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Considering the significant impact of the recent COVID-19 outbreak,

development of broad-spectrum antivirals is a high priority goal to prevent

future global pandemics. Antiviral development processes generally emphasize

targeting a specific protein from a particular virus. However, some antiviral

agents developed for specific viral protein targets may exhibit broad spectrum

antiviral activity, or at least provide useful lead molecules for broad spectrum

drug development. There is significant potential for repurposing a wide range of

existing viral protease inhibitors to inhibit the SARS-CoV2 3C-like protease

(3CLpro). If effective even as relatively weak inhibitors of 3CLpro, these molecules

can provide a diverse and novel set of scaffolds for new drug discovery

campaigns. In this study, we compared the sequence- and structure-based

similarity of SARS-CoV2 3CLpro with proteases from other viruses, and identified

22 proteases with similar active-site structures. This structural similarity,

characterized by secondary-structure topology diagrams, is evolutionarily

divergent within taxonomically related viruses, but appears to result from

evolutionary convergence of protease enzymes between virus families.

Inhibitors of these proteases that are structurally similar to the SARS-CoV2

3CLpro protease were identified and assessed as potential inhibitors of SARS-

CoV2 3CLpro protease by virtual docking. Several of these molecules have

docking scores that are significantly better than known SARS-CoV2 3CLpro

inhibitors, suggesting that these molecules are also potential inhibitors of

the SARS-CoV2 3CLpro protease. Some have been previously reported to

inhibit SARS-CoV2 3CLpro. The results also suggest that established inhibitors

of SARS-CoV2 3CLpro may be considered as potential inhibitors of other viral

3C-like proteases.
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Introduction

Coronaviruses (CoVs) cause human respiratory diseases.

While several human coronaviruses cause relatively mild

respiratory infections, three coronaviruses cause severe

respiratory diseases in humans: Severe Acute Respiratory

Syndrome (SARS), Middle East Respiratory Syndrome

(MERS), and Corona Virus Infectious Disease 2019 (COVID-

19) (de Wit et al., 2016; Wu et al., 2020; Zhou et al., 2020). The

current COVID-19 pandemic has had a devastating impact on

public health and global economies. The etiologic cause of

COVID-19 disease is the novel SARS-CoV2 virus (Wu et al.,

2020; Zhou et al., 2020). While both vaccines and approved

antiviral drugs (Mei and Tan, 2021; Burki, 2022) are now

available, immuno- and antiviral-resistant viral variants

continue to emerge, with severe ongoing public health

consequences. Considering the high mutation rate of SARS-

CoV2 (McLean et al., 2022), an important focus of current

research is the development of therapeutic strategies and

molecules that address and suppress antiviral resistance.

Coronaviruses, including SARS-CoV2, are enveloped

positive-strand RNA viruses. Their genome comprises a

single, large (27-34 kilobase) single-stranded RNA, which is

directly translated by host cells. The SARS-CoV2 genome

encodes 4 structural proteins, 16 non-structural proteins

(NSPs) which carry out crucial intracellular functions, and

9 accessory proteins (Gordon et al., 2020; Wu et al., 2020).

Many of these proteins, and their host binding partners

(Gordon et al., 2020), are potential targets for development

of antiviral therapeutics for COVID-19. Translation of the viral

RNA results in the synthesis of two polyproteins that are

processed by two virally-encoded cysteine proteases, the

papain-like protease (PLpro), a part of Non-Structural

Protein 3 (NSP3), and a 3C-like protease (3CLpro), which is

also referred to as Non-Structural Protein 5 (NSP5), or as the

main protease (Mpro). Both PLpro and 3CLpro proteases are

required for virus replication and are targets for antiviral

development.

Considering the urgency for identifying effective antiviral

drugs for COVID-19, and the usually lengthy process involved in

approving candidate drugs for safe human use, an important

approach has been to identify existing drugs and inhibitors that

can be optimized as potent and safe antivirals. Viral proteases

have been successfully targeted for the development of antiviral

drugs against human immunodeficiency virus-1 (HIV-1),

hepatitis C virus (HCV) (Wlodawer and Vondrasek, 1998;

Kwo and Vinayek, 2011; McGivern et al., 2015; Ghosh et al.,

2016), and most recently for SARS-CoV2 (Beck et al., 2020;

Nguyen et al., 2020; Boras et al., 2021; Dampalla et al., 2021; Liu

et al., 2022; Narayanan et al., 2022). Here we outline the potential

of using existing inhibitors directed to other viral proteases as

lead molecules for developing new drugs targeting the SARS-

CoV2 3CLpro protease.

Work over the past ~15 years on the SARS-CoV 3CL

protease has provided an extensive understanding of

structure-activity relationships of lead molecules suitable for

drug discovery efforts (Anand et al., 2003; Yang et al., 2003;

Yang et al., 2006; Akaji et al., 2011; Hilgenfeld and Peiris, 2013;

Pillaiyar et al., 2016; Gordon et al., 2020). Although these drug

development efforts have been focused on specific proteases, in

some cases broad spectrum activities have been documented. We

define broad spectrum protease inhibitors as molecules that

effectively inhibit proteases from viral strain variants, or even

proteases from different viral species. Particularly noteworthy are

several hepatitis C virus (HCV) drugs developed as inhibitors of

the HCV NS3/4A protease, which also have activity as

micromolar inhibitors of SARS-CoV2 virus replication in cell

culture (Bafna et al., 2020; Bafna et al., 2021; Gammeltoft et al.,

2021; Lo et al., 2021). Another example, with a narrower target

range, nirmatrelvir, a peptidomimetic developed as an inhibitor

of the SARS-CoV2 virus and a key component of the Pfizer

antiviral drug combination Paxlovid™, has good activity as an

inhibitor of 3CLpro from a wide range of SARS-CoV2 viral strains

(Ullrich et al., 2022). Rupintrivir also has activity against a broad

range of 3CLpro—type viral proteases from corona viruses,

coxsackie viruses, rhinoviruses, and entroviruses (Lockbaum

et al., 2021). Broad spectrum antiviral activity may be

important for development of drugs that can suppress the

evolution of viral resistance.

While in most cases broad spectrum activity of 3CLpro

inhibitors has been assessed by experimental screening using

protease inhibition or antiviral activity assays, some success has

also been achieved by using rational approaches and virtual

screening. For example, several HCV protease inhibitor drugs

were initially proposed as inhibitors of SARS-CoV2 3CLpro based

on structural bioinformatics studies which identified structural

similarity in and around the active sites of these two proteases

(Bafna et al., 2020). This hypothesis was subsequently validated

by virtual docking studies, and experimental biochemical

protease inhibition and cell-based viral inhibition assays

(Bafna et al., 2021; Gammeltoft et al., 2021).

In this study, we expand our earlier structural bioinformatics

analysis to identify more than 20 proteases from a wide range of

positive single-stranded RNA viruses for which the 3D structures

of the binding-site cleft is similar to SARS-CoV2 3CLpro. These

viral proteases belong to the well-recognized PA superfamily of

chymotrypsin-like proteases (Bazan and Fletterick, 1988;

Gorbalenya et al., 1989; Kanitz et al., 2019), which includes
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proteases from species across the tree of life (Laskar et al., 2012;

Monttinen et al., 2019). Phylogenetic and structural topology

analysis indicates that the proteins from these various viral

protease clades have evolutionarily converged on similar active

site structures. For many of these proteases, medicinal chemistry

efforts have previously identified inhibitor molecules. Our virtual

docking experiments suggest that many of these known protease

inhibitors have potential as lead molecules for developing novel

drugs directed to SARS-CoV2 3CLpro. In a few cases, these

inhibitors developed for these other viral proteases have

already been shown to inhibit of SARS-CoV2 3CLpro and/or

viral replication in cell-based assays at micromolar

concentrations.

