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Identifying new biomarkers is necessary and important to diagnose and treat

malignant lung cancer. However, existing protein marker detection methods

usually require complex operation steps, leading to a lag time for diagnosis.

Herein, we developed a rapid, minimally invasive, and convenient nucleic acid

biomarker recognitionmethod, which enabled the combined specific detection

of 11 lung cancer typing markers in a microliter reaction system after only one

sampling. The primers for the combined specific detection of 11 lung cancer

typing markers were designed and screened, and the microfluidic chip for

parallel detection of the multiple markers was designed and developed.

Furthermore, a miniaturized microfluidic-based analyzer was also

constructed. By developing a microfluidic chip and a miniaturized nucleic

acid analyzer, we enabled the detection of the mRNA expression levels of

multiple biomarkers in rice-sized tissue samples. The miniaturized nucleic acid

analyzer could detect ≥10 copies of nucleic acids. The cell volume of the typing

reaction on the microfluidic chip was only 0.94 μL, less than 1/25 of that of the

conventional 25-μL Eppendorf tube PCR method, which significantly reduced

the testing cost and significantly simplified the analysis of multiple biomarkers in

parallel. With a simple injection operation and reverse transcription loop-

mediated isothermal amplification (RT-LAMP), real-time detection of 11 lung

cancer nucleic acid biomarkers was performed within 45 min. Given these

compelling features, 86 clinical samples were tested using the miniaturized

nucleic acid analyzer and classified according to the cutoff values of the

11 biomarkers. Furthermore, multi-biomarker analysis was conducted by a

machine learning model to classify different subtypes of lung cancer, with

an average area under the curve (AUC) of 0.934. This method shows great

potential for the identification of new nucleic acid biomarkers and the accurate

diagnosis of lung cancer.

OPEN ACCESS

EDITED BY

Shusheng Zhang,
Linyi University, China

REVIEWED BY

Sajad Razavi Bazaz,
University of Technology Sydney,
Australia
Shuhua Yue,
Beihang University, China

*CORRESPONDENCE

Hongwu Wang,
wanghongwu2015@126.com
Feng Xu,
xufeng2003@gmail.com
Guoliang Huang,
tshgl@tsinghua.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to Chemical
Biology,
a section of the journal
Frontiers in Chemistry

RECEIVED 17 May 2022
ACCEPTED 15 July 2022
PUBLISHED 29 August 2022

CITATION

Lin X, Bo Z-H, Lv W, Zhou Z, Huang Q,
Du W, Shan X, Fu R, Jin X, Yang H, Su Y,
Jiang K, Guo Y, Wang H, Xu F and
Huang G (2022), Miniaturized
microfluidic-based nucleic acid
analyzer to identify new biomarkers of
biopsy lung cancer samples
for subtyping.
Front. Chem. 10:946157.
doi: 10.3389/fchem.2022.946157

COPYRIGHT

© 2022 Lin, Bo, Lv, Zhou, Huang, Du,
Shan, Fu, Jin, Yang, Su, Jiang, Guo,
Wang, Xu and Huang. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 29 August 2022
DOI 10.3389/fchem.2022.946157

https://www.frontiersin.org/articles/10.3389/fchem.2022.946157/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.946157/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.946157/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.946157/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.946157&domain=pdf&date_stamp=2022-08-29
mailto:wanghongwu2015@126.com
mailto:xufeng2003@gmail.com
mailto:tshgl@tsinghua.edu.cn
https://doi.org/10.3389/fchem.2022.946157
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.946157


KEYWORDS

lung cancer, microfluidic chip, AI diagnosis, nucleic acid biomarker, loop-mediated
isothermal amplification

1 Introduction

According to the American Cancer Society, the incidence of

lung cancer will be the second-highest among all cancers in

2021, and the mortality rate will be first (Siegel et al., 2021). In

China, lung cancer is the most commonly diagnosed cancer

type and was the most common cause of cancer-related death in

2018 (Feng et al., 2019). According to its main histotype,

prognostic, and therapeutic implications, lung cancer is

divided into two main groups: non-small-cell lung cancer

(NSCLC) and small-cell lung cancer (SCLC), with the

majority being NSCLC (Fujimoto and Wistuba, 2014).

Among all the types of NSCLC, lung adenocarcinoma

(LUAD), lung squamous cell carcinoma (LUSC), and large

cell carcinoma are the three main types. The classification of

NSCLC and SCLC is a significant reference for the choice of

treatment methods (Harmsma et al., 2013). Furthermore,

specific subtyping, especially between LUAD and LUSC, is

crucial to the selection of anti-cancer drugs and

individualized treatment (Sandler et al., 2006).

As the gold standard for a definite diagnosis, the pathological

sectioning method detects lung cancer protein biomarkers.

