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Photodynamic therapy is a promising cancer treatment that induces apoptosis as

a result of the interactions between light and a photosensitizing drug. Lately, the

emergence of biocompatible nanoparticles has revolutionized the prospects of

photodynamic therapy (PDT) in clinical trials. Consequently, a lot of research is

now being focused on developing non-toxic, biocompatible nanoparticle-based

photosensitizers for effective cancer treatments using PDT. In this regard,

semiconducting quantum dots have shown encouraging results. Quantum

dots are artificial semiconducting nanocrystals with distinct chemical and

physical properties. Their optical properties can be fine-tuned by varying their

size, which usually ranges from 1 to 10 nm. They present many advantages over

conventional photosensitizers, mainly their emission properties can be

manipulated within the near IR region as opposed to the visible region by the

former. Consequently, low intensity light can be used to penetrate deeper tissues

owing to low scattering in the near IR region. Recently, successful reports on

imaging and PDT of cancer using carbon (carbon, graphene based) and metallic

(Cd based) based quantumdots are promising. This reviewaims to summarize the

development and the status quo of quantum dots for cancer treatment.
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Introduction

Photodynamic therapy and cancer

Cancer is a dreadful disease and the leading cause of

mortalities in developed as well as developing countries. As

per the global cancer statistics, a record of 10 million cancer

deaths were reported in 2020 (Sung et al., 2021). Therefore,

cancer biology has been researched extensively to understand the

mechanisms of cancer growth and metastasis, and subsequently,

to develop better, effective, and safer treatment modalities.

Accordingly, several novel approaches are being used

clinically, or are in clinical trials, including combination

chemotherapy (Chung et al., 2020; Yamada et al., 2022),

immunotherapy (Kraehenbuehl et al., 2022; Li et al., 2022b),

radiation (Tchelebi et al., 2020; McGovern et al., 2022), and

photodynamic therapy (Li et al., 2020a; Lo et al., 2020). Although

cancer research has advanced progressively, there are only a few

notable treatment improvements (Agostinis et al., 2011).

Furthermore, most of the cancer drugs and treatments are

often associated with severe side effects due to the systemic

circulation of the drug molecules (Partridge et al., 2001; Kayl

and Meyers, 2006; Aslam et al., 2014). Recently, photodynamic

therapy (PDT) has garnered increasing attention in cancer

research. PDT is a noninvasive targeted technique employing

a photosensitizing drug molecule that gets activated upon

irradiation of a light source (Brown et al., 2004; Robertson

et al., 2009; Abrahamse and Tynga, 2018). The photosensitizer

(PS) gets excited to the transient singlet excited state following

photon absorption on light irradiation. The excited singlet state

can follow two fates—it can either fluoresce back to the ground

state, or it can relax to a relatively stable excited triplet state

following intersystem crossing. The excited triplet state then

relaxes back to the ground state transferring energy to

molecular oxygen and thereby generating singlet oxygen

species (1O2) (Type II process). Singlet oxygen is an extremely

strong oxidizing agent which can readily oxidize biomolecules

such as proteins, lipids, DNA, RNA thus killing cancer cells

(Wilson, 2002; Robertson et al., 2009). Besides, the triplet state PS

can lose a hydrogen to generate radicals and anion radicals that

initiates the therapeutic effect (Figure 1) (MacRobert and

Theodossiou, 2005). PDT can have varying efficacies and

mechanisms of therapeutic action based on the kind of drug

and dose, light source, tissue type and availability of oxygen

(Woodhams et al., 2004). There are three generally accepted

mechanisms of cell death triggered by PDT. 1) PDTmay result in

vascular constriction and platelet aggregation; 2) it may also

induce apoptosis and necrosis via direct cellular oxidation, 3) and

finally, it may initiate autoimmune and inflammatory responses

(Juarranz et al., 2008). PDT offers several advantages over

conventional cancer therapies. Most importantly, it does not

require any surgical interventions and it can be localized at the

tumor site with laser irradiation, thereby limiting systemic

toxicity. The first clinical application of PDT dates back to the

1990s using hematoporphyrin derivatives and photofrin (II), and

since then, several advancements have been made to develop

better photosensitizers, light sources, as well as in the basic

understanding of photochemistry and photobiology (Wilson,

2002).

Photosensitizers (PS) form an important part of

photodynamic therapy. Most photosensitizers used in cancer

research and therapy are based on porphyrin, chlorin, and

phthalocyanine backbone (Abrahamse and Hamblin, 2017;

Zhang et al., 2018). An ideal photosensitizer must be

chemically pure and easy to synthesize with long shelf life.

The quantum yield of the metastable triplet state should

ideally approach unity, and the PS should have a strong

absorption preferably between 600–800 nm to provide for

FIGURE 1
Schematic explanation of photodynamic therapy. The ground state photosensitizer (S0) on suitable irradiation, gets excited to the singlet state
(S1). This singlet state PS can fluoresce back to the ground state or can convert to the triplet excited state (T1) via intersystem crossing. The triplet state
can transfer energy via type I or type II processes leading to the generation of reactive oxygen species and execution of photodynamic therapeutic
action.
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TABLE 1 List of few photosensitizers in clinical trials.

Structure Photosensitizer (Trade name) λ nm
(ε M−1

cm−1)

Cancer type Clinical trial status

First generation photosensitizers

Hematoporphyrin

Porfimer sodium (Photofrin) 630 (3·0 × 103) Lung, esophagus, bladder,
ovarian

Approved worldwide

Second Generation Photosensitizers

Protoporphyrin prodrug

5-Aminolevulinic acid (5-ALA) (Levulan) 635 (<104) Skin, bladder, brain, esophagus Approved worldwide

5-ALA-methylester (Metvixia) Skin, bladder US FDA, EU, New Zealand,
Australia

5-ALA-benzylester (Benzvix) Gastrointestinal cancer Not approved

Benzoporphyrin

Verteporfin (Visudyne) 689–693
(3·5 × 104)

Ophthalmic, pancreatic, skin US FDA, EU, Canada

Chlorins

Temoporfin (Foscan) 652 (3·0 × 104) Head, neck, prostrate, pancreas European Union

Talaporfin sodium (Aptocine/Laserphyrin) 664 (4·5 × 104) Lung cancer and solid tumors Japan

(Continued on following page)
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TABLE 1 (Continued) List of few photosensitizers in clinical trials.