Computational methods

Structural bioinformatics

Proteins that are structurally similar to SARS-CoV2 3CLpro

were identified using the DALI (Distance matrix ALIgnment)

(Holm and Sander, 1995; Holm, 2020a) server (http://ekhidna2.

biocenter.helsinki.fi). The first two domains of the SARS-CoV2

3CLpro were used as a structural template to search for

structurally-similar viral proteases in the PDB25 database

(Holm, 2020b). PDB25 is a non-redundant subset of the PDB,

consisting of representative structures from clades clustered at

25% sequence identity. In addition, the all-against-all structure

comparison option available on the DALI server was used to

generate structure-based dendrograms of these viral proteases.

Sequence based phylogenetic trees were generated using

Clustal Omega (Madeira et al., 2022) available on the

European Bioinformatics (EBI) website (https://www.ebi.ac.uk/

Tools/msa/clustalo/). Clustal Omega uses the HHalign (Soding,

2005) algorithm with the Gonnet (Gonnet et al., 1992)

transition matrix. Sequence information for each protein

listed in Table 1 was obtained in FASTA format from the

respective PDB entry.

Virtual docking

Virtual docking was done using the open source Autodock

suite (Morris et al., 2009). AutoDockTools was used for

coordinate preparation, docking, and analysis of results, as

described previously (Bafna et al., 2021). SARS-CoV2 3CLpro

atomic coordinates were obtained from X-ray crystal structure

PDB id 6Y2G (Zhang et al., 2020), and structural water molecules

TABLE 1 Viral proteases identified from DALI search.

PDB id Z score RMSD Protein namea (Cys/Ser
protease)

Organism

4WME 33.6 0.9 3C-Like protease (Cys) Middle East respiratory syndrome (MERS) related coronavirus

6JIJ 34.3 0.8 Main protease (Cys) Murine hepatitis virus (MHV) strain A59

4ZUH 33.9 0.9 3C-Like protease (Cys) Porcine epidemic diarrhea virus (PEDV)

2Q6F 33.3 1.2 Main protease (Cys) Infectious bronchitis virus (IBV)

5LAK 14.3 3.1 3C-Like protease (Cys) Cavally virus (CV)

1LVM 14.0 3.1 3C-Like protease (Cys) Tobacco etch virus (TEV)

3ZZ9 12.4 2.8 3C-Like protease (Cys) Coxsackievirus (CAV) B3

5FX6 12.4 2.7 3C-Like protease (Cys) Rhinovirus (RHV)

3Q3Y 12.4 2.8 3C-Like protease (Cys) Human enterovirus (HEV) 93

2H9H 12.3 3.2 3C- proteinase (Cys) Hepatitis A virus (HAV)

1MBM 12.2 2.7 NSP4 proteinase (Ser) Equine arteritis virus (EAV)

5BPE 12.3 2.8 3C Protease (Cys) Human enterovirus (HEV) A71

5Y4L 11.8 2.8 3C-Like protease (NSP4) (Ser) Porcine reproductive and respiratory syndrome virus (PRRSV)

4INH 11.6 3.0 Protease (Cys) Norwalk virus (NWV)

5E0H 11.6 2.9 3C-Like protease (Cys) Norovirus (NOV)

4ASH 11.3 2.8 NS6 protease (Cys) Murine norovirus 1 (MNOV)

6L0T 10.5 3.3 3C Protease (Cys) Senecavirus A (SNV)

2WV4 10.7 3.0 3C Protease (Cys) Foot-and-mouth disease virus (FMDV)

3L6P 9.0 2.8 NS2B/NS3 protease (Ser) Dengue virus (DENV)

2GGV 9.0 2.8 NS2B/NS3 protease (Ser) West Nile virus (WNV)

5LC0 8.5 2.9 NS2B/NS3 protease (Ser) Zika virus (ZKV)

2P59 8.1 3.0 NS3/4A protease (Ser) Hepatitis C virus (HCV)

aBased on their structures, we consider all of these proteases as 3C-Like proteases; the name provided is a common name reported in the literature.

Frontiers in Chemistry frontiersin.org03

Bafna et al. 10.3389/fchem.2022.948553

http://ekhidna2.biocenter.helsinki.fi
http://ekhidna2.biocenter.helsinki.fi
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.948553


were removed. Three-dimensional coordinates for ligand

molecules were obtained from the PDB (http://www.rcsb.org/)

or from chemical structure databases ChemSpider (http://www.

chemspider.com/) and DrugBank (https://www.drugbank.ca/).

Docking calculations were carried out using a cpu cluster at

the Rensselaer Polytechnic Institute Center for Computer

Innovations (CCI) (https://cci.rpi.edu/). Atomic coordinates

for best-scoring conformation obtained in each docking

simulation, for each drug-protein complex, were saved in PDB

format for analysis. These protein - ligand complexes were

analyzed in detail using the open source PyMol molecular

visualization tool (DeLano, 2009) and fully automated

Protein-Ligand Interaction Profiler (Salentin et al., 2015)

(https://projects.biotec.tu-dresden.de/plip-web/plip).

Results

Structural analogs of SARS-CoV2 3CLpro

3CLpro of SARS-CoV2 is a 67.6 kDa homodimeric cysteine

protease. It has about 97% sequence identity with the

corresponding 3CLpro of the SARS-CoV virus responsible for

the 2003 SARS pandemic. Not surprisingly, the 1.75 Å X-ray

crystal structure of SARS-CoV2 3CLpro protease (Jin et al., 2020;

Zhang et al., 2020) demonstrates its structure is very similar to

this SARS-CoV 3CLpro protease (Anand et al., 2003; Yang et al.,

2003). Both of these proteases contain three domains. Domains I

and II adopt a double β-barrel fold, with the substrate binding site
located in a shallow cleft between two antiparallel β-barrels

FIGURE 1
Structural superimposition and structure-based sequence alignments of SARS-CoV2 3CLpro andHCVNS3/4A proteases. (A) Three-dimensional
structures of SARS-CoV2 3CLpro. The β-strands forming the characteristic β-barrels are colored in magenta. Other secondary structure elements are
shown as cartoon representation colored in gray. (B) The backbone structure of the SARS-CoV2 3CLpro, PDB 6Y2G (green) is superimposed on the
backbone structure of hepatitis C virus protease HCV NS3/4A, PDB 2P59 (cyan). The regions identified by DALI server as structurally-analogous
are shown in color (green and cyan), and the regions that are not structurally-analogous are shown in gray. This superimposition of backbone atoms
results in superimposition of the catalytic residues Cys145 and His41 of the SARS-CoV2 3CLpro with Ser139 and His57 of HCV NS3/4A protease.
Residue Asp81 of the HCV protease catalytic triad is also shown. (C) Structure-based sequence alignment of HCV NS3/4A and SARS-CoV2 3CLpro.
Catalytic residues of HCV NS3/4A (His57, Asp81 and Ser139) and SARS-Cov2 3CLpro (His41 and Cys145) are highlighted in bold red. Three-state
secondary structure definitions (H = helix, E = sheet, L = coil) are shown for each amino acid sequence. Structurally equivalent residues are in
uppercase, structurally non-equivalent residues (e.g. in loops) are in lowercase. Identical amino acids aremarked by vertical bars. Adapted fromBafna
et al., 2021.
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(Figure 1A). Both of these 3CLpro proteases also have an

additional C terminal helical-bundle domain, Domain III (also

shown in Figure 1A), which stabilizes their homodimer forms

(Shi and Song, 2006; Nashed et al., 2022).

The 3D structure of Domains I and II of SARS-CoV2 3CLpro,

including the double β-barrel fold and the substrate binding cleft,
was used as input for searching for structurally-similar proteins

in the PDB25 database using the DALI server. The DALI server

compares superimposition-independent distance matrices,

accounting for gaps, insertions, and rearrangements, to define a

structural superimposition and a structure-based sequence

alignment (Holm and Sander, 1993). Structural similarity is

reported as Z-score, relative to the distribution of all-vs-all pair-

wise structural similarity scores in the queried structural database.

