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Despite significant scientific efforts in the field of water treatment, pollution of drinking water
by toxic metal ions and synthetic organic compounds is becoming an increasing problem.
The photocatalytic capabilities of CuInS2 nanoparticles were examined in this study for
both the degradation of chloramphenicol (CAP) and the reduction of Cr(VI). CuInS2

nanoparticles were produced using a straightforward solvothermal approach and
subsequently characterized by many analysis techniques. Simultaneous photocatalytic
Cr(VI) reduction and CAP oxidation by the CuInS2 nanoparticles under visible-light
demonstrated that lower pH and sufficient dissolved oxygen favored both Cr(VI)
reduction and CAP oxidation. On the basis of active species quenching experiments,
the possible photocatalytic mechanisms for Cr(VI) conversion with synchronous CAP
degradation were proposed. Additionally, the CuInS2 retains a high rate of mixed pollutant
removal after five runs. This work shows that organic contaminants and heavy metal ions
can be treated concurrently by the visible-light-induced photocatalysis of CuInS2.

Keywords: CuInS2, Cr(VI) reduction, chloramphenicol degradation, synergistic effect, visible light photocatalysis

INTRODUCTION

Industries such as electroplating, mining, leather tanning and electronics manufacturing use large
amounts of chromium compounds, leading to serious water pollution (Djellabi et al., 2019; Ge et al., 2021;
Taha et al., 2021). Due to its carcinogenic, teratogenic, and transportable properties, Cr(VI) poses a
substantial hazard to both the environment and human health (Wei et al., 2017; Djellabi et al., 2021;
Xiong et al., 2022). Furthermore, antibiotics are used widely to treat bacterial illnesses, resulting in
widespread contamination of aquatic ecosystems, including surface water and groundwater
(Abdurahman et al., 2021; Bouyarmane et al., 2021; Yang et al., 2022). Because the biological
toxicity of such compounds endangers the aquatic organisms and human health, a growing
emphasis is being placed on their efficient removal (Qiu et al., 2022). Chloramphenicol (CAP) is a
broad-spectrum antibiotic that can be used to treat a wide range of bacteria and viruses (Sun et al., 2022).
Ingestion of CAP-contaminated water may lead to the growth of antibiotic-resistant bacteria and a
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reduction in medullary hematopoiesis function (Yu et al., 2019).
Given the inadequacy of conventional sewage treatment plants in
eliminating CAP, the total removal of these antibiotic compounds
from water is a major concern. In reality, heavy metals and organic
contaminants coexist in the same environment quite regularly.

A variety of strategies for removing CAP and Cr(VI) have
already been documented to date, including adsorption, advanced
oxidation processes, and biological treatment. Because of its low
cost, safety, and great efficiency, photocatalysis-based advanced
oxidation technique has gotten a lot of interest in the field of
organic wastewater purification (Liu et al., 2009; Han et al., 2018;
Yang et al., 2021a). Several photocatalysts have also been explored
for the degradation of CAP, such as jarosite, LSCO5, and SmVO4/
g-C3N4 composite (Wang et al., 2021b; Leeladevi et al., 2021; Wu
et al., 2022). Moreover, controlling Cr(VI) pollution through
photocatalytic reduction is a viable option. A number of
photocatalysts such as Fe2O3, Bi2MoO6, g-C3N4, SnS2 and
their composites have been shown to be capable of reducing
Cr(VI) to less harmful Cr(III) under visible-light irradiation
(Zhang et al., 2016; Wu et al., 2020; Liu et al., 2022b; Ge
et al., 2022; Tao et al., 2022). The mechanism indicates that
the conduction band and valence band of the photocatalyst play
the roles of reduction and oxidation, respectively, which provides
the possibility of simultaneous removal of Cr(VI) and CAP by
reduction and oxidation reactions in the same photocatalytic
system. Thus, the development of effective and efficient
photocatalysts is required for synergistic photocatalytic
reduction of Cr(VI) and degradation of CAP.