Structure Photosensitizer (Trade name) λ nm
(ε M−1

cm−1)

Cancer type Clinical trial status

Phthalocyanine

Sulfonated aluminium phthalocyanine
(Photosens)

675 (1·1 × 105) Various cancers, AMD Russia

Texafrins

Motexafin lutetium (Antrin) 732 (4·2 × 104) Prostate cancer Terminated

Pheophorbide-a

2-(1-Hexyloxyethyl)-2-devinyl
pyropheophorbide-a (Photochlor)

665 nm
(4·75 × 104)

Lung cancer Clinical trials

Palladium bacteriopheophorbide (Tookad/
WST09)

763 (>105) Prostate cancer

Purpurin

Rostaporfin (Photrex) 660 (2·8 × 104) Breast, basal cell carcinoma,
prostate cancer

United States (Phase II)

Porphycene

9-acetoxy-2,7,12,17-tetrakis-(β-methoxyethyl)-
porphycene (ATMPn)

610–650
(5·0 × 104)

Psoriasis, non melanoma skin
cancer

Germany
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singlet oxygen excitation energy (94 kJ/mol). Furthermore, it

should exhibit minimal dark toxicity and must possess a high

renal clearance rate. They must be able to selectively localize at

the tumor tissue (Robertson et al., 2009; Abrahamse and

Hamblin, 2017). The first generation photosensitizers were

based on hematoporphyrin backbone and were potent against

breast, colorectal, oral, brain and lung cancers. However, they

suffered few major setbacks such as complicated synthesis and

complex structures, low quantum yields, slow pharmacokinetics,

hydrophobic nature, and poor tissue penetration due to short

wavelengths (Park et al., 2021). The constraints of water

solubility and stability were partially met by introducing few

structural changes in the cyclic tetrapyrrole ring such as the

introduction of sulphonyl groups. This led to the development of

substituted phthalocyanines and chlorins (temoporfin,

hexylpyropheophorbide) as the second generation

photosensitizers. The second generation PS exhibit greater

tissue selectivity as well and due to longer absorbance

wavelengths, they can also be used to target deeper tissues

(Josefsen and Boyle, 2008b; Kou et al., 2017). 5-

Aminolevulinic acid is an example of a successful second

generation photosensitizer. It acts as a precursor and gets

metabolized to protoporphyrin IX post administration

(Josefsen and Boyle, 2008b). Besides, few second generation

PSs are designed to target specific cellular functions (Yuan

et al., 2016; Yu et al., 2017), for example DLC-porphyrin

FIGURE 2
Size dependent photoluminescence in QDs. The band gap energy and the size of quantum dots follows an inverse relationship. Therefore, QDs
with large band gap energies have smaller radii, while small band gap QDs are larger in size.

FIGURE 3
Classification of quantum dots with few examples of each type.
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conjugates that preferentially localize in the mitochondria (Kou

et al., 2017). Additionally, few bio-conjugated photosensitizers

have also been proposed for imaging and therapy of cancer (Van

Dongen et al., 2004; Simões et al., 2020). A list of few

photosensitizers in clinical trials has been included in Table 1.

The third generation photosensitizers are the more advanced

form of PS involving classical photosensitizers conjugated to

specific proteins, amino acids, antibodies, carbohydrates for

target specific action. They may also include metal organic

framework based nanozymes (Huang et al., 2021), classical PS

encapsulated or conjugated to drug delivery carriers such as

nanoparticles, supramolecular assemblies for improved

accumulation of PS at the tumour site thereby reducing

systemic toxicity (Josefsen and Boyle, 2008a; Setaro et al.,

2020; Mfouo-Tynga et al., 2021).

Current limitations of PDT

Despite the remarkable success of second generation PS, their

widespread clinical applications are limited by the fact that most

of them tend to accumulate in the skin and eyes leading to

phototoxicity and photosensitivity for prolonged periods.

Therefore, tumor selectivity is seldom achieved. Moreover,

most photosensitizers have hydrophobic extended π networks,

and thus tend to agglomerate in aqueous media. Lastly,

widespread application of PDT as an independent treatment

modality is also restricted by the fact that it is not very successful

for deep rooted and bulky tumors, as well as for tumors that have

metastasized to multiple organs (Lucky et al., 2015; Gunaydin

et al., 2021). Therefore, the current research is focused on

developing third generation photosensitizers which can

overcome the drawbacks of solubility, and phototoxicity to

normal cells. Extensive modifications in the PS structure such

as conjugation with cellular targeting peptides and antigens have

been assessed to allow for the targeted localization of PS at the

tumor site (Wu, 2018; Simões et al., 2020). Nanotechnology has

also been incorporated into PDT to allow for better conjugation

and targeted delivery of the photosensitizers.

Nanotechnology in PDT

The clinical success of Photofrin encouraged the

development of PDT as a promising treatment modality for

cancer. However, many potent photosensitizers are restrained for

widespread clinical use for the reasons outlined above. Therefore,

current research is being focused on combating these drawbacks

and designing drug delivery carriers and/or stabilizers for PDT,

and so far, nanotechnology has yielded promising results.

Nanotechnology is an emerging tool, being used to overcome

the existing limitations associated with photodynamic therapy

and for the development of advanced third generation

photosensitizers (Abrahamse et al., 2017; Chizenga and

Abrahamse, 2020; Park et al., 2021). Moreover, nanoparticles

can target tumors due to enhanced permeability and retention

properties, leading to targeted photodynamic action, thereby

limiting the phototoxicity to normal and healthy tissues

(Hamblin et al., 2015; Sivasubramanian et al., 2019).

