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Efficient conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to

renewable fuels such as 2,5-dimethylfuran (DMF) and 2,5-

dimethyltetrahydrofuran (DMTHF) is of significance for sustainable energy

supply. For efficient catalyst design, it is important to understand the

catalytic behavior and clarify the influence of physico-chemical properties of

catalyst on reaction performance. Herein, to study the structure-activity

relationships of monometallic Cu catalysts for HMF hydrogenolysis, a series

of Cu/SiO2 catalysts with different physico-chemical properties were prepared

and compared for their catalytic performance in HMF hydrogenolysis. It was

found that Cu/SiO2-HT-8.5 catalyst prepared by hydrothermal method showed

excellent activity in HMF hydrohydrolysis reaction. Under the optimal reaction

condition, the total yield of liquid fuels reaches 91.6% with 57.1% yield of DMF

and 34.5% yield of DMTHF in THF solvent. Characterizations such as XRD, H2-

TPR, N2-adsorption/desorption, TEM and XPS revealed that the Cu particles in

the Cu/SiO2-HT-8.5 catalyst have uniform size and high dispersion. The Cu

species and the SiO2 support have relatively weak interaction and are easy to be

reduced to Cu0, which makes it show excellent activity in the hydrogenolysis

of HMF.
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Introduction

Efficient conversion of renewable lignocellulosic biomass to

bio-fuels and value-added chemicals is of significance for

sustainable energy supply, and reduction of CO2 emissions, as

an alternative strategy tomany other ways to solve the energy and

environmental issues (Jing et al., 2019; Hao et al., 2021; Qin et al.,

2021; Li et al., 2022). 5-hydroxymethylfurfural (HMF) is

regarded as one of the most versatile platform molecules that

can be converted to a variety of biofuels and chemicals, such as

levulinic acid (Yan et al., 2015), liquid alkanes (Xia et al., 2014;

Nakagawa et al., 2019), 2,5-furandicarboxylic acid and

derivatives (Yang et al., 2020; Nakagawa et al., 2021), 2,5-

bis(hydroxymethyl)tetrahydrofuran (BHMTHF) (Nakagawa

et al., 2017), 1,6-hexanediol (Xiao et al., 2016) and so forth

(Gao et al., 2021). 2,5-dimethylfuran (DMF) and 2,5-

dimethyltetrahydrofuran (DMTHF) derived from

hydrogenolysis of HMF are not only important chemical

intermediates, but also serves as high-grade biofuels with high

octane number and high energy density (Roman-Leshkov et al.,

2007). Moreover, DMF is also employed as a feedstock for the

production of p-xylene through the Diels-Alder reaction

(Rohling et al., 2018).

The reaction networks for DMF and DMTHF production

from HMF contain a series of parallel and consecutive reactions,

and therefore it is a challenge to increase the selectivity to the

desired products at a complete conversion of HMF (Maki-Arvela

et al., 2021). Over the last decade, catalysts based on noble metals

(e.g., Pt (Shi et al., 2016), Ru (Zu et al., 2014; Priecel et al., 2018;

Feng et al., 2020; Tzeng et al., 2020), Pd (Hu et al., 2021)) and

their bimetallics (Requies et al., 2018; Wang et al., 2018;

Mhadmhan et al., 2019; Talpade et al., 2019; Pisal & Yadav,

2021) have been extensively explored and proved to be efficient in

the hydrogenolysis of HMF to DMF and DMTHF. However,

noble metal-based catalysts suffer from the high cost of catalyst

preparation, which may limit their large-scale industrial

applications.

As an alternative, catalysts based on non-noble transition

metals such as Cu, Co and Ni have been widely studied for HMF

hydrogenolysis to DMF and DMTHF, with the great majority

efforts emphasis on bimetallic catalysts (e.g., Ni-Co (Yang et al.,

2015; Yang et al., 2016; Xia et al., 2022), Co-Cu (Guo et al., 2016),

Cu-Ni (Zhang Y.-R. et al., 2019; Zhu et al., 2019; Umasankar

et al., 2020), Cu-Zn (Zhu et al., 2015; Brzezinska et al., 2020), Ni-

Zn (Kong et al., 2017), Co-Fe (Solanki and Rode, 2019) etc.) or

bifunctional catalysts that consist of active metal and acidic

supports (Shi et al., 2018; Chen N. et al., 2020; Esteves et al.,

2020; Guo et al., 2020). For example, Zhu et al. developed an

alloyed Cu-Ni encapsulated in carbon catalyst by loading Ni and

Cu onto biochar, and the bimetallic Cu-Ni catalyst displayed high

catalytic performance for HMF hydrogenolysis to DMF with

yield up to 93.5% under the optimized conditions (Zhu et al.,

2019). Our group also reported a non-noble bimetallic Ni-Co

catalyst with the uniform dispersion of Ni and Co species on the

active carbon for hydrogenolysis of HMF, and an excellent yield

(up to 95%) of DMF can be obtained at relatively mild conditions

(Yang et al., 2016). Very recently, our group reported a unique

core-shell structured Co@CoO catalyst for this reaction and

afforded the highest productivity among all catalysts reported

to date (Xiang et al., 2022).

