strongly indicate
similarities to Azithromycin and Pralatrexate. Their inhibitory
effect is highly likely through competitive prevention of the RNA
template-primer RNA entering into its RdRp binding cavity. In
addition, we have explored the detailed binding sites of these
RdRp nonbonded inhibitors (Azithromycin, Platycodin_D,
Pralatrexate, and Tubeimoside_III) and illustrated their
binding mechanism by comparing some of the common key
residues. Altogether, we again show the workability and power of
the hybrid screening strategy, bringing in specificity checking
methods, which can be applied to a wide range of drug screening
applications, and illustrated the binding mechanism of RdRp
nonbonded inhibitors. Also, the screening pipeline will hopefully
become a generalized drug screening pipeline against many other
therapeutic protein targets in the future.
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