Nanocarriers for photosensitizers for PDT can provide many

advantages such as localization of the PS at the tumor site,

delivery of high concentrations of PS, improved

biodistribution by surface modifications and many more

(Lucky et al., 2015; Qidwai et al., 2020; Sztandera et al., 2020).

Consequently, many nano-PS conjugates have been prepared

and reviewed for their PDT action (Patel et al., 2017; Park et al.,

2018; Yang et al., 2018; Nkune et al., 2021). Additionally, few

semiconductor nanoparticles also known as quantum dots are

gaining emphasis for their ability to generate singlet oxygen,

thereby eliminating the need of conventional PS. Moreover, some

of these QDs have also been conjugated to classical PSs for

enhanced photoluminescence and PDT action via two photon

emission (TPE) and fluorescence energy transfer (FRET). This

review is focused on reviewing the development and future of

semiconducting quantum dots as photosensitizers for PDT.

Semiconductor quantum dots

Nanomaterials display interesting and distinct properties as

compared to bulk materials owing to their nano dimensions and

the consequent electron confinement effects. Nanomaterials are

usually classified based on the number of degrees of freedom

experienced by the electrons and holes in them (Sumanth Kumar

et al., 2018). Quantum wells are two dimensional nanomaterials,

with confinement in one direction. Quantum wires are one

dimensional nanostructure with confinement in two

directions, and finally quantum dots are zero dimensional

FIGURE 4
Common synthetic protocols for the synthesis of quantum
dots. QDs can be synthesizes via top up or bottom down
approaches.
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semiconductor nanocrystals with confinement in all three

directions. Their size ranges from 1 to 10 nm, and they are

composed of a few tens to thousands of atoms, with electrons

quantized in all directions. Thus, the electronic energy levels in

quantum dots (QDs) are discreet like in atoms or molecules, and

hence QDs are also sometimes referred to as artificial atoms.

They possess an intrinsic band gap that allows the excitation and

bridging of electrons. This band gap is inversely related to the size

of QD, greater the size, smaller the band gap (Efros and Brus,

2021). Thus, the QD band gap energy and hence their

optoelectrical properties can be manipulated by varying their

size (Hong, 2019), larger QDs have smaller band gaps while

smaller QDs have large band gaps (Figure 2).

Classification of quantum dots

Quantum dots can have varied compositions and can be

classified into core type QDs, core shell QDs, and alloyed QDs

based on their chemical structure (Liang et al., 2021). Core

type QDs are composed of a single material, usually a metallic

chalcogenide (CdS, CdSe, CdTe, PbS) and have homogeneous

compositions. Metal free QDs such as silicon quantum dots

and carbon based QDs such as carbon quantum dots and

graphene quantum dots also fall in this category. They depict

tremendous fluorescent properties and have been extensively

explored for sensing and bioimaging applications (Farzin and

Abdoos, 2021).

Core shell QDs are advanced quantum dots and are

composed of a core type material encapsulated within a

second semiconductor. The embedding of the quantum

core within a shell of another semiconductor material

prevents the nonradiative decay of the exciton, leading to

enhanced photoluminescence as well as improved stability.

Typical compositions employed for the core and shell are type

II–VI, IV–VI, and III–V semiconductors (Cotta, 2020). Few

examples include CdSe/Zns, CdSe/CdS, InAs/Cds.

Depending upon the band gaps in the core and shell

semiconductor materials, core shell type QDs can be

further classified into type I, inverse type I, type II and

inverse type II quantum dots (Figure 3). The

biocompatibility of core shell QDs has also been improved

by doping with transition metals (AbouElhamd et al., 2019).

Finally, alloyed QDs are composed of two semiconductors

with different band gap energies (examples: CdSeTe, CdSeS).

Their composition follows a concentration gradient allowing

the manipulation of optical properties without altering the

particle size (Bailey and Nie, 2003).

Synthesis of QDs

Quantum dots can be synthesized by chemical, physical or

biological processes, and the synthetic method followed plays an

important role in the size and the consequent photoluminescence

properties as well as the biocompatibility of the QDs (Zhou et al.,

2015). Broadly, the approaches can be categorized as top down

and bottom up syntheses. Top down synthetic routes involve the

thinning or slicing of a bulk semiconductor to yield the quantum

dot. These are mature strategies with abundant raw materials.

Examples include focused ion or laser beam, electron beam

lithography, wet or reactive ion etching. These methods are

usually facile and ecofriendly; however, the resulting quantum

dots often possess impurities, surface defects, have poor stability

FIGURE 5
Quantum confinement effects seen in quantum dots. The Bohr’s radius of the exciton is similar to the radius of the QD leading to the spatial
confinement of electrons in all the three directions.
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and low quantum yields. Bottom up approaches usually involve

self-assembly and may further be classified into wet chemical and

vapor phase methods. Bottom up approaches are usually inspired

by biology; they provide precise control over size and have fewer

defects. However, the synthetic protocols are often complex and

complicated involving organic solvents. Bottom up approaches

include hydrothermal methods, solvothermal methods and

microwave synthesis. Few commonly employed synthetic

protocols for the synthesis of QDs are presented in Figure 4.

The synthetic methods for quantum dots have been reviewed in

great detail by many researchers, and hence will not be elaborated

here (Bera et al., 2010; Valizadeh et al., 2012; Karakoti et al., 2015;

Wang et al., 2017; Pu et al., 2018; Singh et al., 2019).

Quantum confinement effects

The unique electronic and optical properties of QDs are

attributed to the quantum confinement effects. The quantum

confinement effects can be understood in terms of the Bohr

radius which is defined as the distance between an electron in the

conduction band and its corresponding hole in the valence band.

The Bohr radius is characteristic of each semiconductor and

quantum confinement effects are observed at dimensions smaller

than the Bohr radius. The dimensions of a bulk semiconducting

material are much greater than the Bohr radius and thus the

electronic energy levels are continuous. A quantum dot on the

other hand, is extremely minute comprising of only a few atoms.