Owing to its durability, low toxicity, appropriate band gap, and
good solar energy conversion efficiency, I-III-VI ternary metal
sulfide semiconductors have received a lot of research attention
thus far (Li et al., 2018; Zhang et al., 2021). Copper indium sulfide
(CuInS2) is a promising I-III-VI2 ternary chalcopyrite material with
a wide range of advantages for photocatalytic and photovoltaic
applications (Yang et al., 2021b; Spera et al., 2022;Wang et al., 2022).
Its conduction band ismade up of In 5s orbitals, and its valence band
ismade up of S 3p orbitals, resulting in a small band-gap (1.53 eV for
the bulk CuInS2) (Chumha et al., 2020; Guo et al., 2021). It has been
investigated as a photocatalyst for CO2 reduction (Xu et al., 2018),
organic pollutant degradation (Guo et al., 2019; Kaowphong et al.,
2019), and nitrate ion reduction (Yue et al., 2016), etc. However, it
has not been applied to the field of synergistic photocatalytic
elimination of Cr(VI) and organic pollutants.

Here, CuInS2 nanoparticles were prepared using a one-step
hydrothermal technique, and investigated as a photocatalyst in the
concurrent elimination of Cr(VI) and CAP under visible-light
irradiation. Furthermore, on the grounds of different
characterizations and theoretical analysis, the synergistic removal
effect of pollutants and photocatalytic reaction mechanism in the
Cr(VI)-CAP coexistence systemwere explored and discussed in detail.

EXPERIMENTAL

Materials
All the reagents (analytical grade) were purchased and used as
received from Sinopharm Chemical Reagent Co., Ltd.

Throughout the study, all solutions were prepared with
ultrapure water (18.2 MΩ·cm).

Synthesis of CuInS2
4 mmol CH3CSNH2, 2.0 mmol In(NO3)3·H2O, and 2.0 mmol
Cu(NO3)3·3H2O were dissolved in 40 ml anhydrous ethanol,
and stirred with a magnetic stirrer for 60 min to generate a
homogenous dark brown suspension. The solution was then
transferred into a 100 ml Teflon-lined stainless steel autoclave
and heated at 180°C for 2 h. After cooling to ambient temperature
naturally, the precipitate was centrifuged, washed alternately with
ethanol and water, and dried at 80°C for 24 h.

Characterization of the Synthesized CuInS2
An X-ray diffractometer (XRD, PANalytical B.V.) was used to
determine the phase of the as-obtained product. Field
emission scanning electron microscope (FE-SEM, Japan
Hitachi LTD. S4800) and transmission electron microscopy
(TEM, Japanese electronics JEM-2100PLU) were used to
characterize the products’ microstructure. The point of
zero charge (pHpzc) was measured by pH drift method.
X–ray photo-electron spectroscopy (XPS) was performed
on a PHI 5000C ESCA System. Using a UV–Vis
spectrometer (UV-2450, Shimadzu, Japan) equipped with
an integrating sphere attachment and BaSO4 as a
reflectance standard, UV–Vis diffuse reflectance spectrum
of the dry-pressed disk sample was acquired.

Photocatalytic Tests
The photocatalytic performance of the synthesized CuInS2 was
determined by monitoring the simultaneous photocatalytic
reduction of Cr(VI) and degradation of CAP in aqueous
solution under visible-light illumination. The photocatalytic
experimental setup (PL-02, Beijing Precise Technology Co.,
Ltd.) contains a Xe arc lamp (1000W) with a 400 nm cutoff
filter, a set of cylindrical quartz reactors (80 ml), and a cold trap to
keep the temperature of reaction solution constant. By dissolving
K2Cr2O7 and CAP in ultrapure water or diluting the stock
solution with ultrapure water, varied concentrations of Cr(VI)
and CAP solutions were obtained. The pH of the solution was
adjusted to the anticipant value using a concentrated solution of
NaOH or H2SO4. A set of tests were performed to investigate the
photocatalytic Cr(VI) reduction and CAP degradation over
CuInS2 at various solution pHs and Cr(VI)/CAP ratios. Cr(VI)
concentration was determined by the modified N,
N-diphenylcarbazide spectrophotometry method (Li et al.,
2021). The concentration of CAP in the solution was
determined using high-resolution liquid chromatography
(HPLC, Accela, Thermo Scientific, United States) equipped
with an XB-C18 column (4.6250 mm, 5 m, Yuexu, China) and
a UV detector. The mobile phase consisted of a 50: 50 mixture of
acid aqueous solution (0.1% acetic acid) and acetonitrile. The
chromatograms of CAP were achieved using a flow rate of
1.0 ml min−1, an injection volume of 10 μl, and 277 nm as UV
detection wavelength. The column was maintained at a
temperature of 30°C. For each time measurement,
approximately 4 ml of the aqueous solution was withdrawn
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from the cylindrical quartz reactors and filtered through a
0.45 nm filter to get rid of catalysts.