A higher Z-score means the structures have higher structural

similarity in their ordered regions (Holm and Sander, 1995).

The fold architectures of Domains I and II of CoV 3CLpro

proteases are well known to be similar to those of chymotrypsin-

like proteases and the 3C family of viral proteases (Anand et al.,

2002; Monttinen et al., 2019). Using domains I and II of the

SARS-CoV2 3CLpro as a query, our DALI search of the PDB

identified several 3C-like proteases, including the HCV NS3/4A

protease, as structurally-similar (Bafna et al., 2020; Bafna et al.,

2021). These SARS-CoV2 3CLpro and HCV NS3/4A protease

structures have a structural similarity Z score = +8.1, and overall

backbone root-mean-squared deviation for structurally-similar

regions of ~ 3.0 Å. Like all 3C-like proteases, the HCV NS3/4A

protease has a double β-barrel fold, with relative domain

orientations similar to those of the SARS-CoV and SARS-

CoV2 3CLpro proteases, with a substrate binding site located

in a shallow cleft between its two six-to eight-stranded

antiparallel β-barrels. Superimposition of the backbone

structures of these two proteases results also in

superimposition of their active-site catalytic residues, His41/

Cys145 and His57/Ser139 of SARS-CoV2 3CLpro and HCV

NS3/4A proteases, respectively, with remarkable structural

similarity in the substrate binding cleft (Figure 1B), despite

very little sequence identity in the pair-wise structure-based

sequence alignment (Figure 1C). Our observation of this

structural similarity between SARS-CoV2 3CLpro and HCV

proteases led us to studies of known HCV NS3/4A protease

inhibitors as inhibitors of SARS-CoV2 3CLpro enzyme activity

and virus replication (Bafna et al., 2021).

The DALI analysis identified 22 additional viral proteins

(Table 1) to which SARS-CoV2 3CLpro is more structurally-

similar than it is to HCV NS3/4A protease. Although many

other structurally-similar proteases across the PA superfamily

(Monttinen et al., 2019) were also identified, in this analysis we

focused on structural-similarity between the 3CL proteases of

positive single-strand RNA viruses belonging to the virus

Kingdom Orthornavirae (RNA viruses), and in the Phyla

Pisuviricota and Kitrinoviricota which include eukaryotic

viruses. Many of the proteins reported in Table 1 are 3C-like

proteases from important virus pathogens, including human

hepatitis A, dengue, coxsackie, Norwalk, entro-, foot-and-

mouth disease, West Nile, and Zika viruses. The DALI

structural similarity Z scores, using domains I and II of

SARS-CoV2 3CLpro as a search template, on each of the

proteases listed in Table 1 are all higher than (more

structurally similar) the Z score to HCV NS3/4A protease; i.e.

these Z scores are all > + 8. As some inhibitors of HCV NS3/4A

protease are now known to both inhibit SARS-CoV2 3CLpro

enzyme activity and to suppress the SARS-CoV2 virus

replication in cell culture at 1–50 μM concentrations (Bafna

et al., 2021; Gammeltoft et al., 2021), these simple bioinformatics

search results suggest a significant potential for repurposing the

known inhibitors of these various proteases for treating COVID-

19, as well as for using them as lead molecules for structure-based

drug design efforts focused on developing novel inhibitors of

SARS-CoV2 3CLpro. These bioinformatics results also suggest the

converse; using SARS-CoV2 3CLpro inhibitors as lead molecules

for developing drugs targeted to 3C-like proteases of these other

viruses.

The viral proteases identified as structurally similar to SARS-

CoV2 3CLpro contain variations on the characteristic double β-
barrel two-domain architecture (Figure 1A), with active sites

located at the interface between the two domains. The 3D

structures of some of representative viral proteases in Table 1,

each having double β-barrel architectures similar to SARS-CoV2

3CLpro domains I and II, are illustrated in Figure 2. The β-strands
of the double β-barrel architecture, formed by 6–7 β-strands,
respectively, are colored in magenta while the rest of these 3D

structures (i.e., alpha helices and loops) are colored gray. The

structure of one protomer of the dimeric SARS-CoV2 3CLpro is

also shown for comparison. These remarkable overall structural

similarities across proteins from a wide taxonomic range of viral

families supports the potential of developing broad spectrum

inhibitors useful as lead molecules for developing new drugs

targeting several viral 3CL proteases.

Viral taxonomy

The taxonomic lineages of the viruses associated with the

proteins in Table 1 are summarized in Figure 3. They belong to

two Phyla, Pisuviricota and Kitrinoviricota. Phylum Pisuviricota

includes Classes (and Orders): Pisoniviricetes (Orders

Picornavirales and Nidovirales), and Stelpaviricetes (Order

Patatavirales). The Picornavirales viruses include the Families

Picornaviridae [e.g., human hepatitis A virus (HAV)] and

Caliciviridae [e.g., human Norwalk virus (NWV)]. The Order

Nidovirales viruses includes the Families (or subfamilies)

Coronaviridae [e.g., human SARS coronaviruses (SARS-CoV)],

Arteriviridae [e.g., Equine Arteritis Virus (EAV)], and

Mesnidoviridae [e.g., Cavally virus (CV)]. Tobacco etch

mosaic virus (TEV), a common biotechnology reagent,
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belongs to the Class Stelpaviricetes, Order Patatavirales, of the

Phylum Pisuviricota. The second phylum represented in the viral

proteases returned by the DALI search (Table 1), Kitrinoviricota,

includes the Family Flaviviridae of Class Flasuviricetes, Order

Amarillovirales. The viruses of this family include flaviviruses

[e.g., human dengue virus (DENV)], and hepaciviruses [e.g.,

human hepatitis C virus (HCV)].

Structure- and sequence-based
dendrograms

Despite these similarities in their double β-barrel architecture
(Figure 2), there are also striking differences in the overall

structures of many of these viral proteases. In order to assess

these similarities and differences, the structurally-similar

FIGURE 2
Three-dimensional structures of viral proteases that have the double β-barrel fold like the SARS-CoV2 3CLpro. The β-strands forming the
characteristic β-barrels are colored in magenta. Other secondary structure elements are shown as cartoon representation colored in gray. Dali Z
scores to SARS-CoV2 3CLpro are shown in parentheses.

FIGURE 3
Taxonomic lineage of positive strand RNA viruses listed in Table 1. These viruses belong to two phyla in the Kingdom Orthornavirae. This
evolutionary information is obtained from https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi.
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proteins reported in Table 1 were used to generate both

structure-based and sequence-based dendrograms (Figure 4).

The structure-based dendrogram is based on structural

similarity scores between the 3C-like proteases measured by

DALI Z scores (summarized in Supplementary Figure S1),

and the sequence-based dendrograms are constructed using

Clustal Omega. Note that we avoid calling these “phylogenetic

trees”, as it is not certain that all of the structural and sequence

similarities between clades are a result of evolutionary

divergence.

The structure-based dendrogram on 23 proteases (22 in

Table 1, plus SARS-CoV2 3CLpro) clusters them into five

structurally-similar clades (Figure 4, left), with 2 - 7 proteins

per clade, plus three singleton clades. The pairwise Dali Z scores

between members of each clade is > 20 (Supplementary Figure

S1), indicating high structural similarity within each clade.