When quantum dots are excited by a photon of energy hν, the
electrons in the valence band gains energy and forms the exciton.

An exciton is an electron-hole pair held together by Columbic

electrostatic forces. The size of this exciton is similar to the size of

QD (Figure 5), leading to discreet atomic like energy levels and

the spatial confinement of the exciton in three dimensions. The

discreet atom like energy levels also result in longer lifetime of the

excited states (Mandal and Chakrabarti, 2017; Zaini et al., 2020).

Typical properties of quantum
dots—tunable photoluminescence and
band gap

The most widely appreciated property of quantum dots is

their size dependent luminescence. QDs of similar materials, but

different dimensions possess different colors (Figure 2). As

explained in Graphene quantum dots, when a photon of

sufficient energy strikes a QD, the electron from the valence

band gets excited to the conduction band, thus forming a hole in

the conduction band and the exciton. Next, the exciton relaxes

back to the lower energy state by emitting some energy and

recombing the electron and the hole in the process. The emitted

energy is expressed as the sum of the bandgap energy, the

quantum confinement energy, and the bond energy of exciton

(Sumanth Kumar et al., 2018); and the process involves

conventional fluorescence emission of a longer wavelength

(red shifted) photon (Bentolila, 2015). Thus, as smaller QDs

have large band gaps, more energy will be required to form the

corresponding exciton. Hence greater energy wavelengths will be

emitted during luminescence. Thus, quantum dots display size

dependent luminescence properties. This becomes particularly

crucial in designing tailor made QDs for specific luminescent

applications.

Thus, the emission spectra of QDs can be easily modified to

emit anywhere between the UV to near IR (NIR) region, as

against the visible region with conventional photosensitizers, just

by changing their size. The control over size of QDs can be

achieved by varying the reaction parameters like pH,

temperature, time, concentration, etc. during the synthetic

pathway. They can also be tailored to have two photon cross

section absorption, allowing excitation in the near infrared (NIR)

range. Within the NIR window, the propagating light diffuses

rapidly leading to deep tissue penetration. Thus QDs can be

employed with low intensity lights to target deep rooted tumors

(Samia et al., 2003). They can also be used for bioimaging

applications. As compared to conventional organic dyes, they

can be excited by a broad range of irradiation wavelength (they

possess broad absorption spectra) but exhibit narrow and sharp

fluorescence emission peaks. They have high extinction

coefficients, indicating their strong absorption capacities.

Additionally, they also possess large two photon absorption

cross sections as well, making them outstanding candidates

for designing PS-nanoconjugates with improved singlet

oxygen quantum yield through two photon emission (TPE) as

well as fluorescence resonance energy transfer (FRET) (Shen

et al., 2016). They can also induce 1O2 and ROS production by

transferring energy from the excited QD state to the ground state

triplet oxygen, known as triplet energy transfer (TET). Moreover,

they are much more photostable and biocompatible than organic

dyes. Thus, quantum dots have been widely employed for

bioimaging applications since their discovery (Freitas et al.,

2020). Additionally, quantum dots combine several favorable

characteristics making then suitable for PDT applications. Their

biocompatibility and intracellular delivery can be easily

improved by surface modifications (Bakalova et al., 2004).

Although the concept of employing quantum dots as

photosensitizers is rather nascent, few promising results have

been obtained using carbon dots, graphene quantum dots and

bimetallic dots.

Fluorescence resonance energy transfer

The photoluminescence applications of QDs are usually

governed by Fluorescence resonance energy transfer (FRET)

and charge transfer interactions. These processes play crucial

roles in quantum dots chemistry and applications. These
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photophysical processes can depend on several factors such as

the overlap between acceptor absorbance and donor emission

spectra, the number and orientation of acceptor around QD, the

donor - acceptor distance, and the size and shape of the QD (Ji

et al., 2016). FRET involves coupling of donor and acceptor

dipoles. It can be explained as the non-radiative transfer of

photoexcited donor energy to an adjacent ground state

acceptor. When a donor group is excited by a photon, it

relaxes back to the lowest level of the excited singlet state in

accordance with Kasha’s rule. When an acceptor is present in

close vicinity, the energy released during the relaxation of the

donor to the ground state, may simultaneously excite the

acceptor. This non radiative energy exchange is known as

resonance. If the acceptor is also fluorescent, FRET serves to

enhance the acceptor fluorescence. However, in case of a non-

fluorescent acceptor, FRET results in quenching of donor

fluorescence. Charge transfer can occur between any two

donor acceptor molecules, not necessarily between fluorescent

molecules. It involves the transfer of electrons or holes between

the donor acceptor pair. Since these interactions vary as a

function of donor acceptor distance, they find wide

applications in sensing. Recently, quantum dot FRET has also

been applied to enhance PDT action. QDs can be functionalized

to enhance water solubility as well as conjugated with

conventional photosensitizers and targeting molecules for

improved therapeutic effect. In this regard, QDs can be used

as effective drug carries for traditional PS to combat solubility

and aggregation issues. Moreover, QDs can enhance the

fluorescence emission of the photosensitizer drug by FRET

interactions by several folds (Sewid et al., 2022). Suitable QD-

PS conjugates are synthesized such that the QD emission

overlaps with the PS excitation, thereby allowing the

excitation of PS at lower wavelengths, as well as enhanced

fluorescence emission by the PS.

Prooxidant and antioxidant properties
of QDs

A peculiar property characteristic of some quantum dots

is the crossover from antioxidant to prooxidant nature upon

laser irradiation. This was first depicted in vitro by

Christensen et al. using bimetallic and carbon dots. They

reported that the quantum dots inhibited oxidation of the

radical probes used in the study, however, upon irradiation

with blue light, they catalyzed the oxidation process. The

generation of 1O2 was significantly enhanced in D2O

solution. Thus, the quantum dots acted as oxygen

scavengers in the dark, however upon irradiation with

blue light, they induced the production of singlet oxygen.

