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The background value of iron in red soil is superior, primarily absorbed and

homogeneously encapsulated in harvested biomass. However, this property on

the high-value utilization of bionic iron-encapsulated biomass remains

unknown. In this study, special biochar (Fe@BC) was obtained from this kind

of biomass by one-step pyrolysis method, which was further used to activate

peroxydisulfate (PDS) and degrade 2,4-dichlorophenol (2,4-DCP). The results

showed that Fe3O4 was formed and homogeneously embedded in biochar at

500oC. Comparing to catalysts prepared by impregnation pyrolysis (Fe/BC), Fe@

BC exhibited excellent degradation performance (90.9%, k = 0.0037 min−1) for

2,4-DCP. According to the free radicals quenching studies, hydroxyl radicals

(·OH) and superoxide radicals (·O2
−) were the dominant reactive oxygen species

(ROS) in Fe@BC/PDS system. Importantly, a PDS adsorption model was

established, and the electron transport and PDS activation in the core-shell

structure were demonstrated by DFT calculations. Therefore, this study could

supply a high-performance catalyst and significant implications for high-value

biomass utilization in red soil.
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Introduction

Red soil is widely distributed worldwide, and more than

50 million tons of iron-rich biomass is harvested through

agricultural and forestry production annually. The high

background value of the iron element in red soil is

bioavailable, which can be absorbed during plant growth

and evenly distributed in biomass. (Pi et al., 2020) Large

amounts of iron element (more than 8.75%, dry weight) in

biomass are not utilized effectively, e.g., Iris sibirica L. (Wang

et al., 2021) However, the ignoring of the iron element in

biomass needs to be emphasized to promote the sustainable

and high-value utilization of iron-rich biomass. Such iron

element in biomass would be biomimetic encapsulated and

evenly distributed in biochar (more than 20.00%, iron) through

pyrolysis procedure, the spatial distribution characteristic of

iron element in biochar might bring in new function for this

special material.

Generally, metal-loaded biochar is a way to enhance the

catalytic performance of materials. Attributed to its reversibly

electronic mobility, this material has been widely developed in

energy storage, selective catalysis, environmental restoration, and

so on. Sol-gel, coprecipitation, and hydrothermal method are

recognized as common approaches for the metal loaded carbon.

Using the impregnation-pyrolysis method to load iron-

manganese oxides on biochar effectively improved the

photocatalytic performance, and the degradation efficiency of

naphthalene was increased by 37.9%. (Li et al., 2019) However,

these methods are inefficient due to the aggregating of the metal

particles, the extensive use of chemicals, and the fussy

optimization strategy. (Chen et al., 2020) In contrast, as an

environmentally friendly metal, iron could effectively avoid

potential environmental hazards. Overall, it can be inferred

that the sustainable conversion from iron-rich biomass to

iron-loaded biochar can be achieved by biomimetic synthesis

technology with one-step pyrolysis instead of additional loading

procedures.

By biomimetic synthesis technology, a new kind of iron-

loaded biochar was produced, in which the iron element was bio-

inspired in biochar. Subsequently, we demonstrated the essential

characterization (specie, distribution). 2,4-Dichlorophenol (2,4-

DCP) is a polycyclic aromatic hydrocarbon widely derived from

oil refining, coking and papermaking. At present, biochar, metal

oxide, carbon nanotubes, and C3N4 were commonly used to

degrade 2,4-DCP by catalytic peroxodisulfate (PDS).

Furthermore, 2,4-DCP removal had been extensively studied

by biocathode systems. (Chen et al., 2022) In this study, the

catalytic ability of Fe@BC for the decomposition of PDS was

investigated with 2,4-DCP as the target pollutant. Overall, we

developed a biomimetic synthesis technology to strengthen the

commercialization of the preparation of iron-loaded biochar,

which could also enhance the sustainability and high-value

utilization of iron-rich biomass in red soil region.

Materials and methods

Materials

Peroxydisulfate (Na2S2O8, PDS), 2,4-dichlorophenol

(C6H4Cl2O, 2,4-DCP), sodium hydroxide (NaOH), ethanol

(C2H6O, EtOH), sulfuric acid (H2SO4), tert-butyl alcohol

(C4H10O, TBA), methanol (CH4O, MeOH), and

p-benzoquinone (BQ, C6H4O2) were purchased from Aladdin

Industrial Corporation (Shanghai, China). Hoagland’s Nutrient

Solution was obtained from Xi’an Qiyue Biotechnology Co., Ltd.

All chemicals were of analytical grade and did not require any

further purification.

Preparation of catalysts

Iris sibirica L. was a common emerging aquatic plant with a

super-accumulation capacity for metal ions. (Wang et al., 2018)

In particular, it was widely used in phytoremediation of heavy

metal pollution. (Ma et al., 2017) Plants that were 6 months old

and of similar biomass were selected and transplanted into the

greenhouse for hydroponics. Furthermore, the concentration of

iron ions were additionally added (500 mg L−1) during the

cultivation process. The nutrient solution were completely

replaced every week. The cultivation time in this experiment

was 60 days.