Tumor biomarkers are produced and secreted by tumor cells

during the oncogenesis and development of malignant tumors

(Ren and Zhao, 2014). In an effort to detect biomarkers, various

methods and strategies based on biochemistry (Kondo, 2019),

immunology (Arya and Estrela, 2018), and molecular biology

(Parida et al., 2005; Maeda et al., 2009) are continuously being

verified, developed, and used. Nevertheless, because of their

targets being proteins, these methods usually require a large

sample volume, complicated manual processing steps, and a

lengthy time (1 week) to obtain final results. In addition, it

remains challenging to precisely classify the complex subtypes.

The “central dogma” indicates that mRNA is the precursor of

protein, and mRNA expression is correlated with protein levels

(Li et al., 2014). Considering the relative simplicity of nucleic acid

detection, we chose mRNA as our detection target. Recently,

some research has focused on the detection of biomarkers in

body fluids because of their accessibility and simplicity.

Exosomes and circulating tumor cells are regarded as

potential liquid biopsy specimens. Exosomes only contain

partial information about cancers (Li et al., 2017), and the

isolation methods for circulating tumor cells are still

challenging because of the extremely low number of such cells

(Wang C. et al., 2015; Wang J. D. et al., 2015; Ruzycka et al.,

2019). Relevant research is still in its infancy, but the analytical

method of histopathologic biopsy can also be applied to liquid

biopsies.

Reverse transcription (RT)-PCR is widely used in mRNA

detection for its high sensitivity and specificity. However, RT-

PCR cannot meet the requirements of rapid diagnosis because

multiple temperature cycles are required, necessitating a

lengthy detection time and a large real-time fluorescence

detector (Maeda et al., 2009). Alternatively, as a type of

nucleic acid amplification method performed under

isothermal conditions, loop-mediated isothermal

amplification (LAMP) could simplify the need for

supporting equipment (Notomi et al., 2000). Thus, we

developed a miniaturized microfluidic chip system to

enable LAMP reactions, which has been used for the

detection of viruses and pathogens (Lin et al., 2019; Lin

et al., 2021). Herein, we demonstrated the combined rapid

and automatic detection of multiple lung cancer biomarkers

on a microfluidic chip.

Several studies demonstrate that examining combinations

of multiple biomarkers can improve sensitivity and specificity

(Harmsma et al., 2013). For example, Li et al. (2016) showed

that the joint detection of markers such as CYFRA21-1, NSE,

CEA, CYFRA21-1, CA125, and SCC further enhances

diagnosis efficacy. Liu et al. (2017) suggested that the

combination of CEA, CYFRA21-1, SCC, NSE, ProGRP, and

CA125 can discriminate the histological types of lung cancer.

However, every study has its self-defined cutoff levels for

different reaction conditions and subjects, and the results

are difficult to apply to other districts or countries.

Compared to manual analysis, machine learning-based

technology can avoid the interference caused by personal

experiences and determine potential correlations with

broader applicability. In the past few years, machine

learning has been widely used in the field of biomedical

research (Litjens et al., 2017), including discovering new

biomarkers for lung cancer diagnosis (Xie et al., 2021).

Herein, we introduced a machine learning model with

discriminative feature selection and feature transformation

by margin maximization to perform multi-biomarker

analysis to obtain more accurate, reliable, and

understandable predictions in a minimally invasive manner

than conventional single biomarker analysis. To the best of our

knowledge, this is the first investigation involving mRNA

biomarkers in lung cancer diagnosis. From a point-of-care

perspective, this method has various advantages such as

simplicity, ease of use, low cost, and real-time results. More

importantly, because of its painless and minimally invasive

nature, we believe that our assessment system for lung cancer

will simplify physical examination processes and significantly

improve patients’ medical experiences.
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2 Materials and methods

2.1 Subjects

A total of 86 subjects were recruited at the Emergency

General Hospital (Beijing, China) from March 2017 to

January 2019. Included patients were stage II to stage IV.

Patients with other unrelated diseases were excluded from the

subject group to eliminate errors caused by irrelevant factors,

with the exception of the pulmonary metastasis group. Patients

with different malignancies, such as esophageal cancer and

thyroid cancer, were included in the pulmonary metastasis

group. The clinical features of the subjects are listed in

Table 1. The research protocol was approved by the Ethics

Committee of the Emergency General Hospital and Tsinghua

University. All participants provided written informed consent

before participating in this study. The tissue sample from each

subject was obtained through bronchoscopy for mRNA

expression analysis. All diagnoses were confirmed by

traditional pathological examination by experienced clinicians

at the hospital who were blinded to this study. The molecular

analysis of all tissue samples in this study was performed at

Tsinghua University (Beijing, China).