The crossover from antioxidant to prooxidant activity

unlocked new avenues for QDs, particularly

biocompatible carbon based QDs for photodynamic

action (Christensen et al., 2011). Similar results were also

reported by Chong et al. using graphene quantum dots. They

concluded that in the absence of light, graphene quantum

dots protected cells from oxidative damage by scavenging

free radicals. However, upon irradiation with blue lights,

they imposed significant cellular toxicity by generating

reactive oxygen species (Chong et al., 2016). Another

recent study using Au gold carbon nano dots (Au/NC)

was reported by Zhao et al. The Au/NC prepared

exhibited superoxide dismutase (SOD) like activity and

depleted reactive oxygen species and free radicals in dark.

However, on irradiation with visible light, the same Au/NC

enhanced the generation of HO·, O2
−, 1O2 and catalyzed the

oxidation reactions (Zhao et al., 2021). Thus, smart

quantum dots can be designed to induce cell protective

and cytotoxic activities, which can be controlled by a

light switch.

FIGURE 6
Different pathways of cell penetration that can be followed by quantum dots. Quantum dots can follow phagocytosis (A), pinocytosis (B), or
receptor mediated pathways (C) for cell penetration.
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Cell penetration mechanism

With the tremendous potential for bioimaging and PDT, the

understanding of cellular uptake mechanism and differential

cellular localization of the quantum dots becomes pertinent.

The cell membrane maintains the structural integrity of the

cell. It has hydrophobic composition of phospholipid bilayers

with embedded proteins. It acts as a permeable barrier allowing

the passage of selected molecules inside the cell through active or

passive transport. Passive transport follows a concentration

gradient and is ATP (energy) independent. It is commonly

employed by diffusion of gases such as oxygen, carbon

dioxide and by hydrophobic molecules. Active transport

involves the expenditure of energy in the form of ATP, and

occurs against the concentration gradient, for example,

endocytosis. It is commonly employed by polar/charged

molecules that cannot pass through the hydrophobic cell

membrane barrier. During this process, the cell engulfs the

extracellular molecule inside by invagination (folding) of the

cell membrane. The engulfed molecules are then brought inside

the cell by slicing off cell membrane to form vesicles. Endocytosis

can be further classified into three categories, pinocytosis,

phagocytosis, and receptor mediated cytosis (Figure 6).

Phagocytosis (cell eating) is a process of engulfing or ingesting

of large particles (≥0.5 μm). Pinocytosis (cell drinking) involves

the ingestion of liquid droplets of extracellular fluids with the

dissolved molecules. (Foroozandeh and Aziz, 2018). The

mechanism of cellular uptake adopted by the nanoparticle

depends on their size, composition, surface modifications and

charges. Many studies have reported the localization of various

quantum dots in different cellular organelles in different cell

lines. A detailed study by Xiao et al. described the cellular uptake

of quantum dots (CdSe/ZnS) with -COOH coating, PEG, and

amine derivatized PEG byMCF7 andMCF 10A cells without any

specific surface functionalization on the respective QDs. They

reported that only the -COOH coated QDs localized

intracellularly in lysosomes in both the cell lines via clathrin-

mediated endocytosis, while no detectable uptake was noted with

the other two. The percentage of cellular uptake was greater in the

cancerous cells (MCF 7) (Xiao et al., 2010). Similar results have

also been reported by Liu et al. in their study with the bimetallic

quantum dots (Cd/Se with ZnS shell) coated with

mercaptoethylamine hydrochloride (QD-MEA) on Hela cells

(Liu et al., 2021). The in vitro findings reported the clathrin-

mediated, as well as actin and microtubule-dependent

internalization of the QDs in the serum containing growth

medium. However, in serum free media, the cellular uptake

followed caveolae-mediated endocytosis and macropinocytosis,

indicating the crucial role played by serum in the cellular uptake

process. Furthermore, the QDs localized primarily in lysosomes,

however some concentration could also be traced in

mitochondria and endoplasmic reticulum. They also reported

that the exocytosis of the internalized QDs was also rapid,

however, only 40% was discharged. Metallic QDs often have

limited scope for biological applications because of the severe

toxicity risk imposed due to the high metal content. On the other

hand, graphene quantum dots (GQDs) are often reported to be

nontoxic and biocompatible for medical and therapeutic

applications. GQDs are known to localize in the nucleus as

well as the cytoplasm. Kumawat et al. have reported

microwave synthesized, green GQDs that were shown to

penetrate cell via caveolae and clathrin-mediated endocytosis

and internalized with the cell nuclei without any capping agents

(Kumawat et al., 2017). No cytotoxicity was observed up to 24 h

of incubation. However, another study reported by Kersting et al.

suggested localization of GQDs in late endosomes and lysosomes

in MCF7, MDA-MB-231, and MCF 10A cells (Kersting et al.,

2019). Aminated GQDs (AG-QDs) are also known to internalize

within the cell nucleus of rat alveolar macrophages via caveolae-

mediated endocytosis (Xu et al., 2018). Furthermore, the AG-

QDs could also induce significant oxidative damage to DNA at

higher concentrations. The easy uptake and internalization of

QDs within the cell allows effective biomedical and bioimaging

applications. Thus, most quantum dots follow endocytosis

mechanisms for cell penetration and preferentially accumulate

in the cytoplasm. However, they can be made to target other

cellular organelles as well. Moreover, carbon based quantum dots

are usually well tolerated and pose very little toxicity risk at

therapeutic concentrations.

Toxicity of quantum dots

The interest in quantum dots for biomedical applications has

recently gained momentum, and detailed pharmacokinetics and

pharmacodynamics pathways have not been detailed yet.

