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Graphitic carbon nitride (g-C3N4) photocatalysis for water splitting is harvested as a
fascinating way for addressing the global energy crisis. At present, numerous research
subjects have been achieved to design and develop g-C3N4 photocatalysis, and the
photocatalytic system still suffers from low efficiency that is far from practical applications.
Here, there is an inspiring review on the latest progress of the doping strategies to modify
g-C3N4 for enhancing the efficiency of photocatalytic water splitting, including non-metal
doping, metal doping, and molecular doping. Finally, the review concludes a summary and
highlights some perspectives on the challenges and future research of g-C3N4

photocatalysts.
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INTRODUCTION

The global energy demands and environmental crisis have stimulated tremendous research on the
exploration of green and renewable energy due to awareness of energy conservation and
environmental protection (Miao et al., 2022). Since titanium dioxide (TiO2) was discovered as
the photoanode for photoelectrochemical (PEC) water splitting(Fujishima and Honda, 1972),
semiconductor-based photocatalysis for solar hydrogen production has seen an upsurge in
global interests (Wang and Wang, 2019; Zada et al., 2020; Qi et al., 2021; Wei et al., 2021).
However, it is still very challenging to achieve high solar-to-hydrogen (STH) conversion efficiency
toward practical applications. To make high utilization of solar energy, the exploration of visible-
light-active photocatalysts is highly desirable. In 2009, Wang et al. developed the pioneering work on
g-C3N4 for visible-light–driven photocatalytic water splitting(Wang et al., 2009), and g-C3N4-based
photocatalysis has drawn considerable attention in the last decade (Xiao et al., 2021; Xing et al., 2021;
Chen et al., 2022a) (Figures 1A–E). For unification in this study, we will consider the two kinds of
materials with triazine (C3N3) unit or tri-s-triazine (C6N7) unit (Figure 1A) to name as g-C3N4.
g-C3N4 affords a lamellar structure consisting of C and N atoms which is similar to graphene and can
be traced back to the original form of “melon” found by Berzelius and Liebig in 1834 (Liebig, 1834).
Unlike TiO2, g-C3N4 affords a narrow bandgap of 2.7 eV (Figure 1C) with the valance band (VB)
position at +1.6 eV and conduction band (CB) position at −1.1 eV vs. normal hydrogen electrode
(NHE) (Wang et al., 2009) (Figure 1E). This enables g-C3N4 to drive photocatalytic reaction using
visible light.

Generally speaking, the g-C3N4 photocatalyst possesses all the following abilities: stability, non-
toxicity, abundant source, visible-light-responsive absorption, and easy to control and modify. As a
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fantastic visible-light–driven photocatalyst, its remarkable
property has been conducted on widely photocatalytic
applications, such as H2 evolution from water (Zhao et al.,
2017a; Yu et al., 2021; Zhao et al., 2022), O2 evolution (Yang
et al., 2019; Zhao et al., 2019; Xu et al., 2021), overall water
splitting (Chen et al., 2019; Bhagat and Dashora, 2021; Wu et al.,
2021), photodegradation of pollutants (Xiong et al., 2016; Duan
et al., 2019; Jing et al., 2021), CO2 reduction (Jiang et al., 2018;
Yang et al., 2020a; Cheng et al., 2020), organic synthesis
(Devthade et al., 2018; Camussi et al., 2019; Lima et al., 2019),
and photoelectrocatalysis (Karimi-Nazarabad et al., 2019; Wu
et al., 2020; Huo et al., 2021). However, the three crucial issues of
light absorption efficiency, charge separation and transfer
efficiency, and surface reaction efficiency still restrict the
development of high-performance g-C3N4 photocatalysis,
which is fairly difficult to achieve by pristine g-C3N4.