The Photocatalytic Reaction Kinetics Model
The photocatalytic Cr(VI) reduction and CAP degradation over
CuInS2 under a variety of operating conditions were studied by
pseudo-first-order kinetics, which was expressed as Eq. 1 (Mao
et al., 2022):

In(C0

C
) � Kt (1)

Here, C0 represents the concentration of Cr(VI) or CAP
following the adsorption-desorption equilibrium, C represents
the concentration of Cr(VI) or CAP at the irradiation time of
t min, t represents the irradiation time (min), and k represents the
apparent rate constant (min−1).

RESULTS AND DISCUSSION

Characterization of the As-synthesized
CuInS2
XRD was used to determine the crystalline structure of our
CuInS2 product. As illustrated in Figure 1, there appear the
diffraction peaks at 2θ = 28.1°, 32.2°, 47.1°, and 55.1°, which are
respectively indexed to the (112), (200), (204), and (116) crystal
planes of chalcopyrite structure CuInS2 (JCPDS card No.
85–1575). The weak and wide diffraction peaks in the XRD
pattern suggests that our CuInS2 product has poor crystallization.

SEM and TEM were used to investigate the morphology and
size of our produced CuInS2. As illustrated in Figures 2A–C, the
CuInS2 sample exhibits a sheet stacking structure with
dimensions ranging from 200 to 5,000 nm. The flake structure
of CuInS2 allows for the exposure of more active sites, which is
highly advantageous for photocatalytic reactions. The EDS
spectrum (Figure 2D) demonstrated that the prepared sample

FIGURE 1 | XRD pattern of our synthesized CuInS2.

FIGURE 2 | (A,B) SEM images, (C) TEM image and (D) EDS spectrum of our synthesized CuInS2.
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comprised the Cu, In, and S elements with a Cu, In, and S atomic
ratio of around 1: 1: 2, confirming the formation of CuInS2.

The whole XPS spectrum of our synthesized CuInS2 is shown
in Figure 3A, which reveals the existence of Cu, In, S 2p, and
adventitious C in this sample. The Cu 2p XPS spectrum of our
synthesized CuInS2 is displayed in Figure 3B, which shows sharp
peaks with binding energies of 951.48 eV (Cu 2p1/2) and
931.58 eV (Cu 2p3/2), respectively. There is no characteristic
Cu2+ peak at 934.3 eV, indicating that only the Cu+ oxidation
state is present in our synthesized CuInS2 (Li et al., 2016; Yue
et al., 2017). The In 3 days XPS spectrum in Figure 3C shows two
peaks at 452.68 eV and 445.08 eV, which match with In 3d3/2 and
In 3d5/2, respectively. These binding energy values indicate that In
is in the In3+ oxidation state (Yang et al., 2015). The S 2p XPS
spectrum (Figure 3D) was fitted into two peaks at 163.18 eV (S
2p1/2) and 161.88 eV (S 2p3/2), which are attributed to S2- bonded
to In or Cu in CuInS2 (Liu et al., 2019; Guo et al., 2021).