Consequently, the use of heavy metal QDs for biomedical

applications has been heavily disputed, however, the in vitro

studies can provide significant insights for the development of

biocompatible and nontoxic QDs. The toxicity related to heavy

metal QDs is often attributed to leaching of the metal (eg Cd2+

from CdSe) and the subsequent cellular damage. Quantitative

long term studies on the biodistribution of Cd based QDs suggest

that the accumulation of Cd in kidneys and liver can reach up to

10 and 40% respectively as compared to the initial dosage (Yang

et al., 2007). The biocompatibility of such QDs has been

improved by encapsulation of the QDs within nontoxic

coatings (amphiphilic polymers, ZnS shells), however,

prolonged circulation often results in leaching of the naked

QDs from the shell leading to cytotoxicity. Since the

encapsulation usually occurs via weak interactions, the

conjugates are susceptible to degradation and coagulation

leading to cytotoxic effects (Smith et al., 2008). Nevertheless,

carbon based quantum dots have proven to be less toxic and

biocompatible (Wang et al., 2016). Most current studies indicate

that carbon based quantum dots pose no significant toxicity to
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human cells in vitro. As compared to metallic quantum dots,

carbon dots have much greater values of EC50 indicating safety

and biocompatibility (Sun et al., 2020). Several studies

indicate low to no toxicity of carbon based quantum dots,

encouraging their development for biomedical and

therapeutic modalities (Chan et al., 2021). Furthermore,

uncharged PEGylated carbon dots have been found to be

the most compatible QDs with least cytotoxicity in vitro

(Havrdova et al., 2016). Overall, majority of the in vitro

and in vivo studies on carbon and graphene quantum dots

indicate low toxicity and excellent tolerance and

biocompatibility. However, detailed pharmacokinetics and

pharmacodynamics are warranted to establish their

successful clinical applications.

Quantum dots as photosensitizers
in PDT

The application of semiconducting quantum dots for

photodynamic therapy is an emerging field in its nascent

stages. The preliminary results obtained so far are significant

and promising and warrant further investigations for the

complete development of semiconducting quantum dots as

PDT agents. Most of the studies available in literature have

been performed using bimetallic QDs, carbon QDs and

graphene QDs. However, the pertinency of metallic QDs is

limited due to the toxicity associated with heavy metals.

Nevertheless, carbon and graphene based quantum dots are

being increasingly explored for possible clinical applications.

Few significant studies reported in literature using bimetallic,

carbon based, and graphene based QDs are briefly discussed in

the following sections.

Bimetallic quantum dots

Metallic quantum dots including metal organic framework

nano composites find extensive applications for bioimaging and

energy storage devices (Huang et al., 2021; Li et al., 2021; Liu

et al., 2022). The application of bimetallic quantum dots in PDT

was initially proposed by Samia et al. using CdSe QDs linked to a

photosensitizer (Pc4). The conjugated PS could be excited at

488 nm due to FRET interactions between the QD and the PS in

the conjugate, while the fluorescence emission was observed at

680 nm (Samia et al., 2003). Their studies also predicted the

capability of CdSe QDs to independently generate singlet oxygen

as well, without the intervention of the classical photosensitizer

(Pc4), although with a low quantum yield of only 5%. The decay

emission of 1O2 was observed at 1,270 nm and was attributed to

triplet energy transfer (TET) between the photoexcited QDs and

the ground state oxygen (3O2). The results by Samia et al.

suggested opportunities for developing quantum dots based

photosensitizers for enhanced PDT action (Bakalova et al.,

2004). Consequently, several studies have been reported on

the usage of metallic quantum dots (especially with CdSe

core) for PDT applications. Streptavidin functionalized CdSe-

ZnS quantum dots conjugated to biotinylated pDNA also lead to

DNA damage via reactive oxygen intermediates on

photosensitization (Biju et al., 2010). To avoid the drawbacks

associated with metallic quantum dots (such as metal leaching),

some biocompatible modifications have also been suggested in

literature. A noteworthy study was reported by Qi et al., by

coating the metallic CdSe/ZnS QD with amphiphilic polymeric

micelles. The resulting QDs were conjugated with a water soluble

porphyrin (TrisMPyP-COOH) by covalent interactions. The

conjugated QD-porphyrin displayed enhanced 1O2 generation

capabilities via FRET and two photon excitations indicating the

prospective bioimaging and PDT applications (Qi et al., 2011).

Another interesting study was reported by Yan et al. describing

the synthesis and applications of CdSe quantum dot-aza-

BODIPY conjugate coated with folic acid and polyethylene

glycol for theranostic applications via excitation at 635 nm.

Efficient FRET from the QD to the aza dye resulted in

enhanced fluorescence at 750 nm. Furthermore, the study also

demonstrated the ability of the QD conjugate to generate ROS

and induce phototoxicity to Hela cells on irradiation at 635 nm.

The conjugate resulted in enhanced phototoxicity mediated by

ROS generation. Interestingly, the study also suggested that the

CdSe quantum dot-aza-BODIPY conjugate preferentially

localized in cancer cells (Hela) while negligible localization

was observed in normal cells, indicating high therapeutic

efficacy with minimum side effects (Yan et al., 2016).

Photosensitizing action of quantum dots containing CdSe core

and ZnS shell has also been investigated against pancreatic cancer

cells in vitro. The cells (SW 1990) were treated with different

concentrations of the QDs followed by laser irradiation at

365 nm leading to apoptosis (He et al., 2016). More recently,

FIGURE 7
Simplistic representation of the applicability of quantum dots
as photosensitizers for photodynamic therapy.
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Mn doped CuInSe quantum dots with a ZnS passivation layer

(MnCuInSe/ZnS) have also been investigated for PDT and

bioimaging applications via irradiation at 671 nm. The QDs

could induce significant phototoxicity against HeLa, HepG2,

and B16 cells, and were also found to be potent MRI

contrasting agents (Irmania et al., 2022) Similar results

indicating the theranostic ability of metallic quantum dots

have also been reported by Li et al. using NIR-II-emitting and

magnetic CuInSe2@ZnS:Mn QDs (Li et al., 2022c). Metallic

quantum dots have also been explored for antibacterial

photodynamic therapy (Gvozdev et al., 2018; Paul et al.,

2022). Despite the success of metallic QDs for enhanced PDT

applications, their wide usage has been restricted due to the

potential toxicity posed by heavy metals such as Cd. However,

carbon based quantum dots (carbon dots and graphene quantum

dots) provide a safer and effective alternative.