2.2 mRNA expression analysis and the
design and screening of loop-mediated
isothermal amplification primers for the
eleven lung cancer biomarkers

Carcinoembryonic antigen (CEA), cytokeratin fragment 19

(CYFRA21-1), squamous cell carcinoma antigen (SCC),

neuron-specific enolase (NSE), and pro-gastrin-releasing

peptide (ProGRP) are serological markers for lung cancer

recommend by the American Committee on Clinical

Biochemistry, the European Expert Group on Tumor

Markers, and the Chinese diagnostic and therapeutic

specifications for primary lung cancer (2015 Edition). Joint

use can improve specificity and sensitivity in clinical

application. Among them, NSE and ProGRP are ideal

indicators for diagnosing SCLC (Li et al., 2022), CEA,

CYFRA21-1, and SCC are helpful for the auxiliary diagnosis

of NSCLC (Mishra et al., 2021), and CYFRA21-1 and SCC are

considered to be specific for squamous cell carcinoma (Fatica

et al., 2022). Another six biomarkers, namely, carcinoma

antigen 125 (CA125) (Yang et al., 2018), epidermal growth

factor receptor (EGFR) (Scharpenseel et al., 2019), isocitrate

dehydrogenase 1 (IDH1) (Mishra et al., 2021), thyroid

transcription factor-1 (TTF-1) (Liu et al., 2018),

synaptophysin (SYN) (Wang et al., 2020), and neural cell

adhesion molecule (CD56) (Svajdler et al., 2019) were

selected according to their frequency of being mentioned in

the relevant literature. Thus, 11 lung cancer biomarkers were

chosen through extensive literature research in total. A

maximum amount of 30 mg tissue sample was stored in

RNAlater™ Stabilization Solution (Ambion, United States)

immediately after harvest. After disruption and

homogenization with a tissue lyser (DHS, China) and a

stainless steel bead, the mRNA was extracted using an

RNeasy Mini Kit (Qiagen, Germany) according to the

manufacturer’s instructions.

The mRNA levels of the 11 biomarkers in the tissue samples

were measured by RT-LAMP, as shown in Figure 1. The RT-

LAMP was performed with a WarmStart LAMP Kit

(DNA&RNA) (New England BioLabs Inc., China) according

to the manufacturer’s instructions. The reaction mixture

(28 µL) contained 14 µL of WarmStart LAMP 2 × Master

Mix, 0.56 µL of fluorescent dye (50 × ), and 13.44 µL of

TABLE 1 Clinical features of subjects.

Variable Number of subjects Percentage (%)

Subjects with clinical features 86 100

Age (median 60, range 14–88)

≤60 42 48.8

>60 44 51.2

Gender

Male 58 67.4

Female 28 32.6

Histology

Benign 20 23.3

Adenocarcinoma 15 17.4

Squamous carcinoma 28 32.6

SCLC 6 7.0

Pulmonary metastasis 17 19.7
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mRNA. The RT-LAMP reaction was performed on the

microfluidic chip.

LAMP primers for the 11 lung cancer biomarkers were

designed using the LAMP primer design software Primer

Explorer version 4 (https://primerexplorer.jp/elamp4.0.0/index.

html). A specific fragment of each biomarker was selected as the

target by comparing related gene sequences in the NCBI

(National Center for Biotechnology Information). First, two

outer primers (F3 and B3) and two inner primers (FIP and

BIP) were designed, and then two loop primers (LF and LB) were

additionally designed to accelerate the reaction rate. The

specificities of these primers were verified by Basic Local

Alignment Search Tool (BLAST) analysis (Version 4,

Bethesda, MD, United States), and the formation of primer

dimers was assessed and excluded in primer design. After

these steps, the LAMP primers for the 11 lung cancer

biomarkers were synthesized by Sangon Biotech (Shanghai,

China). Every set of primers was double-checked by practical

experiments, including the limit of detection (LOD) analysis,

linearity analysis, and specificity analysis. Only primer sets that

passed all of the tests and performed best were chosen for each of

the 11 biomarkers. Among them, the sequences of the LAMP

primers for ProGRP are listed as a sample in Table 2. For

ProGRP, four primer sets were first designed by the software,

and three of them passed the BLAST test. All three primer sets

were then synthesized, and the primers listed in Table 2 were

finally chosen after practical experiments.

2.3 Miniaturized microfluidic chip system

The miniaturized microfluidic chip system contains two

parts: a microfluidic chip and a miniaturized real-time

fluorescence detector. The microfluidic chip for the parallel

detection of multiple markers in a microliter reaction system

after only one sampling was designed and developed. It could

FIGURE 1
Sample acquisition and mRNA expression detection of multiple lung cancer typing biomarkers via a microfluidic chip and miniaturized
fluorescence analyzer.

TABLE 2 ProGRP LAMP primer sequences.

