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Due to the influence of uncontrollable factors such as the environment and

instruments, noise is unavoidable in a spectral signal, which may affect the

spectral resolution and analysis result. In the present work, a novel spectral

denoising method is developed based on the Hilbert–Huang transform (HHT)

and F-test. In this approach, the original spectral signal is first decomposed by

empirical mode decomposition (EMD). A series of intrinsic mode functions

(IMFs) and a residual (r) are obtained. Then, the Hilbert transform (HT) is

performed on each IMF and r to calculate their instantaneous frequencies.

The mean and standard deviation of instantaneous frequencies are calculated

to further illustrate the IMF frequency information. Third, the F-test is used to

determine the cut-off point between noise frequency components and non-

noise ones. Finally, the denoising signal is reconstructed by adding the IMF

components after the cut-off point. Artificially chemical noised signal, X-ray

diffraction (XRD) spectrum, and X-ray photoelectron spectrum (XPS) are used to

validate the performance of the method in terms of the signal-to-noise ratio

(SNR). The results show that the method provides superior denoising

capabilities compared with Savitzky–Golay (SG) smoothing.
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Introduction

As a fast, non-destructive analytical technique, spectral analysis plays an increasingly

important role in the fields of traditional Chinese medicine (TCM) (Ma et al., 2020), food

(Bian et al., 2017; Amendola et al., 2020), bio-medicine (Wu et al., 2021; Yang et al., 2022),

and the environment (Sipponen and Osterberg, 2019), etc. However, spectra often contain

noise from instruments and operational errors. Instrumental noise mainly includes dark

noise caused by the thermal effect, photon noise caused by the photon hitting detector,

and electronic noise caused by the A/D converter and circuit board error. In addition,

non-standard experimental operations can also produce noise (Mishra et al., 2020). The

noise could obscure some useful information in the spectra, which results in low
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resolution and prediction accuracy. Therefore, it is essential to

remove noise from the spectra without unduly reducing the

underlying information (Chen et al., 2004).

The commonly used spectral signal denoising methods are

Savitzky–Golay (SG) smoothing (Savitzky and Golay, 1964) and

wavelet transformation (WT) (Shao et al., 2002). SG smoothing is

a filtering method based on local polynomial least square fitting

in the time domain, also known as convolution smoothing, which

has been developed from themoving averagemethod (Zhang et al.,

2019). The SG smoothing is a weighted average method that

emphasizes the role of the center point (Chu X. L. et al., 2022).

A symmetric window of i = 2ω+1 is used, where i and ω are the

points of the moving window (i.e., window size) and half window

width, respectively. The smoothed value at wavelength k is

xk,smooth � �xk � 1
H

∑+ω
i�−ω

xk+ihi, (1)

where hi is the smoothing coefficient, which can be obtained by

polynomial fitting based on the least square. H is the normalized

factor H � ∑+ω
i�−ω hi. Most of the noise and interference of

abnormal points can be removed by SG smoothing. Moreover,

the peak shift of the spectrum is overcome without delays.

However, SG smoothing is only performed once for noise

removal, which cannot remove noise completely from the

spectrum with in-homogeneous frequency. Compared with SG

smoothing, WT is more refined and efficient because it

decomposes the original spectra into details and

approximations with different frequencies step by step (Shao

et al., 2019). Many wavelet functions such as Haar, Daubechies,

Symlets, and Coiflets have been developed for WT (Fan et al.,

2017). In recent decades, WT has become quite a useful tool for

signal processing in analytical chemistry (Bian et al., 2011).

However, abundant wavelet functions and decomposition

scales also make it difficult to select the parameters for WT

(Chen et al., 2011).

To overcome the drawbacks of WT, Huang et al. (1998)

introduced the Hilbert–Huang transform (HHT), which includes

empirical mode decomposition (EMD) and Hilbert transform

(HT). EMD can decompose any complex signal into a finite

number of intrinsic modal function components (IMFs) and a

residual (Bian et al., 2016). Compared with WT, the

decomposition of EMD does not require any predefined basis

function, which is adaptive and can be applied to any signal

(Wang et al., 2018; Yao et al., 2019). Then, HT is performed on

each IMF, and their corresponding instantaneous frequencies

can be obtained (Peng et al., 2005). HHT denoising has been

successfully used in fault diagnosis (Jin et al., 2015; Fan et al.,

2022), speech recognition (Krishna and Ramaswamy, 2017),

biomedical signal (Lin and Zhu, 2012; Chen et al., 2021),

geophysics (Tang et al., 2015; Chen et al., 2017), and so on.