The dried samples were pyrolyzed in a tubular retort furnace

at 500°C for 2 h with a heating rate of 10oC min−1, and a N2

atmosphere was maintained. By calculation, the yield of biochar

was only 38.76%. The obtained biochar was washed with

deionized water and dried at 70oC for 48 h. As a control,

iron-loaded biochar (Fe/BC) was prepared by impregnation

pyrolysis method. Furthermore, it was guaranteed that the

iron loading of Fe/BC was consistent with Fe@BC.

Characterization and analytical method

The phase structure was determined by a Shimadzu-7000S

advanced X-ray diffractometer (XRD). The microscopic

morphologies of the obtained samples were recorded using a

Hitachi-SU8000 scanning electron microscope (SEM). The

chemical composition of obtained samples was analyzed by a

an Axis-Ultra X-ray photoelectron spectroscopy (XPS). The iron

concentration in Fe@BC sample was determined by an

inductively coupled plasma-optical emission spectrometry.

Batch experiments

All experiments were performed in 250 ml conical flasks with

magnetic stirring (speed = 500 rpm) at room temperature (25oC).
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Fe@BC (20 mg) was added to 100 ml of solution containing 2,4-

DCP (10 mg L−1) for saturated adsorption, and the adsorption

was saturated in 90 min, and then PDS (100 mg L−1) was added to

start the degradation reaction. At different elapsed times (up to

640 min), aliquots of 1.0 ml were extracted at given time intervals

and immediately filtered through a PES filter (0.22 µM) to

remove catalyst. The 2,4-DCP concentration in the obtained

filtrate was further detected by high performance liquid

chromatography (HPLC). In particular, quenching

experiments were performed with MeOH (100 mm), TBA

(100 mm), and BQ (10 mm), respectively, to evaluate the

contribution of SO4
−, ·OH, and O2

− in the degradation

process of 2,4-DCP.

Furthermore, the degradation curve of 2,4-DCP could be

linearly fitted in a pseudo-first-order kinetic mode, expressed as

follows:

−Ln(C/C0) � kt (1)

where C(mgL−1) is the concentration of 2,4-DCP at t,

C0(mgL−1) is the 2,4-DCP initial concentration, k(min−1) is

the pseudo-first-order rate constant, and t (min) is the

reaction time.

Results and discussion

Catalyst characterization

The crystal structures of BC, Fe/BC, and Fe@BC were

characterized by XRD, as shown in Figure 1A. The XRD

peak at 26.6o in BC was regarded as graphitic carbon

structure (PDF#26-1080). In particular, the peak intensity of

carbon weakened with the introduction of iron, suggesting that

the introduction of iron might influence the formation of

graphitic carbon. As for Fe@BC, the diffraction peaks at

18.3°, 30.1°, 35.5°, 36.9°, 43.1°, 56.9°, and 62.6° were ascribed

FIGURE 1
(A) XRD patterns of BC, Fe/BC, and Fe@BC. SEM images of (B) BC, (C) Fe/BC, (D) Fe@BC, and (E) elemental mappings of Fe@BC. (F) Removal
efficiency and (G) kinetic curves of 2,4-DCP in BC/PDS, Fe/BC/PDS, and Fe@BC/PDS systems. (H) Influence of radical scavengers on 2,4-DCP
removal in Fe@BC/PDS system.
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to Fe3O4 (PDF#19-0629). (Suppiah and Abd Hamid, 2016) The

strong and sharp diffraction peaks of Fe3O4 in Fe@BC

indicated its high crystallinity. Usually, the presence of

metals in carbon-based precursors induced the formation of

carbon shells during pyrolysis process. The diffraction peaks

of Fe3O4 in Fe@BC showed a obvious red shift, suggesting

the formation of a core-shell structure. Furthermore, weak

diffraction peaks were also found in XRD pattern of Fe/BC,

which indicated that Fe3O4 could not be well crystallized by the

iron-supported biochar prepared by the impregnation

pyrolysis method.

The morphologies of BC, Fe/BC, and Fe@BC were observed

by SEM. As shown from Figures 1B–D, the BC exhibited a

porous and smooth structure surface, while numerous spherical

nanoparticles were formed on Fe/BC and Fe@BC surfaces. By

contrast, the distribution of spherical nanoparticles in Fe@BC

was more uniform than that in Fe/BC. Furthermore, the

elemental mapping image also confirmed that Fe elements

were uniformly dispersed in Fe@BC. These results

demonstrated that the Fe3O4 nanoparticles could be

uniformly dispersed into biochar using biomimetic

preparation method.