Primer name Sequence (59-39)

ProGRP-F3 GCTGACCAAGATGTACCCG

ProGRP-B3 ACGAAGGCTGCTGATTGC

ProGRP-FIP CTCAGCTGCTGCTTCAGGCTC-TGGGGCACTTAATGGGGA

ProGRP-BIP ACATCAGGTGGGAAGAAGCTGC-GGCTGGTGGTTTCTGTTCT

ProGRP-LF GAAACAGAAGAAGACTCCCCTG

ProGRP-LB GCTGGGTCTCATAGAAGCAAAG
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evenly distribute reaction reagents to 24 bioreactor cells using

centrifugal force, and the sinusoidal shape of the microchannel

enabled the prevention of cross-contamination. The microfluidic

chip comprised two polycarbonate (PC) layers—a substrate layer

and a top layer. The substrate layer contains microstructures such

as channels and cells, and the top layer could be adhered to the

substrate layer with double-sided tape. The radius of the

microfluidic chip is 31 mm, and the total thickness is 1.2 mm.

Figure 2A shows the structure of the microfluidic chip, including

inlet and outlet holes, a microchannel, and 24 reaction cells and

buffer cells. The reaction mixture was added to the chip through

the inlet hole to fill the microchannel. Air was expelled through

the outlet hole, and the chip was sealed by sticking a single-sided

adhesive film to the inlet and outlet holes, forming a closed

reaction system. After centrifugation, the reaction mixture was

automatically distributed into the 24 reaction cells, and buffer

cells were designed to hold the spare liquid and bubbles. In this

way, 24 independent reactions could simultaneously be

performed on the microfluidic chip. The adjacent buffer cells

were isolated because of the sinusoidal shape of the

microchannel, and after heating, a high-pressure air

microchannel was formed, effectively avoiding cross-

contamination caused by liquid diffusion. The volume of a

bioreactor cell was only 0.94 μL, which is < 1/25th of the

conventional 25-μL EP tube PCR method.

LAMP primers targeting the mRNAs of the 11 typing

biomarkers and one internal reference (glyceraldehyde-3-

phosphate dehydrogenase, GAPDH) were designed and pre-

embedded with 0.1% agarose on the bio-reactor cells of the

microfluidic chip. The chip’s 24 bioreactor cells contain two

repetitions of the 11 typing biomarkers, one internal GAPDH

reference, and one negative quality control. After sampling and

heating to 50°C, the low melting point agarose melted, and the

pre-embedded primers were released into the reaction mixture.

The primers participated in the LAMP reaction at 65°C, while

agarose had no impact on the amplification (Figure 2B). During

isothermal amplification of the nucleic acid, the products of

specific sequences were continuously generated and the

fluorescent dye EvaGreen combined with the products,

generating a green fluorescence signal. The fluorescence

signals in the 24 reaction cells were detected and analyzed

using the miniaturized real-time fluorescence detector, and

real-time results were dynamically displayed.

As shown in Figure 2C, the miniaturized detector comprised

four main parts: a control module, an optic module, a heating

module, and a moving module. Users can input orders using a

computer and instruct the other three modules using a digital

signal processor (DSP). The control model is also capable of data

acquisition and processing, including parameter setting,

temperature control, and moving control. The moving module

includes a three-dimensional motion platform (translation,

rotation, and lifting), a rotating motor, and a multi-axis

motion controller, which is controlled by an

STM32 microprocessor. It could control the rotation of the

microfluidic chip, align each bioreactor cell to the objective

lens, and cooperate with the optical module to collect the

real-time fluorescence signal. The heating module includes a

proportional integral derivative (PID) temperature controller,

two heating films, and temperature sensors. The two heating

films made a double-sided 250 µm thin-layer air bath, heated the

microfluidic chip to 65°C, and kept the temperature constant for

40 min for the LAMP reaction. The double-sided thin-layer air

FIGURE 2
Working principle of the miniaturized microfluidic chip system. (A) Structure and liquid distribution of the microfluidic chip. (B) Reaction
principles of LAMP in a bioreactor cell. (C) Schematic of theminiaturized real-time fluorescence detector. DSP: Digital signal processor; PMT: Photo-
multiplier; LED: Light-emitting diode; PID: Proportional integral derivative; and MC: Moving controller.
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bath heating sped up the heat transfer efficiency and was suitable

for scanning detection during the rotation of the

microfluidic chip.

The optic model includes an incident light path and a

fluorescent receiving light path. A schematic diagram of the

optic model is shown in Figure 2C. In the incident light path, the

exciting light source was a 1-W blue light-emitting diode (LED)

(450–475 mm). The exciting light was concentrated by the

collimation lens and filtered by filter 1 (463 ± 10 nm), directly

passed through the dichroic filter, and focused on a reaction cell

by the objective lens. In the fluorescent receiving light path, the

fluorescent signal produced by the LED light was collected by the

objective lens and reflected by the dichroic filter. Here, the

function of the dichroic filter is to separate the two light paths

and improve the use of light. Finally, the fluorescent signal was

filtered by filter 2 (520 ± 20 nm) and focused on the

photomultiplier (PMT) (Hamamatsu Photonics, Japan) by an

imaging lens. Simultaneously, the real-time fluorescence signal

was displayed on the computer (Lin et al., 2019). All of the raw

data were normalized and represented the relative mRNA

expression levels in each subject.