Although the g-C3N4-based photocatalysis has been fully
discussed in many recent review articles(Li et al., 2020a; Li
et al., 2021a; Chen et al., 2021; Xing et al., 2021; Zhu et al.,
2021; Chen et al., 2022b), a relative focus review about doping
strategies to modify g-C3N4 for improving the efficiency of water
splitting is still lacking. Compared with other effective strategies
for modification of g-C3N4, like heterojunction construction,
defect introduction, and nanostructure controlling, the
modification process of g-C3N4 can be comparatively

simplified by element doping to tune the band gap, which
considerably broadens the light absorption and accelerates the
electron-hole pair separation (Li et al., 2020b). This work
overviews the recent advances of g-C3N4 materials focusing on
efficient photocatalytic water splitting in doping strategies for
modifying carbon nitride including non-metal doping, metal
doping, and molecular doping. This review also aims to
present a general summarization in boosting the g-C3N4

photocatalyst to seek new inspiration for material science.

Basic Properties of Carbon Nitride for Solar
Water Splitting
Under irradiation, the electrons of the g-C3N4 photocatalyst can
be excited from the VB to CB by absorbing the photons with the
energy (h]) higher than the bandgap energy, wherein holes are
left in the VB (Luo et al., 2016). The large parts of the
photoexcited charge carriers will combine rapidly, and only a
small part of photogenerated electrons and holes can be
transferred to the surface of g-C3N4 to involve the reaction.
Then, the water molecules can be reduced with the
photoexcited electrons for H2 evolution and oxidized by the
photoexcited holes for O2 generation during the photocatalytic
reaction. For H2 evolution, the CB potential of the photocatalyst
should be more negative than the H2 reduction potential, while

FIGURE 1 | (A) Schematic diagram of a perfect g-C3N4 sheet constructed frommelem units, (B) experimental XRD pattern of g-C3N4, (C) ultraviolet–visible diffuse
reflectance spectrum of the g-C3N4. Inset: Photograph of g-C3N4, (D) typical time course of H2 production from water containing 10 vol% triethanolamine as an electron
donor under visible light (of wavelength longer than 420 nm) by (i) unmodified g-C3N4 and (ii) 3.0 wt% Pt-deposited g-C3N4 photocatalyst, (E) density-functional-theory
band structure for polymeric melon calculated along with the chain (Γ–X direction) and perpendicular to the chain (Y–Γ direction). The position of the reduction level
for H+ to H2 is indicated by the dashed blue line, and the oxidation potential of H2O to O2 is indicated by the red dashed line just above the valence band. Copyright 2009,
Springer Nature; (F) illustration of the charge transfer in g-C3N4 nanosheets under visible light. Copyright 2017, Elsevier.
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the VB potential should bemore positive than the water oxidation
potential for the O2 evolution from water. The g-C3N4

photocatalyst possesses a CB of −1.1 eV and a VB of 1.6 eV is
fit for splitting water to H2 and O2.

So far, visible-light photoadsorption, high chemical stability,
appropriate CB and VB potentials, and strong photocatalytic
activity make g-C3N4 be the most widely focused in
photocatalytic water splitting. Nevertheless, the efficiency of
water splitting by g-C3N4 is still low, mainly due to limited
photoadsorption in the visible-light region, limited ability of
electron transport along or across the g-C3N4 sheets
(Figure 1F), and recombination of photoexcited electron-hole
pairs.

In a word, due to dramatic development of g-C3N4

photocatalysts in the STH conversion field, a review focusing
on the photocatalytic water splitting is still necessary to provide
researchers a state-of-art progress in this dynamic research field.
This review presents a brief discussion of the current doping
research, accompanied with the challenges and future direction of
g-C3N4 photocatalysts for photocatalytic applications.

Doping Strategies for Modifying Carbon
Nitride
To develop advanced g-C3N4 photocatalysts, a doping strategy is
considered an appealing way to modulate physicochemical
properties such as band structure tailoring and light
adsorption improving, which, therefore, enhance the
performance of photocatalyst (Patnaik et al., 2021). Based on
the arrangements of doping elements, the classification of doping
can be divided into non-metal doping, metal doping, and
molecular doping.

