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Exploring durable and highly-active non-noble-metal nanomaterials to

supersede Pt-based nanomaterials is an effective way, which can reduce the

cost and boost the catalytic efficiency of oxygen reduction reaction (ORR).

Herein, we constructed atomically-dispersed Mn atoms on the ZIF-derived

nitrogen-doped carbon frameworks (Mn-Nx/NC) by stepwise pyrolysis. The

Mn-Nx/NC relative to pure nitrogen-doped carbon (NC) exhibited superior

electrocatalytic activity with a higher half-wave potential (E1/2 = 0.88 V) and a

modest Tafel slope (90 mV dec−1) toward ORR. The enhanced ORR

performance of Mn-Nx/NC may be attributed to the existence of Mn-Nx

active sites, which can more easily adsorb intermediates, promoting the

efficiency of ORR. This work provides a facile route to synthesize single-

atom catalysts for ORR.
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Introduction

The increasingly serious energy crisis has accelerated the growing trend of energy

conversion devices. Particularly, proton exchange membrane fuel cells (PEMFCs) exhibit

widespread application prospects on account of their high performance and no noxious

gas emission, in which oxygen reduction reaction (ORR) is decisive in the overall

efficiency of PEMFCs (Wan and Shui, 2022). Currently, platinum (Pt)-based materials

are extensively considered as ideal ORR electrocatalysts, (Zhao et al., 2019; Ying, 2021),

but their commercial applications are restricted by the shortage and high price of Pt.

Therefore, exploration of cost-effective transition-metal electrocatalysts to substitute Pt-

based catalysts becomes a critical research direction (Huang et al., 2019; Zhang et al.,

2020a; Rao et al., 2022a; Hu et al., 2022; Li et al., 2022; Wang et al., 2022).
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Recently, transition-metal single-atom catalysts (SACs) draw

wide concern as ORR catalysts on account of their efficient

atomic utilization and high tunability of electronic states

through tailoring the coordination environment (Wang et al.,

2019; Cheng et al., 2020; Shi et al., 2020; Xie et al., 2020; Zhang

and Guan, 2020; Zhao et al., 2020; Zhu et al., 2020; Yang et al.,

2021a; Zhang et al., 2021a; Yang et al., 2021b; Rao et al., 2022b).

Among them, iron (Fe)-based SACs have been popularly studied

on account of their excellent electrocatalytic performance in ORR

(Li et al., 2019; Ye et al., 2019; Chen et al., 2020; Zhang et al.,

2021b; Wang et al., 2021; Rao et al., 2022c; Liu et al., 2022). For

example, Zhang et al. successfully constructed Fe-N-C SACs,

which exhibited superior catalytic performance in ORR. This is

related to the atomically dispersed FeN4 active sites and the

peculiar 3D porous layered structure (Zhang et al., 2020b).

However, the active sites of Fe-SACs have strong adsorption

capacity for *OH, resulting in a high energy requirement for *OH

desorption from the active sites, reducing the catalytic efficiency

(Han et al., 2020). Therefore, the study of transition metal SACs

with appropriate adsorbing effectiveness for *OH is an effective

method to acquire efficient ORR catalysts. Manganese (Mn)

adjacent to Fe on the periodic table has the outer layer

electrons of 3d54s2. The adsorption energy of Mn-N-C for

*OH is lower than that of Fe-N-C, which is consistent with

the density functional theory (DFT) analyses (Xiong et al., 2019;

Hu et al., 2021; Li et al., 2021; Peng et al., 2021; Zhou et al., 2022).

Besides, Mn is among the richest metals on earth. Hence, Mn-

based SACs with a Mn-N-C structure are worth studying as

potential ORR electrocatalysts on account of abundant reserves

and unique electronic structure (Shang et al., 2020a; Han et al.,

2021).

Considering that the Mn element is abundant and cheap on

earth, and Mn-N-C has comparatively low adsorption energy for

*OH, we adopted a stepwise pyrolysis way to construct

atomically-dispersed Mn atoms on the ZIF-derived nitrogen-

doped carbon (Mn-Nx/NC) as ORR catalysts. We utilized the

aberration-corrected high-angle annular dark-field scanning

transmission electron microscopy (AC-HAADF-STEM) to

demonstrate that Mn is dispersed as a single atom on the

nitrogen-doped carbon (NC). Owing to the sufficient

atomically-dispersed Mn-Nx active sites, Mn-Nx/NC exhibits

superior electrocatalytic activity and stability toward ORR in

alkaline media. Noticeably, Mn-Nx/NC possesses a higher half-

wave potential (E1/2) over NC, and similar to commercial Pt/C.

Moreover, Mn-Nx/NC exhibits excellent electrochemical

durability with almost no loss of activity after 3000 cycles.