2.4 Statistical analyses

Statistical analyses were performed using Microsoft Excel.

The correlation of mRNA expression with different clinical

features was analyzed using Student’s t-test. All statistical

analyses were two-sided, and a significance level of P<
0.05 was used. The cutoff values were decided by comparing

the mRNA expression levels of the 11 biomarkers with different

histology, and the mRNA expression levels of each biomarker

were compared to the cutoff value of that biomarker. The status

of each biomarker was considered high expression if the mRNA

level was equal to or exceeded the cutoff value. Otherwise, it was

considered a low expression.

To evaluate the performances of the biomarkers, sensitivity

and specificity were calculated and compared. Sensitivity is

defined as true positive/(true positive + false negative), and

specificity is defined as true negative/(true negative + false

positive). By summarizing sensitivity and specificity at

different threshold levels, a receiver operating characteristic

(ROC) curve (Fawcett, 2006) was plotted, and the AUC was

calculated. The machine learning model was estimated by the

AUC value.

2.5 Development of the machine learning
model

To analyze the relationship between the mRNA expression of

multiple biomarkers and different subtypes of lung cancer, we

proposed a rapid diagnosis model with discriminative feature

selection and feature transformation by margin maximization.

This machine learning-based model jointly takes all of the

biomarker features as inputs and comprises three steps: recursive

feature elimination (RFE)-based feature selection (Guyon et al.,

2002), large margin nearest neighbor (LMNN)-based feature

transformation (Weinberger and Saul, 2009), and support vector

machine (SVM)-based classification (Cortes and Vapnik, 1995)

(Figure 3). First, considering that not every biomarker feature

counts in distinguishing each lung cancer subtype, the feature

selection eliminates one feature at a time to recursively seek the

significant biomarker features. Then, the feature transformation

optimizes a linear transformation matrix to maximize the high-

dimensional distance among different subtype samples and

minimize the ones from the same subtype, which transforms the

biomarker features into another feature space,making it easy to train

the classifier. Finally, we used an SVMmodel as the classifier to build

the final lung cancer subtype prediction.

Specifically, all of the 11 mRNA expression biomarkers

comprise a 22-dimensional input feature {X(i)
c }22c�1 for the i-th

subject whose subtype class is y(i), in which we incorporate the

mean and standard deviation of the signal for each biomarker

from the acquisition procedure. The feature selection module of

the model takes X as the input and recursively eliminates one

marker feature at a time, which results in {Sc}sc�1, which varies

from 2 to 22. The LMNN (Weinberger and Saul, 2009) feature

transformation module optimizes a linear transformation

matrix M:

M � arg min
M

∑
i,j∈Ni

‖ M(S(i) − S(j))‖2 + ∑
i,j∈Ni ,y(i)≠y(l)

max(0, 1+

‖ M(S(i) − S(j))‖2− ‖ M(S(i) − S(l))‖2),

where j ∈ Ni means S(j) is one of the k-nearest neighbors of S(i),
and they share the same class, that is, y(i) � y(j). M is initialized

using principal component analysis (PCA) (Pearson, 1901).

The feature transformation module transforms the

s-dimensional feature {Sc}sc�1 into an nc -dimensional feature

{Fc}ncc�1. We set nc to five in our experiments. Then, we used an

SVM classifier to perform lung cancer subtype classification

using F. A support vector machine (Cortes and Vapnik, 1995)

constructs a dividing hyperplane in the original or transformed

space of the input feature, which can classify the input sample by

optimizing the problem:

(ω, b, ς) � argmin
ω,b,ς

1
2
ωTω + R∑

i

ς(i),

s.t. y(i)(wTϕ(F(i)) + b)1 − ς(i),

ς(i) ≥ 0,

where w and b construct the dividing plane, and φ is a linear or

Gaussian kernel. We searched the kernel type and other hyper-

parameters in our model using the grid-search method.

To best use all of the subjects in our experiment and explore

the general performance of our model, we used three-fold cross-
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validation to split the dataset into training and test sets, which

were repeated 10 times with different random partitions. The

input feature of each biomarker was normalized using the natural

logarithm before being fed into the model. The specific feature

selection and linear transformation were based on the statistical

analysis of all of the subjects. The output of the final SVM

classifier was set to probability form, which means that the

classification threshold can flexibly be adjusted to meet

different sensitivity and specificity requirements in the

application process.