Non-Metal Doping
The fabrication of non-metal doped carbon nitride is effective
in modulating the electronic structure of g-C3N4 by distorting
the π-conjugated orbital. Boron-doped g-C3N4 was prepared
by microwave heating for hydrogen evolution, and boric acid
was used as a doping source combined with melamine and urea
for thermal condensation (Chen et al., 2018). g-C3N4

nanosheets can be in situ modified by boron atoms to
improve the photoadsorption, hinder the annihilation of
charge carriers, and prolong the lifetime of photogenerated
electrons. Combining g-C3N4 with strongly electronegative
dopants such as fluorine to form an F-doped material not
only raised the valence band but also affected the
thermodynamic driving force for H2 reduction (Zhu et al.,
2017). Fluorinated (F) carbon nitride solids were also reported
with excellent visible-light photocatalytic activity (Shevlin and
Guo, 2016). Fluorination not only provided a modified texture
but also enabled effective adjustment of the electronic band
structure, which was demonstrated by improved activities. To
further explore the structural distortion-dependent
photoreactivity, it is more desirable to exploit co-doping
that may be a good attempt to further improve the
photocatalytic activity of g-C3N4 through the synergistic
effects of the two dopants. For instance, B/F co-doped

g-C3N4 was fabricated by polymerizing urea and ionic
liquids ([Bmim][BF4]), which was used as the texture
modifier and dopant source (Lin and Wang, 2014). This
research leads in a new one-pot fabrication of B and F co-
doped g-C3N4.

In addition to F, other halogen elements we cannot ignore
are chloride (Cl), bromine (Br), and iodine (I) in the doping
area. Br-doped g-C3N4 was also successfully synthesized by
using ionic liquid as the Br source and soft-template for
photoredox water splitting (Zhao et al., 2017b). The Br-
doping tuned light absorption and band structure without
destroying the major construction of the g-C3N4 polymer.
Similarly, I doped g-C3N4 materials also lead to positive
effects that enlarged the specific surface area, enhanced
optical absorption, narrowed the bandgap, and accelerated
the photoinduced charge carrier transfer rate, leading to an
increasing H2 evolution rate (Iqbal et al., 2020).

In addition, introducing other non-metal elements are also
effective strategies in promoting the photocatalytic property
(Deng et al., 2019; Li et al., 2021b; Li et al., 2021c; Liu et al.,
2021; Yan et al., 2022). For instance, carbon (C) self-doped
g-C3N4 was prepared via a combined method of melamine-
cyanuric acid complex supramolecular pre-assembly and
solvothermal pre-treatment (Li et al., 2021b). The H2