Earth-abundant Cu-based catalysts are well known for

their hydrogenation ability, especially in the field of CO2

hydrogenation (Kattel et al., 2017). From the catalyst

design point of view, it is important to understand the

catalytic behavior and clarify the influence of physico-

chemical properties of metal on reaction performance.

However, structure-activity relationships of monometallic

non-noble metals (Cu, Co, and Ni) on HMF hydrogenolysis

have been rarely explored, especially for Cu-based catalysts

(Chen S. et al., 2020).

Herein, to study the structure-activity relationships of

monometallic Cu catalysts for HMF hydrogenolysis, a series

of Cu/SiO2 catalysts with different physico-chemical properties

were prepared and compared for their catalytic performance in

HMF hydrogenolysis. The low acidic non-metal oxide SiO2 was

chosen as the support to exclude the effect of the acid sites and

metal-support interactions as far as possible.

Experimental

Chemicals and materials

HMF was purchased from Shanghai Mode Pharmaceutical

Technology Co., Ltd. Tetrahydrofuran (THF) was purchased

from Shanghai Lingfeng Chemical Reagent Co., Ltd. 2,5-

dimethylfuran (DMF), tridecane was obtained from Aladdin

Reagent (Shanghai) Co., Ltd. SiO2 was obtained from Afaisha

Chemical Co. Ltd. All other chemicals and solvents (analytical

grade) were purchased from Sinopharm Chemical Reagent Co.,

Ltd, China. All the chemicals were used without further

purification.

Catalyst preparation

Cu/SiO2 catalysts were prepared by three different

method, namely excessive impregnation (EI), deposition-

precipitation (DP) and hydrothermal (HT) method. For a

typical EI method, 1.89 g CuNO3•3H2O was dissolved in

70 ml deionized water, and then 1.0 g SiO2 was added into the

solution, stirred at room temperature for 12 h. After that, the

suspension was dried at 60°C for 12 h. The obtained

precursor was then calcined in static air at 450°C for 4 h,

and then reduced in flow 10% H2/Ar mixture at 450°C for 6 h

before use. The catalyst was denoted as Cu/SiO2-EI.
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For a typical DP method, 1.89 g CuNO3•3H2O was dissolved

in 70 ml deionized water, and then silica sol (equivalent to 1.0 g

SiO2) was dropped into the solution and stirred for 0.5 h. Then

1.0 mol/L NaOH solution was dropped into the above mixture

with stirring, until the pH of the suspension to a set value of 9.

Subsequently, the obtained suspension was filtered, washed by

deionized water and dried at 60°C for 12 h. The obtained

precursor was then calcined and reduced with the same

procedure as EI method. The catalysts were denoted as Cu/

SiO2-DP.

For a typical HTmethod, 1.89 g CuNO3•3H2O was dissolved

in 70 ml deionized water, and then a certain amount of NH4Cl,

NH3·H2O and silica sol (equivalent to 1.0 g SiO2) were added into

the solution to reach a set pH value (6.5 or 8.5) and stirred for

0.5 h. After that, the mixture was placed in ultrasonic bath for

0.5 h, and then transferred into a 100 ml Teflon-lined autoclave

and aged at 120°C for 4 h. After cooling to room temperature, the

suspension was filtered, washed by deionized water and dried at

60°C for 12 h. The obtained precursor was then calcined and

reduced with the same procedure as EI method. The catalysts

were denoted as Cu/SiO2-HT-6.5 or Cu/SiO2-HT-8.5.

Catalyst characterization

The X-ray diffraction (XRD) patterns of the catalysts were

recorded by a Bruker D8 Foucus X-ray diffractometer with Cu

Kα radiation (λ = 0.1541 nm) operating at 40 kv and 40 mA. The

crystal size was calculated using the Scherrer equation through

the Cu 111) diffraction peak.

N2 adsorption-desorption isotherms were measured

at −196°C using a Micromeritics ASAP 2020 instrument. The

samples were outgassed at 200°C for 6 h before analysis. The

specific surface areas were obtained by the Brunauer-Emmett-

Teller (BET) method.

