
TiO2 NPs/h-BN: Preparation and
catalytic activities of a novel AP
catalyst

Jun Zhao and Nengmei Deng*

West Anhui University, Lu’an, China

The thermal decomposition performance of an oxidizer directly determines the

thrust and specific impulse properties of the solid propellant. Hexagonal boron

nitride (h-BN) has the characteristics of high catalytic activity and good stability,

which can improve the heat release and decomposition temperature of the

oxidant, and then improve the energy performance of the propellant. In this

study, a novel hybrid material TiO2 NPs/h-BN was successfully prepared by in

situ growth, and it was found that when 5 wt.% TiO2 NPs/h-BN was added, the

initial decomposition temperature of ammonium perchlorate (AP) decreased by

67.6°C. Due to the addition of TiO2, the gap between the h-BN layers as well as

the specific surface increased, which optimized its thermocatalytic

performance, and it also proposed a catalytic mechanism for the thermal

decomposition process of AP.

KEYWORDS

TiO2 NPs/h-BN, AP, BN, thermal decomposition, catalytic

Introduction

Solid propellants consisted of oxidants, binders, metal burners, and other additional

components. Among them, the oxidant, as the source of oxygen required for propellant

combustion, occupied more than 70% of the propellant, and its thermal decomposition

performance had a great influence on the combustion of the propellant. Among these

oxidants, AP had the advantages of high effective oxygen content and high density and

was one of the most commonly used oxidants in solid propellants (Li et al., 2021).

However, the properties of AP, such as high thermal decomposition temperature, high

reaction activation energy, low heat release, and non-concentrated heat release, were

important factors restricting the development of high-energy solid propellants (Huang

et al., 2021). Therefore, in order to meet the needs of modern aerospace technology and

the world arms race for high-energy solid propellants, it is necessary to improve the

thermal decomposition performance of AP (Li et al., 2020a).

Recently, two-dimensional atomic crystals are now attracting increasing attention in

various fields and applications, inspired by the “graphene gold rush” (Sun et al., 2018; Li

et al., 2020b; Shen et al., 2021a; Shen et al., 2021b; Li et al., 2022). As a typical graphene-

like material, h-BN has attracted great research interest because of its good oxidation

resistance up to 850°C, excellent acid chemical stability, high thermal conductivity,

excellent elastic modulus, and good mechanical flexibility (Sun et al., 2016). More
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importantly, h-BN has been identified as a promising dielectric

layer or protective encapsulation material (Li et al., 2012; Shen

et al., 2020; Wang et al., 2020). Metal oxide semiconductor

materials had the advantages of heat resistance, antitoxicity,

photosensitivity, heat sensitivity, and impurity sensitivity and

were suitable for modulation, so they have attracted much

attention in the field of catalysis (Thomas et al., 2016; Zhu

et al., 2016; Li et al., 2017; Li et al., 2020c). Therefore, we

propose a technical scheme for the preparation of novel

composite catalysts using few-layer boron nitride–supported

TiO2 (Medvecká et al., 2018).

In this work, we first used a purely physical green peeling

method—liquid nitrogen impact method to peel off the

multilayer boron nitride (BN)—and then used a one-step

synthesis in situ growth method to obtain the target product

TiO2 NPs/h-BN, and the thermal catalytic effect of the composite

on AP was studied. The results showed that the decomposition

temperature of ammonium perchlorate decreased by 67.6°C

when 5% (mass fraction) was added. Also, the catalytic

mechanism was studied.

Experimental

Chemicals and apparatus

Ammonium chloride (99%), aluminite powder (99.99%),

BBr3 (AR), hydrochloric acid (35%), ethanol, glacial acetic

acid, butyl titanate, and AP (AR) were obtained from Aladdin

(Shanghai, China).

Preparation of h-BN

Synthesis experiments were performed in a N2-flow glove

box. NH4Cl (0.150 mol), Al (0.100 mol), and BBr3 (0.050 mol)

were put into a stainless steel autoclave with a volume of 50 ml.

The autoclave was sealed and heated in an oven at a ramp rate of

10°C/min from room temperature to 500°C and held at 500°C for

10 h (Huang et al., 2018). The product was dried under vacuum

at 80°C for 10 h.