evolution rate for optimized g-C3N4 was 18 times higher than
that of bulk g-C3N4, and the enhanced performance derives from
the extended optical absorption, accelerated photoactivated
charge carrier separation, and transfer efficiency. Unique
oxygen-doped g-C3N4 materials were synthesized, which
realized the synergetic control of the electronic structure and
morphology and possessed the advantages of enlarged surface
area, increased exposed active edges, and improved separation
efficiency (Yan et al., 2022). Some other high-performance non-
metal doped materials including phosphorus-doped
g-C3N4(Yang et al., 2018; Lin et al., 2020; Zhao et al., 2020)
and sulfur-doped g-C3N4 (Li et al., 2019a; Yang et al., 2020b; Long
et al., 2020) have also been developed. For instance, Yang et al.
reported a flower-like P-doped g-C3N4 which was prepared using
phosphoric acid and cyanuric acid-melamine complex, which
served as the P source and the precursor of g-C3N4, respectively,
(Yang et al., 2018). The as-prepared P-doped g-C3N4 showed a
high visible-light photocatalytic H2 evolution rate of 256.4 μmol
h−1 50 mg−1 and almost 24-folds higher than those of the pristine
g-C3N4. A sulfur (S) doped-g-C3N4 nanosheet with terminal-
methylate was presented with a tunable bandgap (Li et al., 2019a).
The VB near the Fermi level was split due to S atoms into
methylated melon units, which generated a new empty mid-
gap electronic state and improved the light-responsive property
up to 700 nm. Furthermore, the photocatalytic activity restricted
by intralayered hydrogen bonds should also be considered. Yang
et al. reported an S-doped g-C3N4 through poly-condensation
and the mixture of dicyandiamide and thioacetamide, resulting in
greatly enhanced visible-light-response ability and n → π*
electron transition. The substituting of sp2-hybridized N with
S atoms contributed to break intralayered hydrogen bonds, which
resulted in photocatalytic H2 production (Yang et al., 2020b)
(Figures 2A,B).
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Metal Doping
Due to abundant orbital electrons, the electron structure and
optical property of g-C3N4 can also be affected by metal element
doping, leading to focusing on the metal doping method. The
cobalt (Co)-doped g-C3N4 nanosheet was investigated to provide
more separation centers by forming Co–N bond, which can
celebrate charge transfer and enhance photocatalytic
performance (Yang et al., 2021). Moreover, potassium-

modified g-C3N4 (K-g-C3N4) nanosheets were synthesized
(Sun et al., 2019) (Figures 2C,D). Photocatalytic H2

production tests under visible light irradiation showed high
photocatalytic activities of K-g-C3N4 nanosheets (up to about
13-folds higher than that of original g-C3N4) as well as an
apparent quantum efficiency (AQE) of 6.98% at 420 nm. In
addition, lanthanum (La) and Co co-doped g-C3N4 was
prepared by the wet impregnation method (Tasleem and

FIGURE 2 | (A) Schematic illustration for the formation of multi-layered cake-like porous g-C3N4 with broken hydrogen bonds by S-doping, (B) UV–visible diffuse
reflectance spectra of samples. Copyright 2020, Elsevier; (C) Schematic illustration of the KOH-assisted hydrothermal-reformed melamine strategy for achieving
simultaneous K-doping and exfoliation of g-C3N4, (D) band structure alignments for the CN, HCN, and CNK sample. Copyright 2018, Elsevier; (E) Chemical production
of polymeric carbon nitride semiconductors from nucleobases and urea, (F) Effect of cytosine amount on the HER, (G) wavelength dependence of the HER with
CNC30 loaded with 3 wt% Pt. Inset: time-dependence of the HER with CNC30 at different irradiation wavelengths. Copyright 2017 John Wiley and Sons, Inc.
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Tahir, 2021). The H2 evolution by La/Co co-doped-g-C3N4

showed the highest H2 production of 250 μmol g−1h−1 among
the samples, which was 2.5, 1.35, and 1.25 times higher than that
of original g-C3N4, La-g-C3N4, and Co-g-C3N4, respectively. The
enhanced activity can be contributed to the celebrated charge
separation, which was originally the electron trapping capability
of La and Co.