The UV-Vis diffuse reflectance spectrum of our synthesized
CuInS2 was used to analyze its optical absorption property and
band gap energy (Eg). As illustrated in Figure 4A, the CuInS2
product demonstrates distinct absorption of visible light between
550 and 800 nm. The following formula (Eq. 2) can be used to
estimate the Eg of the CuInS2 product (Liu et al., 2022a):

(αhv)n � K(hv − Eg) (2)

where h is the Planck’s constant, α is the absorption coefficient, k is
the constant, v is the light frequency, n = 1/2 for an indirect band
gap semiconductor, or n = 2 for a direct band gap semiconductor.
Since absorbance (A) is directly proportional to the absorbance
coefficient (α), the same Eg value can be obtained by replacing α
with A. CuInS2 is a direct band gap semiconductor. As shown in
Figure 4B, by projecting the linear part of its (Ahv)2 vs. (hv) plot to
zero, the Eg value of CuInS2 is obtained to be 1.52 eV, which is close
to the reported values in the literature (Guo et al., 2019; Chumha
et al., 2020). This means that the CuInS2 nanomaterial could be
used as a visible-light-driven photocatalyst.

Effect of Solution pH on Cr(VI) Reduction
and CAP Degradation
Since the solution pH canmodify both the acid-base environment
and the existing forms of Cr(VI), it is well established that the
solution pH values exert a significant effect on photocatalytic
activities (Zhang et al., 2018; Mangiri et al., 2021; Kumar et al.,
2022). The effects of varying the initial pH on Cr(VI) reduction
are demonstrated in Figures 5A,B According to Figure 5A, the
adsorption equilibrium between catalysts and Cr(VI) can be
attained after they were mixed for 40 min, because the Cr(VI)
concentration did not decrease when the adsorption duration was
further raised to 60 min. When the pH value decreased from 7–9

FIGURE 3 | (A) Survey, (B) Cu 2p, (C) In 3days, and (D) S 2p XPS spectra of our synthesized CuInS2.
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to 5–3, the Cr(VI) adsorption capacity of CuInS2 increased
rapidly. The pHPZC of prepared CuInS2 is determined to be
5.68, so in the solutions with pH less than 5.68, the surface
charges of CuInS2 are positive, which is conducive to the
adsorption of Cr2O7

2−, HCrO4
− and CrO4

2− (Xu et al., 2020).
When the photoreduction process began, the reduction rates of
Cr(VI) significantly increased with the lengthening of the
irradiation period. In addition, the decrease of the solution pH
from 9.01 to 3.00 also resulted in the faster reduction rates of
Cr(VI). According to Figure 5B, when the solution pH value is
3.0, the k value (0.0108 min−1) of the photocatalytic Cr(VI)
reduction over CuInS2 is the largest, which is about
15.43 times as that (0.0007 min−1) at pH 9.01. One reason for
this is that a lower pH promotes Cr(VI) adsorption on the
photocatalyst, hence accelerating photocatalytic conversion.
Another possibility is that lowering the pH value of reaction
solution raises the chromate reduction potential. For example,
one pH unit lower results in a rise in the standard reduction
potential by 0.138 V (Zhang et al., 2017). So the E(Cr(VI)/Cr(III))
value increases from 0.24 to 1.06 V as the pH of the solution
decreases from 9.00 to 3.00. From the viewpoint of both kinetics
and thermodynamics, the photocatalytic Cr(VI) reduction rate
would be enhanced in the lower pH solution (Marinho et al.,
2016; Zhang et al., 2022).

As shown in Figure 6A, the pH value of the solution had little
effect on the adsorption of CAP by CuInS2. However, the

photodegradation rates of CAP can be remarkably affected by the
pH of the solution. As shown in Figure 6B, when the solution’s
starting pH is 3.0, the CAP degradation rate is the fastest at the given
irradiation period, and the k value is 2.9 times that of pH9.01. The rate
of CAP degradation reduced as the pH of the solution increased,
indicating that the more acidic solution promotes photocatalytic CAP
degradation in the mixed solution system of CAP and Cr(VI). One
reason for this is that the formed Cr(OH)3 tends to settle on the
surface of the photocatalyst particles in neutral and alkaline solutions,
reducing the available active sites of the photocatalysts and inhibiting
further photocatalytic degradation of CAP and reduction of Cr(VI)
(Wang et al., 2021a). The decrease in Cr(VI) conversion reduces the
consumption of photogenerated electrons, causing more
recombination of photogenerated electrons and holes and
diminishing the photocatalytic oxidative degradation of CAP (Sun
et al., 2021).