However, spectral denoising by HHT is seldom used in analytical

chemistry. Moreover, previous studies have determined the cut-

off point between noise and useful signal by observing IMF

components. However, it is difficult to distinguish. Therefore, it is

crucial to determine the cut-off point between high and low

frequencies.

In this research, an effective method based on HHT and

F-test is proposed to eliminate the noise from the noisy spectral

signal. Initially, EMD is introduced to decompose the original

spectrum. A series of IMFs from high to low frequencies are

obtained. Then, HT is applied to each IMF to obtain

instantaneous frequencies. The mean instantaneous frequency

combined with the F-test is used to determine the cut-off point

between noise components and non-noise ones. Artificially

FIGURE 1
Sifting process of EMD.

FIGURE 2
Flowchart of the spectral denoising method based on
Hilbert–Huang transform combined with the F-test.
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chemical noised signal, X-ray diffraction (XRD) spectrum, and

X-ray photoelectron spectrum (XPS) were used to verify the

effectiveness and feasibility of the proposed method. The

performance of the method is evaluated by the SNR and

compared with SG smoothing.

Theory and algorithm

Empirical mode decomposition

EMD is a new adaptive spectral decomposition method.

Through a sifting process, EMD can decompose spectra into a

certain number of IMFs and a residual. With the increase in IMF

orders, the degree of oscillation becomes lower and lower (Bian

et al., 2017). The flow chart of the sifting process of EMD is

shown in Figure 1.

First, in the sifting process for the spectrum, all local

maxima and minima of the original spectrum x are

connected to form upper and lower envelopes by cubic

spline lines, respectively. Then, the mean values m of the

two envelopes are computed by the simple average.

Subsequently, component h is computed by which the

difference between the original spectrum x and mean values

m can be found. Whether h is an IMF by definition is

determined. It is worth noting that the IMFs satisfy two

conditions. One is that in the whole data set, the number of

extreme and zero-crossings must either be the same or different

at most by one. The other is that at any point, the mean value of

the upper and lower envelopes is zero (Sun et al., 2006). If h

does not meet the IMF definition, h, as a new cycle performs the

abovementioned operations until an IMF is obtained. After

determining an IMF component, the component h is subtracted

from the spectrum x to get the residual r, and whether the

residual r becomes a monotone function is judged. Finally, the

sifting process ends till the residue contains no more than one

extreme.

Instantaneous frequency calculation
based on Hilbert transform

Although the oscillations decrease with the increase of IMF

orders, it is difficult to know the frequency value of the IMF itself.

FIGURE 3
Artificially chemical noised signal (A) with its pure signal (B) and noise (C).

FIGURE 4
XRD spectrum of the Fe/SCN catalyst (A) and the XPS
spectrum of the FeNiOS-NS catalyst (B).
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HT is introduced to calculate the instantaneous frequency of each

IMF (Li et al., 2016).

For a signal x(τ), its Hilbert transform H(t) is defined as

H(t) � 1
π P ∫

+∞

−∞

x(τ)
t − τ

d(τ). (2)

Eq. 2 defines HT as the convolution of x(τ) with 1/t.

Therefore, HT emphasizes the local properties of x(τ). Then,

P indicates the Cauchy principal value of the singular integral to

avoid singularities at t � τ, t � ± ∞; this transform exists for all

functions of class LP (Le Van Quyen. et al., 2001).

With this definition, x(τ) and H(t) form the complex

conjugate pair, and an analytic signal, Z(t), is obtained,

Z(t) � x(t) + iH(t) � a(t)eiθ(t) (3)
in which,

a(t) � [x2(t) +H2(t)]1 /2, (4)

θ(t) � arctan(H(t)
x(t)), (5)

where a(t) is the instantaneous amplitude of x(τ), which can

reflect the change of energy of x(τ) with t. θ(t) is the

instantaneous phase of x(τ), and the instantaneous frequency

ω(t) of signal x(τ) can be obtained as follows,

ω(t) � dθ(t)
d(t) . (6)

The proposed denoising method

A novel method is proposed for spectral denoising based on

EMD and HT. EMD is used to decompose the original spectrum

into mono-component IMFs with different frequencies. HT is

combined with F-test to determine the cut-off point of IMFs

between noise components and non-noise ones. The denoising

FIGURE 5
EMD decomposition results (A) and their corresponding instantaneous frequencies (B) for artificially chemical noised signal.
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process of the method is shown in Figure 2. The corresponding

MATLAB code and datasets can be downloaded from the website

https://github.com/bianxihui/chemometrics-matlab-HHT-with-

F-test. The details could be described as follows.