Similar results were obtained using either domains I and II

together, or when including also domain III in the DALI

query. This structure-based dendrogram organizes clades

consistently with the taxonomic classification of the

corresponding viruses, with a clear bifurcation of the clades

from the two Phyla (i.e. Phylum Pisuviricota, Orders

Picornavirales and Nidovirales vs. Phylum Kitrinoviricota,

Order Amarillovirales). All of the proteins from viruses within

a common Order cluster into related clades, each clade including

all the proteins from viruses within the same family. Specifically,

the five multimember structural-similarity clades of Figure 4

correspond to 5 virus families: Picornaviridae, Caliciviridae,

Arteriviridae, Coronaviridae, and Flaviviridae. One of the

singleton clades, containing HCV NS3/4A, corresponds to the

Hepacivirius subfamily, of the Flaviviridae Family. A second

singleton, containing the Cavally Virus (CV) 3CLpro belongs

to Family Mesoniviridae within the order Nidovirales, and

locates in the dendrogram with other proteins from

Nidovirales viruses. The third singleton, containing the TEV

3CL protease, belongs to a distinct Class Stelpaviricites within

the Phylum Pisuviricota. Hence, the structure-based dendrogram

in Figure 4 largely recapitulates the taxonomic relationships of

the viruses associated with these proteins; the top three clades

correspond to families in the Order Picornavirales (excluding

TEV which belongs to a different taxonomic class), the next three

clades down belong to the OrderNidovirales, and the bottom two

FIGURE 4
Dendrograms showing the structure-based vs. sequence-based relationships of viral proteases. In both the structure-based and sequence-
based dendrograms, proteases belonging to the members within the same viral Family cluster together in clades, represented by different colored
boxes. Superimpositions of the corresponding structures in each Family clade is shown below the dendrograms.
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clades belong to a distinct Phylum, Kitrinoviricota, and Order

Amarillovirales (Family Flaviviridae, Genus Flavivirus and

Hepacivirus). Since the three-dimensional structure of a

protein is an important phenotypic feature with functional

implications for evolutionary selection, it is not surprising that

there is a close correlation between the structure-based

dendrogram and the corresponding viral taxonomy.

Viral proteases that are structurally closest to the SARS-CoV2

3CLpro (PDB id 6Y2G chain A) all come from viruses in the Order

Nidovirales (Families Coronaviridae, Mesoniviridae, and

Arteriviridae). These proteases all have a third domain, domain

III, in addition to the two domains forming the double β-barrel
fold. The third domain of the 3C-Like protease of Cavally Virus

(CV) is quite similar to the third domain of SARS-CoV2 3CLpro,

while the third domains of the NSP4 proteinase from the Equine

Arteritis Virus (EAV) (PDB id 1MBM) and the 3CL protease of

Porcine Reproductive and Respiratory Syndrome Virus

(PRRSV) (PDB id 5Y4L) are structurally different. The 3CL

proteases from viruses of Order Picornavirales [e.g., human

Rhinovirus (RHV), foot-and-mouth disease virus (FMDV),

hepatitis A virus (HAV), and human Norovirus (NOV)] and

Order Amarillovirales [e.g., dengue virus (DENV), West Nile

virus (WNV), Zika virus (ZKV), and hepatitis C virus (HCV)]

all have only domains I and II of the double beta-barrel fold,

without the additional domain III.

Figure 4 (right) also shows a sequence-based dendrogram of

these viral proteases. Generally, the sequence-based dendrogram

is similar to the structure-based dendrogram, identifying the

same five multiprotein clades. However, in this case the neat

relationships between clades and taxonomic classification is

absent. Relative to the structure-based dendrogram, the

sequence-based dendrogram mixes clades between taxonomic

classes. For example, the top three clades, with some sequence

similarity to one another, belong to the taxonomic Families

Caliciviridae (pink) of Order Picornavirales, Flaviridae

(orange) of Order Amarillovirales, and Arteriviridae (yellow)

of Order Nidovirales. While the Picornaviridae and

Caliciviridae families of Order Picornavirales are recognized as

individual clades, they are remote in the sequence-based

dendrogram. Similarly, the Coronaviridae and Arteriviridae

families are recognized as clades of Order Nidovirales but are

also remote in the dendrogram. HCV NS3/4A protein forms an

independent clade, and its structural and taxonomic

relationship to other proteins from viruses in the Family

Flaviridae is not evident in this sequence-based dendrogram.

In addition, the CV 3CL protease, a virus in the taxonomic

OrderNidovirales, is classified as a singleton, with no indication

of its taxonomic and structural relationship to proteins from

other Nidovirales viruses.

This disconnect between taxonomy and sequence-based

dendrograms is attributable in part to the very low sequence

similarity of proteases between families. Considering this low

sequence similarity, one explanation for the structural similarity

of substrate binding sites and superimposition of catalytic

residues of these proteases from different taxonomic families

is that they have converged in evolution on a common three-

dimensional structure in order to achieve similar biochemical

functions. For example, despite their common active site,

substrate binding cleft, and sensitivity to several protease

inhibitors, there is no phylogenetic evidence for common

ancestors of HCV NS3/4A protease and SARS-CoV2 3CLpro,

or of HCV and SARS-CoV viruses. Indeed, these two viruses

belong to different taxonomic Phyla (Figure 3). The HCV NS3/

4A protease is a serine-protease, with catalytic triad His57,

Asp81, and Ser139, while the SARS-CoV2 3CLpro is a cysteine

protease, with catalytic dyad residues His41, Cys145 (Figure 1),

consistent with the concept of convergent evolution to achieve a

similar proteolytic function.

Fold topology analysis

Similarities in overall fold, locations of substrate binding

sites, and common positioning of active-site residues can result

from either homologous (divergent) evolution, or by

convergence of different lineages to a common structure in

order to achieve similar functions. In order to test the

hypothesis that the observed disconnect between the

structure- and sequence-based dendrograms (Figure 4) is due

to convergent evolution of these proteins, we carried out a

detailed fold topology analysis (Figure 5). Fold topology refers

to the order of secondary structure elements within super-

secondary structure or domains, and how these secondary

structures are connected along the protein polypeptide chain

(Thornton et al., 1999). Evolutionary divergence generally

preserves, or changes in simple ways (including circular

permutations or chain swapping) the fold topology, while

proteins with very different topologies but similar functions

can arise from different evolutionary lineages. Supporting the

convergent evolution hypothesis for these 3C-like protease

families, we observe that the several proteins within each of

the five multimember structure-based clades have very similar

fold topologies (Figure 5A, and Supplemental Figures S2–S6),

while structures in different clades (corresponding to different

taxonomic families) have quite different fold topologies

(Figure 5B). Proteins from clades/families of the same

taxonomic order are more similar to one another. One

interesting exception is the striking similarity in the fold

topologies of domain II of 3C-like proteases from virus

Orders Picornavirales (e.g., Coxsackie virus 3CLpro) and

Amarillovirales (e.g., Hepatitis C Virus NS3/4A protease)

(Figure 5), which belong to different Phyla (Figure 4). Hence,

for the 3C-like proteases, similarities in structural topology, like

similarities in overall 3D structures, follow more closely the

taxonomic classification of the corresponding viruses than

sequence similarity metrics.
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Docking simulations with HCV NS3/4A
protease inhibitors

The results outlined above suggest that structural

similarity across viral 3C-like proteases may provide a

basis for broad spectrum activities of 3C-like protease

inhibitors. In previous studies, we assessed the use of

AutoDock with flexible ligand conformation and fixed

protein receptor conformation for inhibitor docking

studies with SARS-CoV2 3CLpro. The aim of these docking

studies is not to necessarily predict an accurate binding pose,

but rather to provide supporting data on the feasibility for

proposed inhibitors to bind into the substrate binding and/or

active site of SARS-CoV2 3CLpro.Many of the molecules found

to bind SARS-CoV2 3CLpro with good AutoDock scores were

subsequently observed to inhibit the enzyme activity in vitro,

and in some cases to also inhibit viral replication in cell-based

assays (Bafna et al., 2020; Ma et al., 2020; Bafna et al., 2021;

Gammeltoft et al., 2021; Lo et al., 2021). For several cases

where X-ray crystal structures of small molecule—3CLpro

complexes are available, we consistently observed

AutoDock docking poses with an excellent match to the

crystal structures among the best-scoring docked states

(Bafna et al., 2021).