H2 temperature programmed reduction (H2-TPR) was

performed on a Huasi DAS-7200 automatic chemisorption

apparatus. The samples were pretreated with pure Ar at 150°C

for 1 h before reduction. After cooling to room temperature, 10%

H2/Ar mixture was introduced and the sample tube was heated to

800°C at a heating rate of 10°C/min. TCDwas used as the detector

to collect signals.

Transmission electron microscopy (TEM) images were taken

using a JEOL 2100F microscope operated at an acceleration

voltage of 200 kV. The sample was grinded and dispersed in

ethanol under supersonic waves, and then dropped on a copper

net and dried before use.

The copper content of the catalyst was determined by Agilent

725ES inductively coupled plasma atomic emission spectrometer

(ICP-AES).

X-ray photoelectron spectroscopy (XPS) was tested on a

Thermo Scientific Escalab 250Xi X-ray photoelectron

spectrometer with a monochromatic Al Kα radiation

(1,486.6 eV photons). All of the binding energies were

calibrated by C 1s and the binding energy of C-C is 284.6 eV.

Hydrogenolysis reactions

The hydrogenolysis of HMF was carried out in a batch

reactor equipped with a magnetic stirrer. Typically,

0.05 g HMF, 0.05 g catalyst, 100 μL tridecane (internal

standard) and 5 ml tetrahydrofuran (THF) were put into a

Teflon-lined stainless-steel autoclave (50 ml). After purging

with H2 for three times, the reactor was conducted under H2

pressure at the required condition for a desired time with

magnetic stirring. After the reaction, the reactor was cooled

with ice-water and depressurized carefully. After

centrifugation of the catalyst, the liquid products were

identified by GC-MS (Agilent 7,890A-5975C) equipped with

an HP-5 capillary column and quantitatively analyzed by GC

(Agilent GC7890 B) equipped with a flame ionization detector

(FID) and an HP-5 capillary column using tridecane as an

internal standard. The injector temperature was set at 270°C,

and the column temperature was increased from 50 to 200°C with

a ramp rate of 10°C/min.

Results and discussion

Characterization of catalysts

The Cu/SiO2 catalysts were prepared by impregnation (EI),

deposition-precipitation (DP) and hydrothermal (HT) methods

at different pH value. Figure 1A shows the XRD patterns of

various catalysts after calcination. It can be seen that the Cu/

SiO2-EI and Cu/SiO2-DP catalysts exhibit diffraction peaks at

35.5°, 38.7°, 48.7°, 53.5°, 61.5° and 66.2°, indexed to (110), (11–1),

(111), (20–2), (020) and (11–3) planes of CuO, suggesting the

presence of bulk CuO. Interestingly, obvious CuO diffraction

peaks were observed for Cu/SiO2-HT-6.5, but none of them was

found for Cu/SiO2-HT-8.5, which indicates CuO species were

highly dispersed on the latter catalyst. The high dispersion of

CuO species on Cu/SiO2-HT-8.5 can be resulted from the

calcination of layered copper silicate (Li et al., 2018). These

results indicate that the hydrothermal method favors the Cu2+ to

complex with surface silanol to form layered copper silicate,

leading to high dispersed CuO species after calcination.

Figure 1B shows the XRD patterns of various Cu/SiO2

catalysts after reduction. Evident peaks at 43.4°, 50.5° and

74.1° were observed for Cu/SiO2-EI catalyst, assigned to (111),

(200) and (220) planes of Cu (Dong et al., 2016). The particle size

of Cu of Cu/SiO2-EI was calculated to be ca. 50 nm according to

the Cu 111) diffraction peak, which suggests an agglomeration of

Cu cluster. The Cu characteristic diffraction peaks can also be

clearly found on Cu/SiO2-DP and Cu/SiO2-HT-6.5 catalysts,
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while no obvious Cu diffraction peaks observed on Cu/SiO2-HT-

8.5, indicating the high dispersion of Cu nanoparticles on the

latter catalyst. Cu/SiO2-HT-6.5 still exhibits the diffraction peaks

at 35.5° (110) and 38.8° (11–1) of CuO, suggesting an incomplete

reduction of the catalyst. In addition, Cu/SiO2-DP and Cu/SiO2-

HT catalysts all exhibit the diffraction peaks at 36.5°, 42.3° and

61.3°, attributed to the (111), (200) and (220) planes of Cu2O

(Wang et al., 2002), indicating the partial reduction of CuO on

these catalysts, due to the interactions between CuOx and SiO2.