1) The original spectrum x is decomposed into a finite and often

small number of frequency components containing n IMFs

and a residue r by EMD. The low-order IMFs correspond to

the high-frequency components and vice versa.

2) HT is applied to each IMF component and r to calculate their

corresponding instantaneous frequency f1 f2 . . . fn fn+1 by

using Eqs 2 and 5, 6. Meanwhile, mean and standard

deviations of f1 f2 . . . fn fn+1 are obtained.

3) The cut-off point k is judged by Eq. 7,

Fk � (SDk)2
(SDk+1)2, (7)

where SDk and SDk+1 are the standard deviation of fn+1, fn . . . f2 f1,

and Fk is the ratio of (SDk)
2 to (SDk+1)

2. The significant difference of

Fk is determined by the F-test with a 99.95% confidence interval.

The degrees of freedom are set to 2 and 4, respectively.

Furthermore, the F-test is being applied to distinguish a

significant difference between the kth and (k+1)-th SD of fs.

When Fk has a significant difference, k is judged as the cut-off point.

4) IMF1, IMF2, and IMFk are the noising components that are

deleted. The denoising spectrum is reconstructed by

summing IMFk+1, IMFk+2, IMFn, and r.

Experimental

The artificially chemical noised signal, XRD spectrum, and

XPS spectrum are used to evaluate the performance of the

proposed method. The artificially chemical noised signal is

shown in Figure 3A, which is composed of 501 variables

recorded in the range of 1–501, with a digitization interval of

1. It contains an artificially chemical signal with random noise in

which the pure artificially chemical signal y1 is produced by the

Gaussian function represented by Eq. 8, as shown in Figure 3B.

y1 � 2exp[ − (x − 2
2

+ 4)]|cos x − 1.2|. (8)

The noise signal y2 is added by Eq. 9.

y2 � 0.05 × randn(p), (9)

where p represents the number of variables of an artificially

chemical signal, that is, 501 values are generated. Moreover,

randn generates values from a normal distribution with mean

1 and standard deviation 1, as shown in Figure 3C. The artificially

chemical noised signal y = y1+y2.

The spectrum from the study by Wang et al. is measured on

an X-ray diffractometer (D/MAX-RB, Japan) for catalyst

materials (Fe/SCN) (Wang et al., 2021; Chu Y. Y et al., 2022).

The diffraction angle range is 20–80°, the interval is 0.02°, and

there are 3,001 variables.

The spectrum from the study by Chu et al. is measured on an

X-ray photoelectron spectrometer (PHI 5700) for catalyst

materials (FeNiOS-NS) (Chu Y. Y. et al., 2022). The binding

energy is 700.08–740.08 eV, the interval is 0.1 eV, and there are

400 variables.

Figure 4 shows the original spectrum of XRD and XPS. By

visual inspection, in Figure 4A, the spectral noise distribution is

FIGURE 6
Mean and standard deviation of instantaneous frequencies
for artificially chemical noised signal.

FIGURE 7
Original (blue line), SG smoothing (pink line), and HHT
denoising (red line) artificially chemical noised signal.
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uniform, and the peak appears at the diffraction angle of

40–50 degrees. In Figure 4B, the spectrum contains sharp

noise, which covers the peaks. Therefore, it is necessary to

remove the useless noise and retain the useful peaks.

Results and discussion

Denoising of the artificially chemical
noised signal

Based on the self-adaption and frequency decomposition

superiorities, EMD is introduced to decompose the original

artificially chemical noised signal. Figure 5A shows the

decomposition result of EMD for an artificially chemical

noised signal. The original spectrum is decomposed into eight

IMFs (IMF1–IMF8) and an r. It is clear that the oscillation

frequency decreases as the order of IMF becomes larger. By

visual inspection, IMF1–IMF4 are obvious noise components

with little information, while an r is the low-frequency

components, which are extremely slow. However, it is difficult

to determine whether IMF5 is a noise component or not.

Different IMF components have different frequencies, and HT

can be used to calculate their instantaneous frequencies. The HT

results for IMFs of artificially chemical noised signals are shown in

Figure 5B. The f1 contains a large number of peaks. With the

increase of the f order, the number of peaks gradually decreases.

Although the total variation range of the instantaneous frequency

FIGURE 8
EMD decomposition results (A) and their corresponding instantaneous frequencies (B) for the XRD spectrum.
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becomes smaller with the increase of the f order, the instantaneous

frequency value for each variable is different for the same f order.