FIGURE 5
Comparison of topological representation of secondary structural elements of viral protease. (A) Topology of proteases of the viruses belonging
to the same Picornaviridae Family. (B) Topology of proteases from different Families listed in Figure 3. ⍺-Helices are represented as cylinders and β-
sheets are represented as arrows. These topological diagrams were obtained from PDBsum (http://www.ebi.ac.uk/pdbsum) (Laskowski et al., 2018),
with the indicated PDB id for each protease.
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Based on the bioinformatics analysis outlined above,

additional docking simulation calculations were carried out

for several HCV NS3/4A protease inhibitor drugs using a

similar protocol, with a larger docking grid size that used in

our previous work (Bafna et al., 2020; Bafna et al., 2021) to

accommodate larger peptide-like inhibitor molecules. These

molecules, summarized in Table 2, have all been approved for

at least Phase 1 clinical trials; some are FDA approved prescription

drugs useful in treating hepatitis C virus infection. Results are also

provided in Table 2 for the SARS-CoV2 inhibitor 13b. The

AutoDock scores of the best scoring pose (i.e., lowest AutoDock

binding energy) for each of these 12 HCV NS3/4A protease

inhibitors are also summarized in Table 2. All of these

12 molecules, with AutoDock scores ranging from -10.36 to

-13.79 kcal/mol, have more favorable binding scores than the α-
ketoamide inhibitor 13b known to inhibit SARS-CoV2 3CLpro;

AutoDock score 10.69 kcal/mol for best-scoring pose which is also

the pose that best matches to the crystal structure of this complex

(PDB id 6Y2G) (Zhang et al., 2020).

While AutoDock scores (Table 2) are useful for assessing the

feasibility of complex formation, they are not sufficiently accurate

to correctly rank the observed activities of these HCV drugs as

inhibitors of SARS-CoV2 3CLpro. However, seven of these HCV

proteases including narlaprevir (NAR), boceprevir (BOC),

simeprevir (SIM), telaprevir (TEL), asunaprevir (ASU),

grazoprevir (GRZ), and vaniprevir (VAN), do in fact inhibit

SARS-CoV2 3CLpro enzyme activity with IC50 of 2–50 μM, and

also inhibit viral replication in Vero or human cells in similar

concentration ranges (Bafna et al., 2021; Gammeltoft et al.,

2021). Hence, the AutoDock scores for HCV drugs binding

and inhibiting SARS-CoV2 3CLpro have useful prognostic

value in identifying lead molecules for testing and

optimization. Surprisingly, three of these HCV drugs SIM,

GRZ, and VAN, along with HCV protease inhibitor drug

paritaprevir (PAR), also inhibit the SARS-CoV2 papain-like

protease (PLpro), providing an alternative pathway for

inhibition of SARS-CoV2 viral replication in cell culture

(Bafna et al., 2021).

For all 12 drugs, the SARS-CoV2 3CLpro bound-state pose

with best AutoDock score fits well in the active site of the enzyme

and recapitulates many of the key ligand-protein interactions

observed in the complex with α-ketoamide inhibitor 13b

TABLE 2 Docking scores for HCV 3C/4A protease inhibitors with SARS-CoV2 3CLpr.o.

Inhibitor (Trade Name) Identifier of
protease
inhibitor

Database id of
protease inhibitor
structure

AutoDock score (kcal/
mol)
Lowest “Energy”

Drug Status

SARS-CoV2 3CLpro inhibitor

α-ketoamide inhibitor lowest “energy” pose pose most
similar to X-ray structure

13b 6Y2Ga −10.69 Not Applicable

HCV NSP3/4AProtease Inhibitor Drugs

Paritaprevir (Veruprevir/ABT-450; Abbot) PAR 32700634b −13.79 Prescription
Drug

Narlaprevir (Arlansa; Merck/R-Pharm) NAR 3LONc −13.36 (−10.40) * Prescription
Drug

Boceprevir (Victrelis; Merck) BOC DB08873d -13.17 (-11.44) * Prescription
Drug

Sovaprevir (ACH-1625; Achillion) SOV 28529313b −13.16 Investigational

Glecaprevir (Mavyrete/Mavirete; AbbVie/Enanta) GLE 35,013,015b −13.01 Prescription
Drug

Simeprevir (Olysio; Medivir/Janssen) SIM 3KEEc −12.19 Prescription
Drug

Telaprevir (Incivek/Incivo; Vertex/J&J) TEL 3SV6c −12.02 Prescription
Drug

Danoprevir (Ganovo; Array/Pfizer, Roche/Ascletis) DAN 3M5Lc −11.65 Investigational

Faldaprevir (Fadaprevir, Boehringer-Ingelheim) FAL 3P8Nc −11.49 Investigational

Asunaprevir (Sunvepra; Bristol-Myers Squibb) ASU 4WF8c −11.46 Investigational

Grazoprevir (Zepatier; Merck) GRZ 3SUDc −10.77 Prescription
Drug

Vaniprevir (MK-7009; Merck) AN 3SU3c −10.36 Investigational

aAtomic coordinates for the inhibitor taken from 6Y2G.
bAtomic coordinates for the inhibitor were taken from the ChemSpider database.
cAtomic coordinates for the inhibitor were taken from the PDB, coordinates of the corresponding complex of the inhibitor bound to HCV, 3C/4A protease.
dAtomic coordinates for the inhibitor were taken from the DrugBank database. * AutoDock score for pose most similar to the X-ray crystal structure.
eMavyret (or Maviret) is a multidrug formulation including glecaprevir and pibrentasvir.
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(Supplementary Table S1). Some of these predicted drug—SARS-

CoV2 3CLpro complexes are shown in Supplementary Figures S7,

S8. In this analysis, we paid particular attention to key details of

the docking conformations, including interactions with the side

chains of catalytic dyad residues His41 and Cys145, and

hydrogen-bonded interactions with the backbone amides of

Gly143, Ser144, and Cys145, which form the oxyanion hole of

this cysteine protease (13). X-ray crystal structures are also

available for boceprevir (BOC), narlprevir (NAR), and

telaprevir (TEL) bound to SARS-CoV2 3CLpro (Fu et al., 2020;

Kneller et al., 2020; Oerlemans et al., 2020; Kneller et al., 2021a;

Bai et al., 2021; Kneller et al., 2021b). Although the drug poses in

these crystal structures are somewhat different than in the

corresponding lowest-energy AutoDock poses, they include

some of the same ligand—protein interactions (Supplementary

Table S1). These modeling predictions further support the

premise that inhibitors of one member of the viral PA

superfamily (e.g., inhibitors of HCV protease) have the

potential to function as lead molecules for development of

inhibitors of other enzymes in this family (e.g., SARS-CoV2

FIGURE 6
Docking of HCV protease NS3/4A inhibitor drugs to SARS-CoV2 3CLpro. Top panels - Molecular structures of two HCV protease inhibitor drugs.
Middle panels—Lowest energy AutoDock pose of these HCV protease inhibitors (orange sticks) in the SARS CoV2 3CLpro active site, Bottom
panels—Details of atomistic interactions in the lowest energy AutoDock poses of these HCV protease inhibitors. Hydrogen bonds and hydrophobic
interactions between the drug and the enzyme are shown with yellow solid lines and black dashed lines, respectively. Sidechains of catalytic
residues His41 and Cys145 are labeled, along with other protein residues that form key interactions with these drugs.
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3CLpro), even though these enzymes do not appear to be

homologs evolved by evolutionary divergence.