3 Results

3.1 Limit of detection, linearity, and
specificity of the system

Serially diluted (106, 105, 104, 103, 102, or 10 copies)

plasmids were used to evaluate the performance of the

LAMP primers. Each reaction was repeated three times, and

the negative control group (using dH2O instead of plasmid) was

also established. Figure 4 shows the LOD and linearity analysis

of ProGRP. For the ProGRP primers, 10 copies of the plasmid

could be detected using LAMP, indicating that the LOD was

10 copies. Similar to the cycle threshold (Ct) in a PCR, the time

to positive in LAMP correlated with the concentrations of

samples. As shown in Figure 4B, the standard curves of the

ProGRP LAMP primers (three repeated experiments) display

good linearity with a coefficient of determination (R2) of 0.9438.

For all of the 11 selected biomarkers, the LOD and linearity

analyses of their LAMP primers were conducted in the same

way. We found that the assay could detect as few as 10 copies of

NSE, ProGRP, and CD56, and 102 copies of the other eight

biomarkers. All of the biomarkers displayed good linearity with

an R2 > 0.89, indicating the relative quantification reliability of

the assay.

To verify whether the designed LAMP primers cross-react

with each other, we also performed specificity verification

analysis. The experimental conditions are the same as the

aforementioned experiments, except that the templates

corresponding to the 11 markers and water (negative control)

were used to react with the LAMP primers of one marker each

time, and all 11 primers were tested in turn. The template

concentration was 105 copies, and each experiment was

repeated three times. Figure 4C shows the specificity analysis

results of the ProGRP primers. They only reacted with the

corresponding templates, and there was no reaction with

other templates or self-amplification. The results of the other

primer sets were the same, indicating that the primers we

designed can amplify their targets specifically.

3.2 mRNA levels of the eleven biomarkers
in different histology types

The mRNA levels of the 11 biomarkers were evaluated and

compared among different histology types: benign, NSCLC

(including LUAD and LUSC), SCLC, metastatic lung cancer,

and primary lung cancer (including NSCLC and SCLC). Among

these biomarkers, three were correlated with LUSC, one was

correlated with metastasis, and five were correlated with SCLC.

For CA125 and TTF-1, there were no significant expression

differences observed between different histology types.

The mRNA expression levels of CYFRA21-1, SCCA, and

SYN were correlated with LUSC. The CYFRA21-1 expression in

LUSC was higher than in benign tissue (p = 0.003), LUAD (p =

0.001), and SCLC (p = 0.003) (Figure 5A). The SCCA expression

in LUSC was higher than in LUAD (p = 0.031). On the contrary,

the SYN expression in LUSC was lower than in benign tissue (p =

0.035) and SCLC (p = 0.028). The expression levels of EGFR were

correlated with metastasis. mRNA expression increased in

groups with metastatic lung cancer compared to the benign

FIGURE 3
Multi-biomarker typing analysis based on machine learning.
(A) Feature selection. (B) Feature transformation. (C) SVM classifier
and prediction.
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(p = 0.001) and primary lung cancer (p = 0.000) groups

(Figure 5B).

The mRNA expression levels of CEA, ProGRP, CD56,

IDH1, and NSE were correlated with SCLC. The CEA

expression in SCLC was higher than in LUSC (p = 0.038).

The ProGRP expression in SCLC was higher than in benign

tissue (p = 0.030) and LUSC (p = 0.017). The CD56 expression

in SCLC was higher than in the benign (p = 0.032), LUAD (p =

0.035), and LUSC (p = 0.004) groups (Figure 5C). The

IDH1 expression in SCLC was higher than in benign tissue

(p = 0.044) and NSCLC (p = 0.021) (Figure 5D). The NSE

expression in SCLC was higher than in the benign (p = 0.005)

and LUAD (p = 0.018) groups.

3.3 Single biomarker analysis

After determining the cancer subtype each biomarker could

distinguish, all 86 clinical samples were classified according to

each of the cutoff values of the 11 biomarkers. Briefly, for each

biomarker, a high-mRNA expression sample was regarded as the

specific subtype, and a low-mRNA expression sample was

regarded as one of the other subtypes. Figure 5E shows the

detailed classification performance of the 11 biomarkers, and the

evaluation index includes sensitivity and specificity. CYFRA21-1

and SCCA could be combined to determine LUSC. EGFR could

effectively distinguish metastatic lung cancer with high sensitivity

and specificity. For SCLC, CEA and ProGRP displayed better

performance than the other five markers. However, statistical

analyses based on a single biomarker could not distinctly classify

different subtypes.