Preparation of h-BNNS

The prepared 5 g of white powder was weighed, placed in a

crucible, placed in a muffle furnace, heated to 800°C at a

heating rate of 10°C, and kept warm for 30 min. At the end of

heat preservation, it was quickly taken out, poured into the

prepared liquid nitrogen (L-N2) until the L-N2 gasified

completely. The white powder was suddenly cooled, liquid

nitrogen was rapidly evaporated, and the steam-impinging

boron nitride powder was boiled. The essence of this strategy

lies in the combination of a high temperature–triggered

expansion of bulk h-BN and a subsequent L-N2 gasification

that exfoliates the h-BN (Li et al., 2019). Repeat the

aforementioned steps three times to obtain the target

product (h-BNNS). Scheme 1A was gas exfoliation of h-BN

triggered by thermal expansion, and Scheme 1B was the

photograph of TiO2 NPs/h-BN.

Preparation of TiO2 NPs/h-BN

A volume of 5.0 ml ethanol and 2.0 ml of glacial acetic acid

were placed in a beaker, then 6.8 ml of butyl titanate was added to

it, and at 30°C, under magnetic stirring for 10 min, 0.8 g of

h-BNNS was added and labeled as Solution A (Li et al., 2018).

Into another beaker was added 4.0 ml of deionized water, 5.0 ml

of ethanol, and 7.2 ml of glacial acetic acid and magnetically

stirred for 10 min to uniformly mix to obtain Solution B (Xue

et al., 2011). After the dropwise addition was completed, stirring

was continued for 20 min to obtain a uniform solution. It was

allowed to stand at room temperature for 24 h to form a gel and

dried in a drying oven at 80°C for 12 h. The ground samples were

placed in a muffle furnace, calcined at 400°C for 2 h, and then

cooled naturally to obtain TiO2 NPs/h-BN.

Results and discussion

Sample characterization

The FT-IR result is shown in Figure 1A. The two absorption

peaks at 1388.6 cm−1 and 813.4 cm−1 are the in-plane stretching

vibration of B-N and the out-of-plane bending B-N-B vibration,

respectively. The absorption peak at 3433.8 cm−1 is the in-plane

stretching vibration of N-H (Thomas et al., 2008). The Raman

spectrum showed that the G-band frequency of h-BNNS was

shifted up relative to that of bulk h-BN (1366.8 cm−1 vs.

1365.8 cm−1; Figure 1B). The G-band shift could be attributed

SCHEME 1
(A) Gas exfoliation of h-BN triggered by thermal expansion.
(B) Photograph of TiO2 NPs/h-BN.
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to the reduction of h-BN layers, which led to higher in-plane

strain and weaker interlayer interactions.

As shown in Figure 2, the scanning electron microscope

images of the parent h-BN and h-BNNS are shown in Figures

2A,B. Compared with the bulky h-BN precursors, h-BNNS was

much smaller in size and possessed nanosheet-like morphology

(Lei et al., 2018).

The SEM results also proved that we successfully prepared

TiO2 NPs/h-BN, as shown in Figure 3. TiO2 NPs were uniformly

dispersed on the surface of the h-BN (Hosseini et al., 2018). In

addition, EDS showed that TiO2 was uniformly distributed on

boron nitride nanoparticles.

Figure 4 shows the TEM of TiO2 NPs/h-BN. We found that

TiO2 had microspherical morphology, and the outer layer was

covered by h-BN. It was consistent with the SEM characterization

results.

Figure 5A shows the XPS of TiO2 NPs/h-BN. The

characteristic peaks at 458.9 and 464.7 eV correspond to the

binding energies of Ti 2p1/2 and Ti 2p3/2, respectively,

indicating that Ti was at positive 4 valence, Ti4+. Nitrogen

adsorption/desorption isotherms were conducted at 77 K to

study the textural properties of TiO2 NPs/h-BN (Figure 5B).

Because of its spherical structure, its specific surface area was

large. Based on the nitrogen adsorption and desorption curves,

the BET surface areas of TiO2 NPs/h-BN was 112.5 m2 g−1.

Catalytic activities of TiO2 NPs/h-BN in the
thermal decomposition of AP

In order to fully demonstrate the effectiveness of TiO2 NPs/

h-BN in catalyzing the thermal decomposition of AP, we carried

FIGURE 1
(A) FT-IR spectra of h-BN. (B) Raman characterizations of bulk h-BN and h-BNNS.