Details of intermolecular interactions for the AutoDock

modes of NAR and BOC bound to SARS-CoV2 3CLpro that

are most similar to the corresponding X-ray crystal structures are

illustrated in Figure 6. These binding poses exhibit extensive

hydrogen-bonded and hydrophobic interactions within the

substrate binding site and have relatively low AutoDock

energies of -10.40 and -11.44 kcal/mol, for NAR and BOC

complexes, respectively. These predicted poses are compared

to the corresponding X-ray crystal structures of these same

drugs bound to SARS-CoV2 3CLpro and HCV NS3/4A

proteases in Figure 7A. These binding modes of BOC and

NAR in these two inhibitor—SARS-CoV2 3CLpro complexes

are also very similar to those observed in the crystal structures

of the corresponding complexes with HCV NS3/4A protease

(Bennett et al., 2010; Bai et al., 2021). The binding of TEL to

SARS-CoV2 3CLpro requires structural changes in the protease

(Kneller et al., 2020), and this binding mode is not so well

predicted by AutoDock.

Novel 3CLpro inhibitor predictions

SARS-CoV2 3CLpro is more structurally similar to each of

the 22 viral proteases listed in Table 1 than it is to the HCVNS3/

4A protease (Table 1 and Figure 2). Considering the high

success in identifying SARS-CoV2 3CLpro inhibitors based on

its structural similarity with HCV NS3/4A protease (Bafna

et al., 2021), and having established the value of these

AutoDock protocols in predicting potential small

molecule—3CLpro complex structures and providing useful

hypotheses for lead development, we carried out the same

docking protocol on 51 known inhibitors of the 22 viral

proteins listed in Table 1. These results are summarized in

Table 3. Interestingly, 19 of these molecules have AutoDock

scores equal to or better than the scores for the several HCV

drugs and the 13b inhibitor previously shown to inhibit both

SARS-CoV2 3CLpro enzymatic activity and viral replication in

cell culture at low micromolar concentrations (Zhang et al.,

2020; Bafna et al., 2021; Gammeltoft et al., 2021), including

VAN (AutoDock score −10.36 kcal/mol).

FIGURE 7
Comparisons of experimentally-determined structures and predicted docking poses of drugs and inhibitors bound to SARS-CoV2 3CLpro and
other viral proteases. (A) Comparison of the HCV NS3/4A protease inhibitors NAR and BOC binding pose in AutoDock (magenta) with the X-ray
crystal structure in complex with SARS-CoV2 3CLpro (green, NAR (PDB: 6XQT) and BOC (PDB: 6XQU)) and X-ray crystal structure in complex with
HCV NS3/4A protease (orange, NAR (PDB: 3LON) and BOC (PDB: 3LOX)). (B) Comparison of inhibitor binding poses in AutoDock (magenta)
with, X-ray crystal structures of complexes with SARS-CoV2 3CLpro (green, AG7 (PDB: 7L8J), FHR (PDB: 6LZE), N3 (PDB: 7BQY)) and X-ray crystal
structure in complexwith other proteases (orange, HEV93-AG7 (PDB: 3RUO), HEV71-FHR (PDB: 7DCN), MHV-N3 (PDB: 6JIJ)). AutoDock posesmost
similar to crystal structure pose are shown here.
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TABLE 3 Docking scores for viral protease inhibitors with SARS-CoV2 3CLpr.o.

Inhibitor name Database id
of protease
inhibitor structure

Identifier of
protease
inhibitor

AutoDock
score
(kcal/mol)
Lowest
“Energy”

Type of
binding in
crystal
structure

Protease Target(s)

Nelfinavir 7DOZ (Bihani et al., 2021) 1UN −13.16 non-covalent Dengue virus NS2B/NS3 protease

Triazole-based macrocyclic
inhibitor

5E0J (Weerawarna et al.,
2016)

5LJ −12.49 covalenta Norovirus 3C-Like protease

Triazole-based macrocyclic
inhibitor

6BID (Galasiti
Kankanamalage et al., 2019)

DW4 −11.82 covalent Norovirus 3C-Like protease

⍺,β -unsaturated ethyl ester
inhibitor

3ZZA G84 −11.57 covalent Coxsackievirus B3 3C-Like protease

Compound 15 6KK5 (Braun et al., 2020) DE6 −11.19 non-covalent Zika virus NS2B/NS3 protease

Analog of Rupintrivir (γ-phenyl
substitution)

5FX6 (Kawatkar et al., 2016) 6OY −11.09 covalent Rhinovirus 3C-Like protease

Compound 4 6KK3 (Braun et al., 2020) DUU −11.06 non-covalent Zika virus NS2B/NS3 protease

AG7404 3Q3Y (Costenaro et al., 2011) XNV −10.98 covalent Human Enteroviruses 3C-Like protease

Dipeptidyl inhibitor (Hexagonal
form)

5T6G (Galasiti
Kankanamalage et al., 2017)

N40 −10.96 covalent Norovirus 3C-Like protease

Compound 8 6KPQ (Braun et al., 2020) DT0 −10.91 non-covalent Zika virus NS2B/NS3 protease

Bromocriptine 7JVR (Zhuang et al., 2021) 08Y −10.77 non-covalent Zika virus NS2B/NS3 protease

Rupintrivir (AG7088) 3RUO (Costenaro et al.,
2011)

AG7 −10.60 covalent Coxsackie virus A16 3C-Like protease
Rhinovirus 3C-Like protease Human
Enteroviruses 3C-Like protease

PRD_002347 6LZE (Dai et al., 2020) FHR −10.58 covalent Human Enterovirus 71 3C-Like protease

Triazole-based macrocyclic
inhibitor

6BIB (Galasiti
Kankanamalage et al., 2019)

DW7 −10.55 covalent Norovirus 3C-Like protease

⍺,β -unsaturated ethyl ester
inhibitor

3ZZ9 G83 −10.48 covalent Coxsackie virus B3 3C-Like protease

PRD_002214 (N3) 6JIJ (Cui et al., 2019) JIJ −10.48 covalent Murine hepatitis virus strain A59 Main
protease Porcine epidemic diarrhea virus
(PEDV) 3C-Like protease Infectious
bronchitis virus (IBV) Main protease

Compound 9 6KK4 (Braun et al., 2020) DE0 −10.48 non-covalent Zika virus NS2B/NS3 protease

Novobiocin 6B89 (May et al., 2017) NOV −10.39 non-covalent Zika virus NS2B/NS3 protease

⍺,β -unsaturated ethyl ester
inhibitor

3ZZB G85 −10.38 covalent Coxsackie virus B3 3C-Like protease

Compound16 6KK6 (Braun et al., 2020) DV0 −10.35 non-covalent Zika virus NS2B/NS3 protease

PRD 001171 (peptide inhibitor) 2M9Q 2M9 −10.32 covalent Dengue virus NS2B/NS3 protease

Dipeptidyl inhibitor (Hexagonal
form)

5T6F (Galasiti
Kankanamalage et al., 2017)

N38 −10.23 covalent Norovirus 3C-Like protease

⍺,β -unsaturated ethyl ester
inhibitor

3ZZ8 G82 −10.19 covalent Coxsackie virus B3 3C-Like protease

E22 5BPE (Zhai et al., 2015) E22 −10.06 non-covalent Human Enteroviruses 3C-Like protease

PRD_001054 (peptide inhibitor,
syc59)

4INH (Muhaxhiri et al.,
2013)

4IN −10.06 covalent Norwalk Virus Protease

Triazole-based macrocyclic
inhibitor

5E0G (Guo et al., 2016) 5LG −9.99 covalent Norovirus 3C-Like protease

PRD_000568 (TG-0204998/
0,204,998)

2ZU3 (Lee et al., 2009) ZU3 −9.96 covalent Coxsackie virus B3 3C-Like protease

PRD_002189 (oxadiazole-based, cell
permeable macrocyclic (20-mer)
inhibitor)

5DGJ (Damalanka et al.,
2016)

V64 −9.96 covalent Norovirus 3C-Like protease

Compound 9 5DP9 (Wu et al., 2016) 5EX −9.94 covalent Human Enteroviruses 3C-Like protease

⍺,β -unsaturated ethyl ester
inhibitor

3ZZ6 G75 −9.91 covalent Coxsackie virus B3 3C-Like protease

Allosteric inhibitor 6MO2 (Yao et al., 2019) JVM −9.89 non-covalent Dengue virus NS2B/NS3 protease