CEA is recommended by the NACB (National Academy of

Clinical Biochemistry) guidelines for NSCLC diagnosis when

combined with CYFRA21-1, and IDH1 is used as a blood

biomarker for the diagnosis of NSCLC65. However, in our

study, the mRNA expression levels of CEA and IDH1 in

SCLC were higher than in NSCLC. There may be several

reasons for these results. First, the number of SCLC samples

FIGURE 4
Limit of detection (LOD), linearity, and specificity analysis of ProGRP. (A) LOD analysis of ProGRP. (B) Linearity analysis of ProGRP. (C) Specificity
analysis of ProGRP.
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used in our study was small (only six). Second, SCLC is

acknowledged to be more malignant than NSCLC. Finally and

most importantly, other studies measured protein rather than

mRNA levels, and mRNA expression is not completely

synchronized with protein expression. Further studies should

be conducted to confirm our results.

3.4 Multi-biomarker analysis based on
machine learning

Jointly considering multiple biomarkers, we evaluated the

performance of the introduced machine learning classification

model for identifying different subtypes of lung cancer. The

model was applied to five binary class settings: benign and

malignant, adenocarcinoma and non-adenocarcinoma,

squamous carcinoma and non-squamous carcinoma, SCLC

and non-SCLC, and pulmonary metastasis and non-

pulmonary metastasis. By summarizing the sensitivity and

specificity at different threshold levels, an ROC curve

(Fawcett, 2006) was plotted, and the AUC was calculated.

The performance of the five binary classification models is

shown in Figures 6A–E. The results were averaged based on all of

the test sets of the 10 repeats of the three-fold cross-validation

procedure, which yielded 30 isolated experiments for each

classification task. The ROC curves and the 95% confidence

intervals (95% CI) are shown in Figures 6A–E, in which the

optimal point is the threshold point that has the shortest distance

to the upper left point in the ROC curve figure. In addition, the

sensitivity, specificity, and AUC scores at the optimal point are

shown in Figure 6F, in which the mean and 95%CI are given. The

final result of the feature selection module is also shown in

Figure 6G.

In general, benign and SCLC subjects were relatively easy to

identify. A total of nine biomarkers were chosen to judge benign

and malignant lung cancers, with an AUC score of 0.963; seven

biomarkers could be used to distinguish SCLC from NSCLC,

and the sensitivity was 0.983. Thus, this assay could accurately

classify the main classes of lung cancer. Pulmonary metastasis

could also be recognized by 10 biomarkers, including EGFR.

Compared to single biomarker analysis with EGFR, combined

analysis of the biomarkers increased the sensitivity and

specificity. As for the classification of NSCLC, the AUC

scores of adenocarcinoma and squamous carcinoma were

slightly lower. However, all of the AUC scores are

approximately 0.88 or greater, and the average score is 0.934.

Therefore, this promising average performance suggests the

validity of using mRNA biomarkers for the minimally invasive

and rapid diagnosis of lung cancer. Although some biomarkers

were not significant for specific binary classifications, the

combination of multiple biomarkers was an improvement

over the use of single biomarkers.

4 Discussion

By far, clinical lung cancer diagnosis techniques such as chest

X-rays, CT scans, and pathological sectioning methods are the

most widely used for lung cancer, yet none of them are sensitive

and specific enough for the identification of new biomarkers.

FIGURE 5
Analysis of the minimally invasive and rapid diagnostic method based on single biomarkers. (A–D) CYFRA21-1, EGFR, CD56, and IDH1 mRNA
levels in different histology types. (E) Single-biomarker statistical classification analysis of the 11 biomarkers.
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Although immunoassays are sensitive and selective for the early

diagnosis of lung cancer, disadvantages remain because they are

time-consuming, expensive, multistep, and often require large

and expensive equipment. Despite the fact that molecular biology

methods such as RT-PCR can be powerful to detect tumor cells, it

should be noted that these methods require complicated manual

operations, multiple instruments, and experienced operators to

perform the analyses. In addition, methods based on EP tubes or

multi-well plates consume >25 μL of samples and reagents, and

thus, large amounts of tissue must be sampled. Furthermore,

multiple samplings are also needed for typing, which is harmful

to the operator and difficult to achieve, for many diseased tissues

do not meet the requirements of multiple sampling.

In recent years, various types of factors, such as cell-free

DNA, circulating tumor cells, and exosomes in bodily fluids, have

been analyzed for the detection of lung cancer. Cell-free DNA

and circulating tumor cells are present in very small amounts,

resulting in the need for special collection devices, and expression

levels are hard to obtain in most cases (Gao et al., 2017; Qian

et al., 2018). Lung cancer-specific exosomal markers are still

under study (Niu et al., 2019). Park et al. (2017) and Shin et al.