This work supplies a general method to prepare non-noble-

metal SACs for electrochemical applications.

Experimental section

Chemicals and materials

Zn(NO3)2·6H2O (AR, 99%), Mn(CH3COO)2 (MnAc, AR), 2-

methylimidazole (2-MeIm, 99%), methanol (GR, 99.7%),

isopropanol (AR, 99.7%), and hydrochloric acid (AR, 99.7%)

were all produced from Sinopharm Chemical Reagent CO., Ltd.

Synthesis of nitrogen-doped carbon

NC with a rhombic dodecahedral structure was obtained by

pyrolyzing zinc-imidazole frameworks (ZIF-8) at 900°C.

Typically, 11.9 g Zn(NO3)2·6H2O and 12.3 g 2-MeIm were

dissolved in 150 ml methanol, respectively. Then the two

solutions were blended to form ZIF-8 nanocrystals at ambient

temperature (Pan et al., 2018). ZIF-8 nanocrystals were

successfully prepared after 24 h stirring. The reaction solution

was centrifuged, and the precipitate was washed with methanol

for several times to remove the impurities. Then the obtained

white precipitate was dried in a vacuum oven. The prepared ZIF-

8 precursor was pyrolyzed at 900°C in N2 condition to form

the NC.

SCHEME 1
Schematic fabrication process of Mn-Nx/NC.
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Synthesis of Mn-Nx/N

Firstly, 300 mg of NC was dispersed in 30 ml isopropanol,

then 10 mg ofMnAc was added to the above solution. After 2 h of

ultrasonic treatment, the suspension was stirred at 40°C until the

isopropyl alcohol evaporated entirely. The obtained black power

(MnAc/NC) was collected and ground by an agate mortar. The

MnAc/NC was annealed at 900°C for 2 h in N2 condition. The

obtained sample was pickled with 3 M HCl to remove the

unstable metal materials, and then repeatedly washed with

water until the supernatant became neutral. The black

precipitate was dried into black power in a vacuum oven, and

then annealed at 900°C for 1 h in N2 condition to obtain the final

product Mn-Nx/NC.

Results and discussion

Scheme 1 illustrates the route of preparing Mn-Nx/NC by

stepwise pyrolysis. Firstly, ZIF-8 precursors were synthesized

(Supplementary Figure S1A), then pyrolyzed at 900°C in N2

atmosphere to shape into stable N-doped carbon (NC) structure

(Supplementary Figure S1B). NC has the united rhombic

dodecahedron shape with the mean size of ~ 400 nm, which

is in agreement with that of ZIF-8. Since the N atoms doped in

NC could function as anchors to adsorb MnAc molecules, NC

successfully adsorbed MnAc in isopropanol solution to form

MnAc/NC (Huo et al., 2020; Qu et al., 2021; Zhai et al., 2022),

which was then further pyrolyzed at 900°C. The obtained black

power was washed by 3 M HCl solution to etch the unstable

metal particles, then annealed again at 900°C for 1 h in N2

condition to recover the crystallinity, forming Mn-Nx/NC

which possesses highly-dispersed Mn-Nx active sites.

Scanning electron microscopy (SEM) image exhibits that

Mn-Nx/NC possesses the similar rhombic dodecahedral

structure with NC (Figure 1A). Figures 1B,C are transmission

electron microscopy (TEM) images of Mn-Nx/NC with the

diameter of ~ 400 nm, further clearly showing rhombic

dodecahedral structure. The high-resolution TEM (HRTEM)

image of Mn-Nx/NC in Figure 1D shows graphitized carbon

structure in part. No obvious Mn metal particles in the above

results, indicating the presence of highly dispersed Mn-N

coordinated structures. Therefore, we utilize the AC-HAADF-

STEM technique to explore the existence form of Mn in Mn-Nx/

NC. As shown in Figure 1E, the bright spots are Mn single atoms

(partially circled in red), which are atomically dispersed in the

NC. Elemental mapping was used to probe into the distributions

of Mn, N and C in Mn-Nx/NC (Figure 1F). The HAADF-STEM

image further uncovers that the Mn-Nx/NC has the similar

rhombic dodecahedral structure with NC. The corresponding

FIGURE 1
(A) SEM, (B,C) TEM, (D)HRTEM, (E) AC-HAADF-STEM images of Mn-Nx/NC. (F) EDX elemental mapping images of Mn-Nx/NC with Mn (blue), N
(green), and C (red).
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EDX elemental mapping images exhibit that Mn, N, and C are

equally dispersed in the entire structure, which facilitate the

possible coordination of Mn and N components. Besides, we

further quantified the C, N and Mn content of Mn-Nx/NC that

the Mn mass loading is about 0.81% (Supplementary Table S1).