(Continued on following page)
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Chemical structures of the 20 top scoring inhibitors are

shown in Supplementary Figure S9. Included in Table 3 are

several molecules previously reported to inhibit SARS-CoV2

3CLpro enzyme activity; viz compound PRD_002347 (FHR;

AutoDock Score -10.58 kcal/mol), first reported as an inhibitor

of human enterovirus 71 (HEV) 3C-like protease (Dai et al.,

2022), compound PRD_002214 (N3 or JIJ; AutoDock

Score—10.48 kcal/mol), reported as an inhibitor of murine

hepatitis virus strain A59 (MHV) main protease (Cui et al.,

2019), porcine epidemic diarrhea virus (PEDV) 3C-like protease

(Wang F. et al., 2017), and avian infectious bronchitis virus (IBV)

main protease (Wang F. et al., 2017), and compound X77

(AutoDock Score −8.79 kcal/mol) reported as an inhibitor of

porcine epidemic diarrhea virus (PEDV) 3C-like protease

(Mesecar, 2021). Rupintrivir (compound AG7088 or AG7,

AutoDock Score −10.60 kcal/mol), an inhibitor of Coxsackie

virus (CAV) A16 3C-like protease (Lu et al., 2011), human

rhinovirus (RHV) 3C-like protease (Matthews et al., 1999),

and human enteroviruses (HEV) 3C-like protease (Costenaro

et al., 2011; Hung et al., 2011) is also reported to weakly inhibit

SARS-CoV2 3CLpro (Liu et al., 2021), although another study

found that rupintrivir is not active against SARS-CoV2 3CLpro

(Ma et al., 2022). Nelfinavir, the best scoring molecule in Table 3,

an inhibitor of the human dengue virus (DENV) NS2B/

NS3 protease (Bhakat et al., 2015) is also a weak inhibitor of

SARS-CoV2 3CLpro (Ohashi et al., 2021). Comparisons of crystal

structures determined for three of these inhibitors bound to

SARS-CoV2 3CLpro and one other viral 3C-like protease, together

TABLE 3 (Continued) Docking scores for viral protease inhibitors with SARS-CoV2 3CLpr.o.

Inhibitor name Database id
of protease
inhibitor structure

Identifier of
protease
inhibitor

AutoDock
score
(kcal/mol)
Lowest
“Energy”

Type of
binding in
crystal
structure

Protease Target(s)

Allosteric inhibitor 6MO0 (Yao et al., 2019) JVJ −9.79 non-covalent Dengue virus NS2B/NS3 protease

PRD_000363 (Ace-LEALFQ-
ethylpropionate inhibitor)

2B0F (Bjorndahl et al., 2007) 2B0 −9.74 covalent Rhinovirus 3C-Like protease

Triazole-based macrocyclic
inhibitor

6BIC (Galasiti
Kankanamalage et al., 2019)

5LH −9.67 covalent Norovirus 3C-Like protease

Allosteric inhibitor 6MO1 (Yao et al., 2019) I16 −9.63 non-covalent Dengue virus NS2B/NS3 protease

PRD_001062 (peptide inhibitor,
syc8)

4IMQ (Muhaxhiri et al.,
2013)

4IM −9.46 covalent Norwalk Virus Protease

Compound 10 6Y3B (Braun et al., 2020) O7N −9.41 non-covalent Zika virus NS2B/NS3 protease

Compound 2 6KK2 (Braun et al., 2020) D9U −9.31 non-covalent Zika virus NS2B/NS3 protease

NK-1.8K 5GSO (Wang et al., 2017b) 5GI −9.18 covalent Coxsackie virus B3 3C-Like protease

Temoporfin DB11630 TEM −9.08 non-covalent Zika virus NS2B/NS3 protease

macrocyclic inhibitor 6FFS (Namoto et al., 2018) D8E −9.06 covalent Rhinovirus 3C-Like protease

⍺,β -unsaturated ethyl ester
inhibitor

3ZZ7 G81 −8.81 covalent Coxsackie virus B3 3C-Like protease

X77 6W81 X77 −8.79 non-covalent Porcine epidemic diarrhea virus (PEDV)
3C-Like protease

dipeptidyl inhibitor (covalent) 4XBD (Galasiti
Kankanamalage et al., 2015)

M40 −8.65 covalent Norwalk Virus Protease

Carnosine Pubchem 439,224 CAR −8.11 non-covalent Dengue virus NS2B/NS3 protease

MB21 88,296,444 Chemspider MB2 −8.03 non-covalent Dengue virus NS2B/NS3 protease

N-(iodoacetyl)-L-valyl-
L-phenylalaninamide

1QA7 (Bergmann et al.,
1999)

IVF −7.66 covalent Hepatitis A virus 3C proteinase

⍺,β-unsaturated ethyl ester inhibitor 3ZZ5 G74 −7.57 covalent Coxsackie virus B3 3C-Like protease

2-phenylquinolin-4-ol (Non-
covalent)

2XYA (Baxter et al., 2011) 7L4 −6.23 non-covalent Rhinovirus 3C-Like protease

n-[(benzyloxy)carbonyl]-L-alanine
(peptide-based ketone inhibitor)

2HAL (Yin et al., 2006) BBL −5.51 non-covalent Hepatitis A virus 3C proteinase

NSC157058 Pubchem 423,738 NSC −5.11 non-covalent Zika virus NS2B/NS3 protease

aMolecules with the potential to form covalent complexes may bind significantly more favorably than indicated by relative AutoDock scores.
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with low-energy AutoDock docking poses, are shown in

Figure 7B. Taken together, the results support the view that

inhibitors of viral proteases that are structurally-similar to SARS-

CoV2 3CLpro are valuable candidates for exploration as potential

lead molecules for SARS-CoV2 3CLpro inhibitor drug discovery

programs.

Discussion

The global health, economic, and social impact of the

COVID-19 pandemic is enormous. Moreover, future

pandemics, by coronaviruses or other pathogenic viruses, are

inevitable. For example, disruptions to ecological niches due to

global warming create the opportunity for emergent viruses to

access new host ranges, increasing the prevalence of viral

outbreaks. Although public health policies can slow the spread

of a virus, effective control of viral diseases requires both vaccines

and antivirals. In particular, antivirals are crucial for the present

COVID-19 pandemic. Despite the initial success of the antiviral

drug Paxlovid™, a combination of the 3CLpro inhibitor

nirmatrelvir and the P450 enzyme inhibitor ritonavir which

improves the pharmacokinetics of nirmatrelvir, antiviral

resistance is anticipated. Hence, the identification and

development of additional orally-bioavailable inhibitors of

SARS-CoV2 3CLpro is critical. More generally, it is important

to proactively develop an arsenal of antiviral drugs which can be

used either individually or in combinations to suppress virus

infection and avoid viral resistance.

In this context, repurposing of existing antiviral drugs

previously developed for other viral 3C-like proteases, like

those listed in Table 3, is vitally important and can quickly

add to the armamentarium of SARS-CoV2 3CLpro inhibitors.