Catalytic evaluation

The removal efficiencies of 2,4-DCP by BC, Fe/BC, and Fe@

BC were shown in Figure 1E. The adsorption equilibrium

between catalysts and 2,4-DCP was obtained within 90 min,

and the 2,4-DCP removal efficiencies were 6.5, 11.3, and 18.8%

via BC, Fe/BC, and Fe@BC, respectively. The optimal

adsorption performance of Fe@BC indicated that the

synergistic promoting effect between metal oxides and

biochar could be enhanced by the biomimetic preparation

method. After addition of PDS, the removal efficiencies of

2,4-DCP were obviously improved. The removal efficiencies

of 2,4-DCP by BC, Fe/BC, and Fe@BC increased by 16.3, 46.51,

and 72.1% after 640 min, respectively. A slight increase in 2,4-

DCP removal was observed in BC/PDS system, suggesting that

PDS could hardly be activated by BC along. Furthermore, the

low removal efficiency of 2,4-DCP by Fe/BCmight be due to the

aggregation of Fe3O4, which weakened the accessibility of

reactants towards the active sites. By contrast, Fe@BC was

the most efficient catalyst, and its kobs (0.0037 min−1) was

almost three times that (0.0013 min−1) of Fe/BC (Figure 1G).

As mentioned above, the synergistic effects of biochar and

Fe3O4 significantly enhanced the catalytic activity.

Identification of reactive radical species

The reactive radical species (ROS) in Fe@BC/PDS system

were identified by quenching experiments. Usually, methanol

(MeOH) was widely used as a quencher for sulfate radicals

(·SO4
−) and hydroxyl radical (·OH). Tert-butyl alcohol (TBA)

and p-benzoquinone (BQ) were used as scavengers for OH and

superoxide radicals (·O2
−), respectively. (Anipsitakis and

Dionysiou, 2004). There was little difference in 2,4-DCP

removal after the addition of MEOH and TBA, suggesting

that OH was rapidly generated by the reaction between SO4
−

and water. Furthermore, an effective inhibition of 2,4-DCP

removal (12.2%) indicated that O2
− was generated in Fe@BC/

PDS system. The generation of O2
− might be duo to the one-

electron reaction between PFRs and soluble oxygen in solution.

(Fang et al., 2015) The results exhibited that OH was the main

active species, while O2
− played aminor role in 2,4-DCP removal.

Specially, the generation of persistent free radicals (PFRs) could

be effectively promoted by biomimetic preparation method,

thereby activating PDS. (Xu et al., 2022) Furthermore,

chlorine radicals were generated by the reaction between OH

and Cl− released during 2,4-DCP degradation.

Reaction mechanism

To explain the activation mechanism of Fe@BC with PDS,

the Fe@BC samples before and after the reaction were

characterized by XRD, XPS, and FTIR. As shown in

Figure 2B, the peak intensity of Fe3O4 decreased slightly,

suggesting the stability of Fe@BC sample. The elements of C

(284.8 eV), O (531.1 eV), and Fe (711.0 eV, 724.7 eV) could be

observed from the survey spectra of fresh and used Fe@BC. In

Figure 2C, the species in C 1s spectra of Fe@BC were

deconvoluted to C=C/C-C (284.7 eV), C-OH (285.7 eV), C=O/

C-O-C (286.6 eV), COOH (288.4 eV), and π-π* shake up

(290.7 eV). (Yoo et al., 2016) A obvious decrease of C-OH,

COOH, and π-π* shake up was found after reaction,

suggesting that these groups played an important role in PDS

activation. As reported, the peak at 709.8 eV was related to Fe(II),

and another two peaks at 711.0 and 713.0 eV were related to

Fe(III) in Fe 2p3/2 spectra. (Lu et al., 2009) The relative content

of Fe(II) decreased slightly after reaction (Figure 2D), which

indicated the existence of electron cycling between Fe(II) and

Fe(III). (Rong et al., 2019) The O 1s XPS spectra were fitted to

four peaks with binding energies at 529.08, 530.3, 531.1, and

532.5 eV, corresponding to Olat, Osurf, and Oads (Figure 2E).

(Yang et al., 2015) The relative content of Olat decreased by

24.6% after reaction, suggesting Olat participated in PDS

activation. The reduction of the -OH content in FTIR spectra

after reaction further proved that -OH might be an important

active site in the Fe@BC/PDS system (Figure 2F). (Suding et al.,

2018) Furthermore, the PDS adsorption model was constructed,

and the electron transport and PDS activation in the core-shell

structure were demonstrated by DFT calculations (Figures

2G,H). Also, the electron cycling process between Fe2+ and

Fe3+ was further demonstrated.
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Conclusion

In this study, iron-rich biochar (Fe@BC) was prepared by

biomimetic preparation method. This method not only achieved

uniform distribution of Fe3O4 nanoparticles in biochar, but also

enhanced the activation performance of Fe@BC for PDS.

Notably, the efficient removal of 2,4-DCP could be achieved

in Fe@BC/PDS system. It was found that oxygen functional

groups acted as catalytic active sites. More importantly, the

formed core-shell structure could effectively transfer electrons

and inhibit the leaching of iron ions. This study might bring

valuable insights into potential environmental applications of

biomass in red soil regions.
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FIGURE 2
(A) XRD partten, (B–E) XPS spectra, and (F) FTIR spectra of fresh and used Fe@BC. (G–H) DFT configurations of PDS adsorption onto Fe@BC.
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