Carbon quantum dots

Carbon dots are photoluminescent, zero dimensional,

carbon based nanomaterials with excellent light harvesting

and electron transfer properties. They serve several

advantages over metallic quantum dots, the most

important being their biocompatibility and non-toxicity. In

addition, they can be easily synthesized and exhibit high

water dispersibility, as well as nonblinking fluorescence

properties. Structurally, CDs possess an internal sp2 core

while their surface is rich in -NH2, -COOH, -OH groups

which allow for easy surface modifications. Also, doping of

CDs with metals and heteroatoms can drastically alter the

physical and optical properties of the CDs to cater to specific

requirements (Li X. et al., 2022). They find extensive

applications in fluorescence sensing (Yoo et al., 2019),

photocatalysis (Sadjadi, 2021), electrochemistry

(Hassanvand et al., 2021), and photovoltaics (Hutton et al.,

2016; Essner and Baker, 2017). CDs have also been evaluated

for their antibacterial photodynamic activity (Nie et al.,

2020). Quite recently, CDs are also being explored for

bioimaging and photodynamic therapy for cancer, mostly

as theranostic agents. One of the earlier reports was the study

by Huang et al. They reported the synthesis of

multifunctional chlorin e6-conjugated PEG modified

carbon dots (C-dots-Ce6) as theranostic agent for

enhanced PDT and photosensitizer fluorescence detection

(PFD). The prepared CD-PS conjugate exhibited a 35 fold

increase in fluorescence intensity (at ~668 nm) as compared

to free chlorin e6 on excitation at 430 nm. This was attributed

to the indirect excitation of Ce6 by CDs through fluorescence

energy transfer (FRET). The PS-CD conjugate localized in the

cytoplasm of gastric cancer cells, and the exposure to C-dots-

Ce6 for 24 h followed by laser irradiation induced a

concentration-dependent cytotoxicity. Moreover, the CDs

were also shown to be effective for simultaneous enhanced

fluorescence imaging and PDT of gastric tumor in vivo

(Huang et al., 2012). Based on the same mechanism of

FRET, Mg/N double-doped carbon dots with a high

quantum yield were also reported by Yang et al. (Yang

et al., 2016). They used 1,2-ethanediamine as the surface

passivation agent as well as linkers for connecting the Mg/N

doped CD with chlorin. The short distance between the CD

and the PS resulted in enhanced FRET and a high quantum

yield of 84.6%. The CD-chlorin conjugate displayed a strong

fluorescence at 663 nm, ten times stronger than that of free

chlorin, due to FRET interactions. Consequently, the

CD–Ce6 system resulted in improved anticancer activity

against HepG2 cancer cells as compared to PDT with

chlorin alone. Apart from chlorin, CDs functionalized with

riboflavin have also been reported for PDT for HeLa and

melanoma cells with fivefold increased efficacy (Chowdhury

et al., 2019).

Another interesting study using CD for targeting hypoxia

in tumors using PDT was reported by Zheng et al. Hypoxia is

a common characteristic in tumors that often result in

resistance against PDT. Zheng et al. developed a carbon

nitride doped carbon dot to photo catalyze the water

splitting reaction to generate oxygen in vivo upon

irradiation with 630 nm laser. This carbon dot was then

conjugated with the PEGylated protoporphyrin PS for PDT

applications. The conjugate was successful in downregulating

hypoxia related proteins and improved the therapeutic effect

of PDT (Zheng et al., 2016). Jia et al. reported the synthesis,

bioimaging and PDT applications of CD from the powder of

Hypocrella bambusae, a parasitic bamboo commonly used in

Chinese traditional medicine (Jia et al., 2018). Selenium

doped CDs were shown to selectively bind to RNA and

damage the nuclear membrane by ROS generation (Xu

et al., 2020). There are ample reports in literature

suggesting the doping of CD with heteroatoms or metals

such as N, P (Zhao et al., 2019), Cu (Wang et al., 2019), S (Li

et al., 2020b), F/N (Wu et al., 2022), Hf (Su et al., 2020b), Sn

(Hu et al., 2021) with enhanced bioimaging and PDT

applications.

Graphene quantum dots

Carbon dots are minute quasi spherical carbon

nanoparticles, while graphene quantum dots (GQD) are

small fragments of graphene with electron transport

confined in three dimensions (Tian et al., 2018). The

excitons in graphene have infinite Bohr radius and

consequently GQDs exhibit appreciable luminescence

properties. The band gap and (hence the luminescence) in

GQDs can be fine-tuned by varying the size, and surface

modifications and functionalization. Like CDs, GQDs are also
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environment friendly, have easy synthetic and functionalization

routes and tunable opto—electrical properties (Ghosh et al.,

2021). The potential and applications of GQDs are still being

discovered, they find extensive applications in energy storage

devices such as photovoltaics, light emitting diodes, and fuel cells.

In biology, they are being actively explored for imaging (Fan et al.,

2015; Xie et al., 2016; Younis et al., 2020) and PDT applications

(Bacon et al., 2014). Earlier work onGQDs reported low cytotoxicity

(Chong et al., 2014) with good cell penetration and uptake properties

(endocytosis) (Su J. et al., 2020), indicating drug delivery (Iannazzo

et al., 2017) and bioimaging applications. GQDs functionalized and

conjugated with appropriate proteins and antibodies are commonly

employed for biosensing (Fan et al., 2015; Xie et al., 2016;