Synergy of Photocatalytic Cr(VI) Reduction
and CAP Degradation Over CuInS2
In the mixed solution of Cr(VI) and CAP, the possibility of
simultaneous Cr(VI) reduction and CAP oxidation by the
photocatalysis of CuInS2 was tested. The effects of different initial

FIGURE 4 | (A) UV–Vis diffuse reflectance spectrum and (B) Tauc plot
for obtaining the Eg value of our prepared CuInS2 sample. FIGURE 5 | (A) Adsorption and photocatalytic reduction of Cr(VI) over

CuInS2 in the mixed solution of Cr(VI) and CAP at different pH conditions (B)
Corresponding kinetics plots for the photocatalytic Cr(VI) reduction reactions
in (A). ([Cr(VI)] = 10 mg/L, [CAP] = 10 mg/L, [catalyst] = 0.2 g/L).
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CAP concentrations on the photocatalytic reduction of 10mg/L
Cr(VI) over CuInS2 and the corresponding kinetic behaviors were
studied. As illustrated in Figure 7A, without CuInS2, the reduction
of Cr(VI) in the Cr(VI)/CAP mixed solution under visible-light
irradiation can be neglected. In the mere Cr(VI) solution (without
CAP), the photocatalytic reduction of Cr(VI) by CuInS2 under
visible-light irradiation for 120min removed only 77.5% of Cr(VI).
When the CAP/Cr(VI) ratio was 0.5: 1, over 94.3% of Cr(VI) was
decreased after 120min of visible-light irradiation, implying that the
presence of CAP might increase Cr(VI) reduction by serving as a
photogenerated hole scavenger. Also, it can be observed that a
variation in the CAP/Cr(VI) ratio can lead to a change in the Cr(VI)
reduction rate. The optimal CAP/Cr(VI) ratio is 0.5: 1, and the k
value is about 3.7 times that without CAP (Figure 7B). This might
be attributed to that when CAP concentration rises, more CAP or
intermediates would be adsorbed on the CuInS2 surface, potentially
covering the catalyst’s active sites (Cherifi et al., 2021).

Besides, the effects of varying the initial Cr(VI) concentration on
the degradation of 10 mg/LCAP over CuInS2 and the corresponding
kinetic behaviors were examined. As shown in Figure 8A, CAP
cannot be degraded without the presence of CuInS2 catalyst, and the
coexistence of Cr(VI) can effectively improve the degradation rate of

CAP in the presence of CuInS2 catalyst, similar to the effect of CAP
on the reduction process of Cr(VI) in the mixed Cr(VI)/CAP
solution under visible-light irradiation. The photodegradation
kinetic behaviors of CAP over CuInS2 in the solutions containing
different ratios of CAP and Cr(VI) were further explored, and the
results are presented in Figure 8B. The k values increase with
decreasing the CAP/Cr(VI) ratio from 1: 1 to 1: 2 and subsequently
decrease with further decreasing the CAP/Cr(VI) ratio from1: 2 to 1:
2.5. The optimized CAP/Cr(VI) ratio is 1: 2, with a k value
(0.0078min−1) for CAP degradation is about 1.5 times that of
the mere CAP solution [without Cr(VI)]. The above results
indicated that there is strong synergy between photocatalytic
Cr(VI) reduction and CAP degradation over CuInS2.

Possible Photocatalytic Mechanism
By carrying out the photocatalytic experiments with or without
the addition of EDTA-Na2 (the scavenger for photogenerated
holes) as well as in air or N2 environment, the mechanism of
photocatalytic Cr(VI) conversion and CAP degradation over
CuInS2 was investigated. Before the start of the experiments
under the N2 environment, the reaction solution was purged
with high-purity (> 99.999%) N2 for 1 h to eliminate the dissolved
O2, and this process was maintained throughout the

FIGURE 6 | (A) Adsorption and photocatalytic degradation of CAP over
CuInS2 in the mixed solution of CAP and Cr(VI) at different pH conditions (B)
Corresponding kinetics plots for the photocatalytic CAP degradation
reactions in (A). ([Cr(VI)] = 10 mg/L, [CAP] = 10 mg/L, [catalyst] =
0.2 g/L).