FIGURE 2
Characterization of exfoliated h-BNNS. (A) SEM of h-BN. (B) SEM of h-BNNS.
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out research work by means of thermal analysis. As shown in

Figure 6A, compared with the DTA curve of pure AP, the

decomposition peak temperature of AP was advanced to

395.7°C by the catalysis of TiO2. After the addition of TiO2

NPs/h-BN, the HTD temperature was further advanced to

380.8°C, confirming the intrinsic catalytic effect of TiO2 NPs/

h-BN on AP. This conclusion is also confirmed by the TGA-DTG

results, as shown in Figure 5B; in the TGA curve of AP, the two

characteristic weight loss steps correspond to the LTD and HTD

phases where the weight loss rate reaches 25% and 74%,

respectively (Jacobs and Russell-Jones, 1968; Morales- Verdejo

et al., 2018; Yuan et al., 2018).

As shown in Figure 7, we collected samples before and after

thermal catalysis and performed by XRD. Diffraction peaks

existed in all samples: 2θ = 25.5°, 37.8°, 48.2°, 53.7°, 55.2°,

62.6°, 68.9°, 70.4°, and 75.3°, which corresponding to this

diffraction peak was (0002), (004), (112), (200), (0004), (204),

(116), (220), and (215); these diffraction peaks were compared

with h-NB and TiO2. We collected the catalytic effect and

recovery rate of the TiO2 NPs/h-BN after two cycles of

thermocatalysis in Table 1.

Catalytic mechanisms

The addition of h-BNNS inhibited the agglomeration of TiO2

particles during the preparation process and synergistically

enhanced the catalytic activity by forming a hybrid structure

(Al- Ani and Hogarth, 1985; Al- Kuhaili et al., 2002; Cui et al.,

2012; Xu et al., 2013; Zhao et al., 2016). The catalytic effect of

h-BN was attributed to the negatively charged h-BN surface

(Shen et al., 2006; Tu et al., 2014), which facilitated the transfer of

induced holes to the TiO2 surface due to the electrostatic

attraction between them to form OH− or ·OH radicals, which

FIGURE 3
SEM of TiO2 NPs/h-BN (A,B) and EDS of TiO2 NPs/
h-BN (C–E).

FIGURE 4
TEM of TiO2 NPs/h-BN

FIGURE 5
(A) XPS of TiO2 NPs/h-BN. (B) N2 adsorption/desorption isotherms of TiO2 NPs/h-BN.
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initiated subsequent surface degradation reaction (Li et al., 2008;

Sharma et al., 2014; Eslami et al., 2017).

The catalytic process is shown in Figure 8. The adsorption of

HClO4 and NH3 obtained from the first decomposition

prevented the decomposition of AP. (Reid et al., 2007; Li

et al., 2015a; Li et al., 2015b; Abazari and Mahjoub, 2017). As

the temperature increased, conduction band electrons and

valence band holes were generated on the surface of h-BN,

and the generated electrons reacted with HClO4, resulting in

the reduction of HClO4 to a superoxide radical anion. O2
− further

reacted with NH3 to generate H2O, NO2, and N2O (Zhang et al.,

2014; Jain et al., 2019).

Conclusion

A novel TiO2 NPs/h-BN hybrid material with strong

interfacial interactions has been successfully constructed by in

situ solvothermal growth. Experiments showed that the TiO2

NPs/h-BN exhibited a good catalytic effect on the decomposition

of AP, which reduced the high thermal decomposition

temperature of AP by 67.6°C. At the same time, we deeply

FIGURE 6
(A) DTA curves of pure AP; AP mixed with TiO2 (5%); and AP mixed with TiO2 NPs/h-BN (5%). (B) TG/DTG curves of AP mixed with TiO2 NPs/
h-BN (5%).

FIGURE 7
XRD of TiO2 NPs/h-BN before and after thermal catalysis.

TABLE 1 Recycling and stability of TiO2 NPs/h-BN.

Cycle Recovery rate Decomposition temperature of
AP (°C)

1 98 (%) 380.8

2 95 (%) 380.3

3 92 (%) 380.7

FIGURE 8
Schematic of the thermal decomposition of AP with TiO2

NPs/h-BN as additives; CB, conduction band; VB, valence band.
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analyzed TiO2 NPs/h-BN as a novel catalyst to provide a

mechanism for thermal decomposition of AP.
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