Suvarnaphaet and Pechprasarn, 2017; Mansuriya and Altintas,

2020; Tabish et al., 2021). Few examples from literature include

GQD conjugated to antihuman immunoglobulin G antibody

(mIgG) for sensing of immunoglobulin (Chen et al., 2018),

glutathione functionalized GQD for sensing of ATP (Liu et al.,

2013), N-functionalized GQD/Au nanoparticle/neuron-specific

enolase antibodies (anti-NSE) bioconjugate for label free

detection of small cell lung cancer (Kalkal et al., 2020), folic acid

modifies/GQD/Au nanoparticle conjugate for ATP sensing (Zhang

et al., 2019). Apart from imaging and sensing, GQDs are also gaining

growing interest as photosensitizers for PDT. Earlier reports by

Markovic et al. suggested the cytotoxicity of GQD against human

glioma cells following irradiation at 470 nm by via reactive oxygen

species like 1O2. The mechanism of cell death induced by

photosensitized GQDs was proposed to follow autophagy and

apoptosis (Markovic et al., 2012). Another study by the same

group reported the cytotoxicity of photosensitized GQD against

human rhabdomyosarcoma, human cervix carcinoma (HeLa) and

fibroblasts post irradiation with blue light. However, the results were

found to be less significant as compared to the positive control

cisplatin (Marković et al., 2019). The application of GQD as a

photosensitizer for PDT of MCF7 and B16F10 has also been

reported by Ahirwar et al. Their study indicated low dark

toxicity, but appreciable light toxicity by photosensitized GQD by

irradiation with UV light in vitro (Ahirwar et al., 2020). Another

interesting study was reported by Ju et al. proposing the fabrication

of GQD to cater dual responsibilities, targeted drug delivery agent

for doxorubicin, and a photosensitizer (Ju et al., 2019). They

prepared nitrogen doped GQD loaded with doxorubicin and

conjugated with charge reversal agent (3-Aminopropyl)

triethoxysilane (APTES). Charge reversal agents and polymers

are known to enhance the selectivity and localization of the drug

within the cell nuclei. The N doped GQD/Dox/APTES conjugate

presented excellent cytotoxicity against the highly proliferative

MDA-MB-231 cells post irradiation using an LED with a

wavelength of 622 nm and power output of 6.8 mW/cm2.

Another noteworthy study was reported by Ge et al. They

reported a highly water dispersible graphene quantum dot

synthesized from polythiophene derivatives with an emission

peak at 680 nm and broad absorption in the visible range

(400–700 nm). The utility of the GQDs as fluorescence imaging

agents were depicted by staining of Hela cells as well as in vivo

studies onmice, with the GQDs staining only the cytoplasm and not

the nucleus. In vitro cytotoxic studies indicated low cytotoxicity in

the dark, but excellent light toxicity as compared to the conventional

protoporphyrin IX (Ge et al., 2014). Interestingly, the GQDs

prepared by Ge et al. afforded a substantial quantum yield of

1.3 due to multistate sensitization. Apart from cytotoxicity,

GQDs have also been reported to upregulate host immunity

proteins such as proinflammatory cytokines and T cells (Zhang

et al., 2020). Graphitic carbon nitride quantum dots (g-CNQDs)

have also been investigated for PDT by inducing significant

oxidative stress in glioma cells following irradiation with blue

light. The biocompatible g-CNQDs could induce apoptosis via

decreased mitochondria membrane potential and activation of

caspase 3/7 pathways (Yadav et al., 2022). Another recent study

by Ramachandran et al. describes the synthesis and PDT

applications of titanium dioxide nanoparticles and N-doped

graphene quantum dots composites (N-GQDs/TiO2 NCs). The

resulting nano composite could induce significant ROS

generation along with cytotoxic effects against the highly

aggressive MDA-MB-231 breast cancer cells following irradiation

with NIR light (Ramachandran et al., 2022).

Challenges and summary

Quantum dots are the newest generation of nanomaterials

that have garnered increasing attention due to their size

tunable optical properties. They possess characteristic

properties that can drastically transform cancer therapy

and imaging. Most of the current research on QDs has

been performed in vitro, their large two photon absorption

cross section, photostability has motivated their applications

for bioimaging of body organs as well as cellular organelles.

Moreover, many QDs can generate singlet oxygen by triplet

energy transfer (TET) and enhance the photoluminescence of

classical photosensitizers via FRET (Figure 7). Carbon based

QDs have low in vitro toxicity and their conjugation with

classical PS can also assist in improving the aqueous

dispersibility of organic PS. Moreover, the surface of

quantum dots can be functionalized to assist in the

attachment of specific antibodies and proteins to cause site

specific localization of the PS, thereby combating

phototoxicity commonly encountered with conventional

photosensitizers. Therefore, the introduction of quantum

dots to PDT can serve to eliminate most of the drawbacks

experienced with current modalities. However, currently,

there is very little data available on the pharmacokinetics

and pharmacodynamics of quantum dots. The reports

exploring the long term toxicity of quantum dots to

humans as well as the environment are rather scarce in

literature. The major drawback with metallic quantum dots
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is associated with toxicity imposed by heavy metals such as

cadmium. Although, attempts have been made to overcome heavy

metal toxicity by encapsulation in ZnS shells, however, few reports

suggest some leching of the heavy metal after prolonged periods.

Moreover, owing to their characteristic size distribution, nanoparticles

can access cellular organelles which are impenetrable for metal ions.

This may result in additional cytotoxicity as compared to free metals.

Some preliminary studies suggest that exocytosis of quantum dots

may not be as efficient as endocytosis, and they may accumulate in

liver and kidneys leading to the risk of renal and hepatic toxicity.

Thus, more preclinical data is required to understand the metabolism

and excretion of quantumdots fromhuman body. Each quantumdot

formulation is unique, and thus current research needs to be focused

on determining the lethal dose and inhibitory concentrations of

quantum dots in vivo models. Furthermore, biocompatible metals

such as copper and vanadium may be evaluated for the synthesis of

less toxic quantum dots for biological applications. Carbon based

quantum dots pose low toxicity risks and thus they can also be

functionalized to improve specificity and therapeutic activity of

conventional photosensitizers as well as metallic quantum dots by

encapsulation. The conjugation of quantum dots with organic

photosensitizers can be an excellent theranostic approach.

Nevertheless, quantum dots have the potential to revolutionize

photodynamic therapy and bioimaging; their detailed biochemical

analysis is warranted for successful and safe clinical applications.
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