Thus, the mean instantaneous frequencies of fn+1, fn, . . . f1 are

calculated to observe the trends in frequencies. Meanwhile, the

standard deviations of fn+1, fn, . . . f1 are further calculated for

evaluating the noising degree of IMFs. As shown in Figure 6, the

mean and standard deviation of f1–f4 are much higher than those

of f5–f9. Furthermore, the mean of f5–f9 tends to be flat, and the

FIGURE 9
EMD decomposition results (A) and their corresponding instantaneous frequencies (B) for XPS spectrum.

FIGURE 10
Mean and standard deviation of instantaneous frequencies
for the XRD spectrum (A) and XPS spectrum (B).

FIGURE 11
Original (blue line), SG smoothing (pink line) and HHT
denoising (red line) XRD spectrum (A) and XPS spectrum (B).
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standard deviation of f5–f9 is relatively low. Subsequently, IMF4 is

judged as the cut-off point by the F-test. Therefore IMF1–IMF4 are

deleted as noise, and IMF5–IMF8 and an r are reconstituted as

useful signals.

To better evaluate the performance of the proposed method, SG

smoothing applied to the artificially chemical noised signal denoising

is compared with that of the proposed method, and SG smoothing

window size is selected as 13. The comparison between the proposed

method and the SG smoothing denoising results are shown in

Figure 7. It is obvious from the figure that the spectrum is

smoother and the peaks are more obvious after denoising by the

proposed method. In order to illustrate quantitatively the superiority

of the proposed method, the SNR of the two methods is calculated,

where the SNR of the proposed method and SG smoothing is

22.59 and 21.60, respectively. It can be seen that compared with

SG smoothing denoising, the SNR of the proposed method of

denoising is improved and the denoising effect is more ideal.

Denoising of the experimental spectrum

To compare and verify the denoising effect of the proposed

denoising method on the actual spectrum, noisy XRD and XPS

spectra were selected for denoising. Figure 8A depicts the

decomposition result of EMD for an XRD spectrum. The

original spectrum is decomposed into eight IMFs (IMF1–IMF8)

and an r. It is difficult to determine whether IMF5 and IMF6 are

noise components or not by visual inspection. The instantaneous

frequency of each IMF is obtained by HT, as shown in Figure 8B.

With the increase of the f order, the number of peaks gradually

decreases. Figure 9A depicts the EMD results of an XPS spectrum

which is decomposed into six IMFs (IMF1–IMF6) and an r. The

corresponding frequencies fs are calculated in Figure 9B. Similarly,

whether IMF4 is a noise component or not, cannot be determined.

The mean and standard deviation of the f order for XRD and

XPS spectra are calculated. As shown in Figure 10A, for the XRD

spectrum, with the increase of IMF orders, the mean instantaneous

frequency of f first decreases and then approaches being flat. The

change in the standard deviation of f is directly proportional to the

mean instantaneous frequency. The IMF with a large mean

instantaneous frequency has a large standard deviation. Five is

determined as the cut-off point by the F-test for the XRD

spectrum. IMF6–IMF8 and an r are reconstructed as the

denoising XRD spectrum. As shown in Figure 10B, for the XPS

spectrum, the variation of the mean and standard deviation of fs is

similar to that of the XRD spectrum. Four is determined as the cut-

off point by the F-test for the XPS spectrum. IMF5, IMF6, and an r

are reconstructed as the denoising XPS spectra.

The SG smoothing is also applied to noisy XRD and XPS

spectra. 21 and 17 are selected as the window size for the two spectra.

Figures 11A,B show the denoising results of XRD and XPS spectra

by SG smoothing and the proposed method. It is clear from

Figure 11A that SG smoothing cannot remove the noise

completely, and some noise is still left in the spectrum. In

contrast to SG smoothing, the method proposed in this research

not only makes the spectrum exceedingly smooth after denoising,

but useful information is also retained. From Figure 11B, XPS

spectral noise is also not completely removed by SG smoothing,

especially at the three peaks. However, most of the noise is removed

by the proposed method while retaining useful information.

Conclusion

Anovel denoisingmethod is proposed based onHHT combined

with the F-test. EMD is applied to adaptively decompose the

spectrum without setting parameters. Then, HT is performed on

IMFs to calculate the instantaneous frequencies. In addition, mean

instantaneous frequencies are combined with the F-test as the

criterion for distinguishing noise components and non-noise ones.

It is concluded that the proposed denoising method is valid by noise

removal for the artificially chemical noised signal, XRD, and XPS

spectra. Moreover, compared with SG smoothing, the proposed

method shows superiority both in observation and the SNR.
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