These newly identified compounds can also serve as viable leads

with which to execute hit-to-lead and lead optimization drug

discovery efforts towards novel SARS-CoV2 3CLpro inhibitor

chemotypes. For example, Wang and coworkers reported the

discovery of novel and potent SARS-CoV2 3CLpro inhibitors

derived from the reported SARS-CoV2 3CLpro inhibitor GC-

376 and the HCV NS3/4A protease inhibitors TEL and BOC

(Figures 8A,B) (Xia et al., 2021). Guided by X-ray co-crystal

structures, the team generated novel hybrid chemotypes that

exploited the overlay of key structural motifs. Notably, the

superimposed X-ray co-crystal structures showed that the GC-

376 leucine, TEL octahydrocyclopenta[c]pyrrole, and BOC 6,6-

dimethyl-3-azabicyclo[3.1.0]hexane structures all occupy the

FIGURE 8
Rational design of novel SARS-CoV2 3CLpro inhibitors using HCV NS3/4A protease inhibitor scaffolds. Structure-based drug design of novel
SARS-CoV-2 3CLpro inhibitors derived from GC-376 and the HCV protease NS3/4A inhibitors TEL (A) and BOC (B). The structure of Pfizer’s SARS-
CoV2 3CLpro inhibitor nirmatrelvir has a core scaffold similar to BOC (C).
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hydrophobic S2 pocket, and it was anticipated that swapping the

GC-376 leucine residue with the more lipophilic bicyclic core

structures of TEL and BOC could potentially improve potency by

engaging in additional hydrophobic interactions. These

structural changes, along with incorporation of the GC-376

benzyl carbamate and other rational design modifications

based on the overlaid structures, lead to the identification of

two novel and promising SARS-CoV2 3CLpro inhibitors

(UAWJ9-36-1 and UAWJ9-36-3) that exhibit properties

suitable for further development. Kneller et al., have also

recently reported covalent hybrid inhibitors of 3CLpro created

by splicing components of hepatitis C protease inhibitors BOC

and NAR, and known SARS-CoV1 protease inhibitors, which

inhibit virus replication in cell culture (Kneller et al., 2022).

Pfizer’s FDA-approved SARS-CoV2 3CLpro inhibitor

nirmatrelvir also contains the 6,6-dimethyl-3-azabicyclo[3.1.0]

hexane and 2-amino-3,3-dimethylbutanamide structural

elements of BOC (Figure 8C) (Zhao et al., 2021). These

reports clearly demonstrate the significant value that

identifying leads from existing protease inhibitors of other

viruses can have for future SARS-CoV2 3CLpro inhibitor drug

discovery efforts.

The 3C-like proteases of Orthornavirae viruses, the kingdom

of viruses with RNA genomes encoding an RNA-dependent RNA

polymerase (RdRp), are essential to the virus life cycle, and are

important targets for antiviral drug development. Koonin et al.

first predicted that coronaviruses contain a protein (later

identified as the main protease, 3CLpro) similar to the 3C

proteases of picornaviruses (37), and Anand et al. (17)

subsequently described the striking structural similarity

between the active sites of transmissible gastroenteritis

coronavirus (TGEV) 3CLpro and the 3CL protease of

pircornavirus hepatitis A virus (HAV). Our initial structural

bioinformatics analysis (Bafna et al., 2020; Bafna et al., 2021)

demonstrated strong structural similarity between the active sites

SARS-CoV2 3CLpro and HCV NS3/4A, which was surprising as

these two enzymes are in very distantly related viruses

(coronaviruses and flaviviruses, respectively) from different

Phyla (see Figure 3). Most importantly, we and others have

observed that inhibitors of HCV NS3/4A are also inhibitors of

SARS-CoV2 3CLpro, and of SARS-CoV2 replication in cell culture

(Bafna et al., 2020; Bafna et al., 2021; Gammeltoft et al., 2021; Lo

et al., 2021).

Fold topology, overall fold, locations of substrate binding

sites, and common positioning of active-site residues can result

from homologous (divergent) evolutionary relationships

between proteins. For example, 3C-like Cys proteases of

picornoviruses have been proposed to be homologous to Ser

proteases of the trypsin protease superfamily (Bazan and

Fletterick, 1988). Both Koonin and co-workers (Gorbalenya

et al., 1989) and James and co-workers (Allaire et al., 1994)

have also proposed a divergent evolutionary relationship between

the 3CL cysteine proteases of picornaviruses and chymotrypsin-

like serine proteases. Coronaviruses and picornaviruses are in the

same Class, but in different Orders. However, convergent

evolution can also occur, and apparent structural convergence

of protease active sites is a classic structural bioinformatics

observation (Robertus et al., 1972; Kester and Matthews,

1977). The wide range of structural topologies observed across

the positive-strand RNA proteases of the PA superfamily

(Figure 5; Supplementary Figures S2—S4) support the idea

that their analogous three-dimensional structures arose by

evolutionary convergence on a common biochemistry rather

than divergence from a common ancestor. In particular, the

structural similarity in and around the active sites of the

evolutionarily-distant HCV NS3/4A and SARS-CoV2 3CLpro

proteases is striking, and appears to be the result of

convergent evolution from different fold topologies to create a

similar binding pocket. Interesting in this regard, recent marine

metagenomic sequencing and phylogenetic studies suggest that

ancient ancestors of the positive-strand RNA viruses, including

highly mobile RNA retroelements that can readily move to new

locations in the genome, predate even the Last Universal Cellular

Ancestor (LUCA) (Zayed et al., 2022). Such a pre-cellular RNA

ecology could potentially provide a source of structurally-

variable ancient progenitors of the various clades of modern

3C-like proteases of positive-strand RNA viruses.

Molecular docking is a widely used tool for modern

structure-based drug discovery. It is used not only to explore

the binding conformations of lead molecules in the active site of

drug targets, but also to estimate the strength of interaction

between the ligand and target. The AutoDock program used in

our study offers a variety of search algorithms to recursively

evaluate ligand conformations and uses a force-field-based

scoring function to rank the binding poses. The accuracy of

the program has been tested with a diverse set of protein–ligand

complexes of biological and medicinal interest (Forli et al., 2016).

The predicted AutoDock binding energies may not be highly

accurate, and even relative affinities within a series of ligands

cannot generally be reliably determined. While the best-scored

AutoDock complex does not always match the experimentally

determined structure, the experimentally determined structure is

generally among the best scoring poses (Kolb et al., 2009; Kolb

and Irwin, 2009). Accordingly, the best-ranked predictions,

illustrated for example in Supplementary Figures S7 and S8,

should capture key features of the ligand—protein interaction,

but they might not be the dominant pose observed in future

experimental studies.

Some known inhibitors of 3CLpro form covalent bonds upon

complex formation, which are not accounted for in these

AutoDock models. For several cases where the three-

dimensional structures of these covalent complexes are

known, including complexes with compound 13b (Zhang

et al., 2020), boceprevir (Kneller et al., 2020), and narleprevir

(Kneller et al., 2020), covalent bond formation is in fact

stabilizing one of the low energy AutoDock poses. As shown
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in Figures 6, 7, AutoDock calculations predict the crystal

structure poses of these inhibitors where the respective alpha-

ketoamide warhead is positioned to form a co-valent bond with

the active site Cys thiol. Failure to account for covalent bond

formation would not contradict the conclusion, based on good

non-covalent docking scores, that a molecule is a potential

inhibitor. However, appropriate consideration of covalent

stabilization could rule in candidates with poorer non-

covalent AutoDock scores. In order to address this, we identify

also in Table 3 the proposed 3CLpro inhibitors which potentially

form covalent complexes with the active-site Cys residue. If such

covalent bond formation occurs, these inhibitors could have

enhanced binding affinity than indicated by simple AutoDock

scores.

Another important limitation of the AutoDock protocol

used here is the inability to model the conformational flexibility

of the protein target. This problem is typically approached

through the generation of multiple conformations of the

protein by molecular dynamics before docking, or by

allowing the ligand active site residues to be flexible during

the docking runs, which are both important future direction for

this work.

In conclusion, our studies describe interesting structural

similarity between the 3C-like proteases of Kingdom

Orthornavirae that comprises positive-stranded RNA viruses

from multiple Classes and Phyla. The fact that the same

molecules can inhibit SARS-CoV2 3CLpro and HCV NS3/4A

proteases, spanning the structural similarity scores and

taxonomic distribution of proteases from a wide range of

viruses in the Kingdom Orthornavirae, strongly supports the

potential for considering inhibitors of this wide range of 3C-like

proteases as lead molecules for developing novel broad spectrum

viral protease inhibitor drugs.
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