Molecular Doping
Heteroatom doping as discussed above is often used to modulate
the atomic and band structure of g-C3N4 to promote light
harvesting and celebrate electron-hole separation and transfer.
Especially, integrating another structure-matching aromatic
structure with g-C3N4 is a unique method to tune the intrinsic
features (Yang et al., 2017; Li et al., 2018; Li and Zhang, 2018; Li
et al., 2019b; Li et al., 2019c; Liu et al., 2019; Li et al., 2020c; Jiang
et al., 2021; Zhou et al., 2021). The thermal co-polymerization of
the aromatic comonomers and precursors of g-C3N4 can narrow
the band gaps of g-C3N4, which extends the visible light
absorption edge to enhance the utilization of sunlight. For
instance, Liu et al. designed in-plane benzene-ring doped
g-C3N4 nanosheets by copolymerizing urea and 4, 4′-
sulfonyldiphenol. It exhibited dramatic H2 generation
efficiency with a PHE rate of 12.3 mmol h−1 g−1, which was
almost 12-folds higher than that of intrinsic g-C3N4 and the AQE
of 17.7% at 420 nm (Jiang et al., 2021). Moreover,
copolymerization of urea and naphthoic acid has been
conducted to construct an aromatic ring–doped g-C3N4, which
was an effective strategy to extend the π-conjugated system for
visible light absorption and elevate the efficiency of charge
transfer (Li et al., 2020c). In addition, Yang et al. enriched the
construction of g-C3N4 by using nucleobases (adenine, guanine,
cytosine, thymine, and uracil) and urea to energize the
production of the charge carrier with light irradiation, which
inducted photoredox reactions for stable H2 evolution (Zhou
et al., 2021) (Figures 2E–G).

CONCLUSION AND OUTLOOK

This review presents a promising visible-light–driven
photocatalyst, g-C3N4, benefiting from its unique
microstructure, resistance against acids, and bases and
fantastic band structure. Nevertheless, the pristine g-C3N4

suffers from some shortcomings, including limited
photoadsorption capability and fast recombination of
photoexcited electron-hole pairs, which largely restricts
practical applications. The present review depicts a focus
review on the doping strategies to design efficient g-C3N4 in
the use of photocatalytic water splitting. In summary, doping can
introduce the impurity levels in the band gap region to create a
new band edge potential, which can extend the spectral response
region with decreased band gap. In addition, the hetero dopants
get settled either in the lattice or insert in the interlayers of
g-C3N4, inducing the formation of hybridized orbitals. The
hybridization between g-C3N4 and dopant orbital remarkably
affects the charge transportation, life time of charge carriers, and

the photocatalytic performance of g-C3N4. In short, doping is a
feasible and effective strategy to regulate photo-absorbance, redox
potentials, and transfer of photo-induced charge carriers and one
of the attractive strategies to tune the physicochemical properties
of g-C3N4.

To date, doping provides an innovative approach to promote
the efficiency of g-C3N4 photocatalyst. However, some issues like
nonuniform doping, formation of surface trapping center, or low
oxidizing and reducing capability resulting from narrowing the
bandgap still existed, while the mechanisms in this field are at the
primary stage and further systematic investigations are still
needed because of the relatively low visible-light photocatalytic
efficiency, which is far from the requirements of practical
applications. Some issues that must be resolved for doped
g-C3N4 photocatalyst involve the fact that 1) the doping
mechanisms of enhanced photocatalytic property is not clear.
For example, many explanations of doping technology still stay at
the stage of “the enhanced photocatalytic activity is contributed to
the doping method” with no discussion about mechanism and
essential meaning of element doping. 2) It is still challenging to
bring forth new ideas on doping methods, and finding the right
balance of lower redox ability and higher photocatalytic activity is
highly desired. To overcome the challenges, lots of attempts are
still needed. The heteroatom-doping assisted with theoretical
simulation calculation can be a feasible method to analyze the
doping effect. Especially, it is significant to develop a crystalline
g-C3N4 (CCN) doped by metals or non-metals, which improves
the charge separation, increases the reactive facet exposing, and
shows dramatic photocatalytic water splitting performance.
Furthermore, a broad range of heterostructures, including
quantum dots/g-C3N4 junction, polymer/g-C3N4 junction,
semiconductor/g-C3N4 junction, cocatalyst modification of
single atoms and defects engineering, as well as nanostructure
and crystalline control, should also be considered for improved
photocatalysis to increase the photoabsorption, accelerating the
charge separation and transfer, elongating the charge carrier
lifetime, and boosting the photocatalytic water splitting.
Focusing on the perspective of green and renew energy, it is
no doubt that g-C3N4-based photocatalyst will draw more
attention on the research of water splitting in the future.
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