Structure and phase state of the catalysts were investigated by

XRD. The XRD patterns of NC (in black) and Mn-Nx/NC (in

red) showed only two wide shoulder peaks at ~26o and ~44o

(Figure 2A), which are consistent with the (002) and (010) planes

of graphitic carbon (Lin et al., 2019). Besides, the XRD pattern of

Mn-Nx/NC showed no typical peaks of Mn or its compounds,

indicating the inexistence of any Mn-based particles. To study

the specific surface areas and porosity structures of samples, the

N2 adsorption/desorption experiments were utilized to test NC

and Mn-Nx/NC. As shown in Figure 2B, the BET specific surface

areas of NC and Mn-Nx/NC are 1064.531 and 1014.221 m2 g−1,

respectively. Compared with NC, the BET specific surface area of

Mn-Nx/NC decreases owing to the adsorption of MnAc (Liu

et al., 2021). The NC and Mn-Nx/NC are mainly micropores

(about 0.5 nm), in which Mn-Nx/NC still keeps the abundant

micropores after adsorption of MnAc (Figure 2C). Raman

spectroscopy can effectively characterize the disorderly and

orderly crystal structures of carbon materials. It can be seen

from the Figure 2D that there are two bands at 1350 and

1590 cm−1, which matched with disordered carbon (D band)

and graphitic carbon (G band), respectively (He et al., 2020;

Gharibi et al., 2022; Zhang et al., 2022). It can be concluded that

the relative intensity ratios of the D and G band (ID/IG) of NC

and Mn-Nx/NC are 1.015 and 1.026, respectively, suggesting the

formation of more defects in N-doped carbon after introduction

of Mn, which helps enhance the electrocatalytic activity (Rao

et al., 2022d; Zou et al., 2022).

Furthermore, we utilize X-ray photoelectron spectroscopy

(XPS) to study the elemental composition and valence state of the

Mn-Nx/NC. Figure 2E is the high-resolution C 1s spectrum of

Mn-Nx/NC, which was fitted into three peaks at 284.7 eV (C=C),

285.8 eV (C=N) and 289.4 eV (C-C), respectively (Shang et al.,

2020b; Gu et al., 2022). Figure 2F shows the N 1s spectrum of

Mn-Nx/NC, which comprises four main peaks of graphitic N

(402.1 eV), pyrrolic N (401.1 eV), pyridinic N (398.3 eV), and

Mn-Nx (399.1 eV), respectively (Han et al., 2020). The above

results manifest the existence of pyridinic N, which possessed

lone pair electrons and exhibits stronger activity than graphitic N

and pyrrolic N in NC (Qu et al., 2021; Meng et al., 2022). Besides,

the Mn 2p spectrum of Mn-Nx/NC was shown in Supplementary

Figure S2, which contains two peaks of Mn 2p3/2 and Mn 2p1/2.

These results demonstrate that the Mn-Nx/NC has been

successfully prepared and is a promising ORR electrocatalyst

owing to the sufficient Mn-Nx active sites.

To prove that Mn-Nx/NC has excellent electrocatalytic

performance, the electrochemical properties of Mn-Nx/NC

were tested by a typical three-electrode system. The liner

sweep voltammetry (LSV) curves of Mn-Nx/NC, NC and

commercial Pt/C at a rotating speed of 1600 rpm are shown

FIGURE 2
(A) XRD patterns, (B) N2 adsorption/desorption isotherms, and (C) homologous pore distribution of NC (in black) and Mn-Nx/NC (in red). (D)
Raman spectra of NC and Mn-Nx/NC. XPS survey spectra for (E) C 1s, and (F) N 1s of Mn-Nx/NC.
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in Figure 3A, indicating that NC has poor catalytic activity

before adsorption of Mn. After the adsorption of Mn, the E1/2
of Mn-Nx/NC (0.88 V) is obviously better than that of NC

(0.74 V), and was consistent with the extensively used

commercial Pt/C (0.88 V) (Figure 3B). Moreover, the

kinetic current density (Jk) of Mn-Nx/NC at 0.85 V is

105.4 times that of NC (13.7 vs. 0.13 mA cm−2), suggesting

that Mn-N sites may take significant roles in the ORR than

the N-C sites (Figure 3B). Mn-Nx/NC catalyst has lower cost

and higher catalytic activity, implying that Mn-Nx/NC has a

good application prospect in ORR electrocatalysis.