FIGURE 7 | (A) Adsorption and photocatalytic reduction of Cr(VI) over
CuInS2 under visible irradiation in themixed solution with different weight ratios
of Cr(VI) and CAP (B)Corresponding kinetics plots for the photocatalytic Cr(VI)
reduction reactions in (A). ([Cr(VI)] = 10 mg/L, [catalyst] = 0.2 g/L; pH
= 3.0).
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photocatalytic process. As shown in Figure 9, under visible-light
illumination, the Cr(VI) conversion and CAP degradation over
CuInS2 in the Cr(VI)/CAPmixed solution in the air environment
were more efficient than those in the N2 environment. The
suppressing impact of N2 environment was more noticeable in
the case of Cr(VI) reduction, with the Cr(VI) reduction rate
dropping from 71.9% in air to 53.3% in N2 environment. This is
because that the interaction of dissolved O2 with photogenerated
electrons can produce superoxide radicals (•O2) (Wang et al.,
2016). •O2 can be further converted to H2O2 or disproportioned
to •OH, which affects the Cr(VI) reduction and CAP
degradation, respectively. Furthermore, it has been shown that
•O2 is capable of reducing Cr(VI) to Cr(V), hence improving
Cr(VI) conversion (Wei et al., 2016; Deng et al., 2017). As a
consequence, the rates of Cr(VI) reduction and CAP oxidation in
the air environment are higher than those in the N2 environment.
As shown in Figure 9, the conversion proportion of Cr(VI) and
the degradation proportion of CAP are 71.9% and 49.6%,
respectively, without the addition of EDTA-Na2 in the air
environment under visible-light irradiation for 120 min. After
adding EDTA-Na2, the Cr(VI) conversion rose to 91.5% while the
CAP degradation decreased to 32.2%. Because EDTA-Na2 can
efficiently capture photogenerated holes, so enhancing
photogenerated charge carrier separation and has a promoting
influence on Cr(VI) reduction (Patnaik et al., 2018). On the other
hand, the addition of EDTA-Na2 led to the decline in CAP
degradation efficiency, suggesting that CAP degradation was
mostly dependent on photogenerated holes (Qu et al., 2020).
In the N2 environment, the improvement in the Cr(VI)
conversion and the decrease in the CAP degradation were also
observed after adding EDTA-Na2. Nevertheless, when the
reaction was carried out in the N2 environment, EDTA-Na2
had a smaller promoting impact on the reduction of Cr(VI),

FIGURE 8 | (A) Adsorption and photocatalytic degradation of CAP over
CuInS2 under visible irradiation in themixed solution with different weight ratios
of Cr(VI) and CAP (B) Corresponding kinetics plots for the photocatalytic CAP
degradation reactions in (A). ([CAP] = 10 mg/L, [catalyst] = 0.2 g/L; pH
= 3.0).

FIGURE 9 | Cr(VI) reduction and CAP degradation over CuInS2 in the
Cr(VI)/CAP mixed solution under air or N2 condition as well as with or without
the addition of EDTA-Na2. ([Cr(VI)] = 10 mg/L, [CAP] = 10 mg/L, [catalyst] =
0.2 g/L, pH = 3.0, visible-light irradiation time = 120 min).

FIGURE 10 | Possible mechanisms of concurrent photocatalytic Cr(VI)
reduction and CAP degradation over CuInS2 under visible-light irradiation.
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owing to the reduced of O2/•O2
− mediated reduction in the

decrease of dissolved O2 (Wang et al., 2016; Cherifi et al., 2021).
We postulated the possible mechanisms for the photocatalytic

Cr(VI) reduction and CAP oxidation over CuInS2 as shown in
Figure 10, based on the aforesaid results. Under visible-light
irradiation, photogenerated electrons (e−) and photogenerated
holes (h+) are produced respectively in the conduction band (CB)
and valence band (VB) of CuInS2 (Eq. 3). Cr(VI) can be reduced
by e− (Eq. 4), while CAP can be oxidized by h+ (Eq. 5). The two
simultaneous processes are capable of accelerating the separation
of e− and h+, resulting in a greater amount of e− for Cr(VI)
reduction and h+ for CAP oxidation (Liu et al., 2022c). In
addition, e− can combine with dissolved O2 to form •O2

− (Eq.
6), and •O2

− can reduce Cr(VI) in the presence of H+ (Eq. 7) (Xia
et al., 2018). Furthermore, •O2

− can combine with H+ to make
H2O2 (Eq. 8), which subsequently reacts with e− to form the
powerful oxidizing •OH (Eq. 9). Meantime, CAP may be
oxidized by h+ as well as the oxidizing species created, such as
•O2

−, •OH, and H2O2 (Eq. 10).