(2020) classify exosomes by surface-enhanced Raman scattering

FIGURE 6
Analysis of the minimally invasive and rapid diagnostic method based on multiple biomarkers. (A–E) Mean receiver operating characteristic
(ROC) curve with the 95% confidence interval (CI) and the optimal point for five binary multi-biomarker classification tasks based on machine
learning. (F) Specific mean sensitivity, specificity, and AUC score for the five tasks, in which ± indicates the 95% CI. Note that the values in F are
averages of all values with different optimal points of every cross-validation experiment and differ from the mean ROC curves in (A–E) that are
averaged based on all curves. (G) Selected (green) and rejected (red) biomarkers generated by the feature selectionmodule via recursive elimination.
The selected biomarker features were fed into the feature transformation and the classifier modules to build the final prediction.
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and could distinguish cancer cell-derived and normal cell-

derived exosomes with high sensitivity and specificity.

However, non-specific detection of exosomes may lead to

inaccurate diagnosis, and the major signals are only derived

from surface molecules, which do not provide complete

information.

Our assay uses histopathologic biopsy and detects mRNA

biomarkers corresponding to protein tumor markers. Such

multi-biomarker analysis based on machine learning is a

general method and can be applied to liquid biopsies as well.

For data acquisition, nucleic acid analysis based on the

bronchoscope sampling method has obvious advantages. As a

minimally invasive technique, it requires only rice-sized tissue

samples. One sampling can detect 11 biomarkers at the same time

and enable accurate typing and identification. The operation is

also simple and rapid (within 45 min), with low cost for small

typing reaction cells (only 0.94 μL), less than 1/25 of the

conventional 25 μLEP tube test method.

AI is a powerful tool in biomedical research that is used to

analyze deep features and connections among lesions and

pathological disorders. In this study, we first used machine

learning techniques to build a correlation graph from

minimally invasive mRNA biomarkers to lung cancer

subtypes. The model, jointly considering all mRNA

biomarkers, was a great improvement over single biomarker

analysis.

However, our study still has some challenges. First, the data

scale in our study includes only 86 subjects, which may limit the

performance of our models. Expanding the number of subjects

would improve the robustness and reliability of our method.

Second, the expression levels of mRNA biomarkers in the biopsy

samples were first applied to the specific classification of lung

cancer. Diagnosis based on protein is the traditional method and

also the gold standard. Based on this view, it is more accurate.

However, the detection of protein usually requires a large sample

volume, complicated manual processing steps, and a lengthy time

to generate final results. Furthermore, precise typing is still

challenging in the clinic. Thus, we attempted to use mRNA as

a new target and achieved quite good classification results, but

further research should be performed to verify the assay. With

larger datasets and improvements in deep learning technology in

the future, we believe this study can be evaluated more

thoroughly.

It is hoped that the minimally invasive and rapid AI diagnosis

of lung cancer can be used as a guide to enter grassroots

communities and even families to enable timely screening,

long-term tracking detection, and health monitoring of lung

cancer or other diseases. Once abnormalities are found,

physicians can use minimally invasive methods to quickly

perform multi-index typing and precise molecular diagnosis

for personalized treatment. Then, the non-invasive method

could be used to longitudinally track patients to evaluate the

treatment effect.

5 Conclusion

Herein, we developed a rapid, minimally invasive, and

convenient nucleic acid biomarker recognition method, which

enabled the combined specific detection of 11 lung cancer

typing markers in a microliter reaction system after only one

sampling. This method uses a miniaturized microfluidic-

based nucleic acid analyzer combined with deep learning

and machine learning.

In this method, the primers for the combined detection of

11 lung cancer typing markers were designed and screened, the

microfluidic chip for the parallel detection of the markers was

designed and developed, and a miniaturized microfluidic-based

analyzer was also constructed. We found that differences in the

mRNA expression of multiple lung cancer typing biomarkers can

be used to classify histology types from rice-sized tissue samples

collected by bronchoscopy. Lung cancer subtypes could be

identified within 45 min. The volume of each reaction cell was

only 0.94 μL, and the sensitivity was as low as 10 copies with good

linearity (R2 = 0.9938). This significantly reduced the testing cost

and significantly simplified the process of detecting multiple

subtypes in parallel. To leverage multiple biomarkers together

for the typing of lung cancer, a machine learning-based approach

is proposed with discriminative feature selection and feature

transformation by margin maximization. A total of 86 clinical

samples were tested using the miniaturized nucleic acid analyzer

and classified by the multi-biomarker analysis based on the

machine learning model. The importance of each biomarker

in identifying cancer subtypes was analyzed via a machine

learning approach and achieved an average AUC of 0.934 on

five binary classification tasks. This assay could distinguish

benign from malignant lung cancer and also classify LUAD

and LUSC in the NSCLC group. Moreover, the metastasis of

lung cancer could be distinguished with an AUC score of 0.9.

These promising results highlight the prospect of minimally

invasive, rapid, and precise typing diagnosis of lung cancer

using mRNA biomarkers in clinics.
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