The ORR kinetics of the catalysts were explored by the Tafel

plots. As shown in Figure 3C, the Tafel slope of Mn-Nx/NC is

90 mV dec−1, which is lower than that of NC (103 mV dec−1) and

verge on that of commercial Pt/C (89 mV dec−1), indicating the

faster electron transfer rate of Mn-Nx/NC in ORR. To further

probe into the ORR kinetics of Mn-Nx/NC, its LSV curves were

tested at different rotating speeds. The limiting current density of

Mn-Nx/NC rises proportionally with the increment of rotating

speed (Figure 3D). The Koutecky-Levich (K-L) plots of Mn-Nx/

NC reveal superior linearity at potentials of 0.40, 0.45, 0.50,

0.55 and 0.60 V (inset in Figure 3D). The computed electron-

FIGURE 3
Electrocatalytic performance in ORR. (A) LSV curves, (B) E1/2 and Jk, and (C) Tafel slopes of Mn-Nx/NC, NC and Pt/C. (D) The LSV curves of Mn-
Nx/NC at varying rotating speeds, K-L plots in the inset. (E) n and H2O2 yield of Mn-Nx/NC and the references. (F) Proposed ORR processes on Mn-
Nx/NC.

FIGURE 4
(A)CV curves ofMn-Nx/NC inN2-saturated 0.1 M KOH solution at different scan rates from4 to 12 mV s−1. (B) Plots density against scan rates for
NC, Mn-Nx/NC and commercial Pt/C. (C) The comparison of electrochemical active surface area (ECSA) of NC, Mn-Nx/NC and commercial Pt/C.
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transfer number (n) ofMn-Nx/NC between 0.4 and 0.6 V is about

3.86, which is verge on the n of commercial Pt/C. (Chen et al., 2022;

Xili et al., 2022). Moreover, the electron-transfer mechanism of the

catalysts was further researched by utilizing rotating ring disk

electrode (RRDE) measurement. Notably, Mn-Nx/NC has an

ignorable ring current (Ir) relative to its disk current (Id),

suggesting its H2O2 production was basically inhibited during the

ORR (Supplementary Figure S3). According to the values of Id and Ir,

the n of Mn-Nx/NC was computed to be 3.80–3.98 at the potentials

from 0.2 to 0.9 V, and the H2O2 yield was less than 10%, which are

analogous to the data of commercial Pt/C (Figure 3E). The above

results confirm that Mn-Nx/NC has a four-electron transfer pathway

inORRprocess. The proceeding four-electronORRpathway is shown

in Figure 3F, exhibiting that Mn-Nx site creats a favorable chemical

environment for adsorption of reaction intermediates.

To explore why Mn-Nx/NC exhibits better activity for ORR, the

electrochemical double layer capacitance (Cdl) of the catalysts were

investigated, which is a reasonable indicator of electrochemical active

surface areas (ECSAs). The Cdl was computed by plotting cyclic

voltammetry (CV) curves in a non-faradaic zone at scan rates from

4 to 12mV s−1 (Figure 4A; Supplementary Figure S4). The Mn-Nx/

NC has a larger Cdl (64.1 mF cm−2) than NC (8.1 mF cm−2) as

exhibited in Figure 4B. Correspondingly, Mn-Nx/NC possesses a

greater ECSA than NC (Figure 4C), indicating that Mn-Nx/NC

exposes more catalytic sites at the solid-liquid interface, and

benefiting the diffusing of oxygen and electrolyte onto Mn-Nx

active species.

Except for the electrocatalytic activity, stability is another

important criterion to assess ORR electrocatalysts. The stability of

Mn-Nx/NC and commercial Pt/C were evaluated by CV cycling at a

scan rate of 200mV s−1 for 3000 cycles (Figure 5A; Supplementary

Figure S5A). Comparedwith commercial Pt/C (Supplementary Figure

S5B), the E1/2 and limiting current density of Mn-Nx/NC (Figure 5B)

changed very little from the initial LSV curves after the 3000 cycles,

demonstrating its superior stability during the ORR. Therefore, all of

the above analyses confirm that Mn-Nx/NC exhibit superior

electrocatalytic properties toward ORR.

Conclusion

Generally speaking, we successfully constructed atomically-

dispersed Mn atoms on the ZIF-derived nitrogen-doped

carbon by a stepwise pyrolysis strategy. The Mn-Nx/NC

exhibited superior ORR performance, which might be

related to the formation of Mn-Nx active sites and ZIF-

derived NC. Mn-Nx active sites more easily adsorb

intermediates and promote ORR efficiency. ZIF-derived NC

with porous structure can supply adequate accessible active

sites. Besides, the NC from high temperature pyrolysis has

strong corrosion resistance and stability. The obtained Mn-

Nx/NC catalyst possess superior catalytic performance that

exhibit higher half-wave potential (E1/2 = 0.88 V vs. RHE) and

excellent stability for the ORR in alkaline media. This work

presents new insights for rationally designing structurally-

optimized and highly-dispersed catalysts, thus improving the

catalytic performance for sustainable energy conversion and

generation.
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