CuInS2 + hv → CuInS2(h+vB + e−CB) (3)
Cr(VI) + 3e−CB → Cr(III) (4)

h+VB + CAP → Degradation Products (5)
O2 + e−CB →•O−

2 (6)
Cr(VI) + 2•O−

2 + 4H+ → Cr(III) + 2H2O +O2 (7)
2•O−

2 + 2H+ → O2 +H2O2 (8)
H2O2 + e−CB →•OH +OH− (9)

•O−
2 /H2O2/•ΟΗ + CAP → Degradation products (10)

Reusability and Stability of CuInS2

Photocatalyst
The photocatalytic activity and durability of a catalyst are equally
significant in practical applications. The photocatalytic
endurance of CuInS2 was tested by performing five successive

cycles of Cr(VI) reduction and CAP degradation in the mixed
Cr(VI)/CAP solution by the same process as mentioned above,
but 40 mg of photocatalyst and 200 ml of mixture were used.
When each cycle ended, the photocatalyst was collected, washed
and dried at 80°C for 12 h. In each cycle test, a certain amount of
original Cr(VI)/CAP mixture was injected to maintain the initial
concentration of pollutants. As indicated by Figure 11, both the
Cr(VI) reduction rate and the CAP degradation rate decrease
only a bit as the cycle number rises. The reduced percentage of Cr
(VI) and the degraded percentage of CAP are in turn 71.9% and
49.6% in the first cycle, but still 68.7% and 46.2% in the fifth cycle,
respectively. Thus, the CuInS2 photocatalyst has been shown to
have fair reusability for synchronous photocatalytic Cr(VI)
conversion and CAP degradation. Figures 12A,B show the
XRD patterns and survey XPS spectra of the CuInS2 before
and after the reuse tests. As can be seen from Figures 12A,B,
the peak number and location of the CuInS2 after the reuse tests
are virtually identical to those of fresh CuInS2, showing that the
crystal structure, composition and elemental valence of CuInS2

FIGURE 11 | Cycle performance of our prepared CuInS2 in
photocatalytic Cr(VI) reduction and CAP degradation in the Cr(VI)/CAP mixed
solution. ([Cr(VI)] = 10 mg/L, [CAP] = 10 mg/L, [catalyst] = 0.2 g/L, pH = 3.0).

FIGURE 12 | (A) XRD patterns and (B) survey XPS spectra of the CuInS2

before and after the cycle tests.
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have little change. Accordingly, CuInS2 appears to have strong
stability and fair reusability, which bodes well for its future use in
wastewater treatment.

CONCLUSION

CuInS2 nanoparticles were synthesized by a straightforward
solvothermal method and explored as a photocatalyst in the
simultaneous photocatalytic Cr(VI) reduction and CAP
oxidation under visible-light irradiation. It was demonstrated
that lower pH and oxygenated atmosphere are advantageous for
Cr(VI) reduction and CAP oxidation. The simultaneous
photocatalytic reduction of Cr(VI) and oxidation of CAP over
CuInS2 in the mixed Cr(VI)/CAP solution had synergistic effect,
which was more efficient than only the photocatalytic reduction
of Cr(VI) and only the photocatalytic oxidation of CAP.
Furthermore, after five runs, the CuInS2 sample retains a high
rate of mixed pollutant removal. The possible mechanisms for the
simultaneous photocatalytic reduction of Cr(VI) and oxidation of
CAP over CuInS2 were proposed. The results of this work may
shed light on the synergistic effect of Cr(VI) reduction and CAP
oxidation on the CuInS2 catalyst. This study shows that CuInS2 is
a potential high-performance visible-light photocatalyst for
treatment of organic contaminants and heavy metal ions in
water at once.
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