N2 adsorption/desorption isotherms for the four Cu/SiO2

catalysts are presented in Figure 1C, and the calculated textural

properties as well as ICP-AES results are listed in Table 1. All

catalysts present the isotherm shape of type IV (IUPAC

classification), indicating the existence of mesoporous

structure in all cases. There are distinct differences of the

textural properties in these catalysts. Cu/SiO2-HT-

8.5 possesses the largest BET specific surface area (449 m2g−1)

and pore volume (0.92 cm3g−1), while Cu/SiO2-EI shows the

smallest ones (48 m2g−1 and 0.09 cm3 g−1, respectively). The

large BET specific surface area of Cu/SiO2-HT-8.5 allows the

high dispersion of CuOx species on the SiO2 surface, consistent

with the XRD results. The Cu contents in Cu/SiO2-EI and Cu/

SiO2-HT catalysts analyzed by ICP-AES were close to the set

value (33 wt%), whereas only 23 wt% Cu was detected in Cu/

SiO2-DP catalyst, which indicates almost a third of Cu content

was lost during the DP process.

The reduction features of Cu/SiO2 catalysts were investigated

by H2-TPR experiments. As shown in Figure 1D, the H2-TPR

FIGURE 1
Physicochemical characterization of Cu/SiO2 catalysts prepared by different method. (A) XRD patterns of Cu/SiO2 catalysts before reduction;
(B) XRD patterns of Cu/SiO2 catalysts after reduction; (C) N2 adsorption-desorption isotherm of Cu/SiO2 catalysts; (D) H2-TPR profiles of Cu/SiO2

catalysts.

TABLE 1 Cu loading and physical properties of Cu/SiO2 catalysts prepared by different method.

Catalyst Cu loading (wt%) SBET (m2g−1) Vpore (cm
3g−1) Pore size (nm)

Cu/SiO2-EI 32 48 0.09 7.6

Cu/SiO2-DP-9 23 132 0.52 15.9

Cu/SiO2-HT-6.5 33 65 0.12 7.5

Cu/SiO2-HT-8.5 31 449 0.92 8.2
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profile of Cu/SiO2-EI and Cu/SiO2-DP presents a broad

hydrogen consumption peak centered at 275 and 284°C,

respectively, which can be attributed to the reduction of bulk

CuO (Mo and Kawi, 2014). Significant difference was presented

for the reduction peaks of Cu/SiO2-HT prepared at different

pH values. Cu/SiO2-HT-6.5 catalyst exhibits two adjacent

reduction peaks at 250~350°C, assigned to the reduction of

bulk CuO with multiple sizes. Generally, the reduction peak at

high temperature is caused by the reduction of large bulk CuO,

and that at low temperature is caused by the reduction of highly

dispersed isolated CuO particles (Mo and Kawi, 2014). Cu/SiO2-

HT-8.5 shows a single symmetrical reduction peak at 242°C. This

indicates that there are well-dispersed CuO species with uniform

size on the catalyst, which is consistent with the XRD results.

Moreover, different reduction temperature can also reflect the

strength of the metal-support interactions (Cui et al., 2016). Cu/

SiO2-HT-8.5 exhibit the lowest reduction temperature of CuO,

suggesting the weakest interaction between Cu species and SiO2.

The dispersions of the Cu particles in Cu/SiO2 catalysts after

reduction were further evaluated by TEM (Figure 2). It can be

seen from Figures 2A–C that Cu particles were unevenly

dispersed on SiO2 surface for Cu/SiO2-EI, Cu/SiO2-DP and

Cu/SiO2-HT-6.5, with the co-existence of both small and large

Cu particles. In contrast, it can be clearly seen that Cu particles

are uniformly dispersed on the SiO2 support for Cu/SiO2-HT-8.5

(Figure 2D). These results are in well agreement with the XRD

and H2-TPR results. Most of the Cu particles are in the rage of

10–15 nm for Cu/SiO2-HT-8.5, as shown in the particle size

distribution in Figure 2D. It should be noted that such size

(10–15 nm) of Cu particle is relatively small compared to its ultra

high Cu loading of 33 wt%. The results reveal that the metal-

support interaction adjusted by different preparation method can

affect not only the reduction of CuO, but also the dispersion of

Cu particles on SiO2 surface.

The chemical state of Cu species plays a crucial role on the

catalytic performance of Cu/SiO2 catalysts for HMF

hydrogenolysis. The Cu0 and Cu+ species on the catalyst

surface play different roles in catalytic reactions, such as

activation of H2 or adsorption of substrate. There are two

steps of reaction in HMF hydrogenolysis to DMF, namely the

hydrogenation of the side -CH = O groups and the following

hydrogenolysis of -CH2-OH groups, which both need the

activation of H2 and adsorption of HMF (Zheng et al., 2017).

Therefore, XPS and XAES analyses were performed to evaluate

the chemical state of Cu species on SiO2 surface. As XPS spectra

shown in Figure 3A, all four catalysts display binding energy

peaks of Cu 2p3/2 at 932.1~932.5 eV, which can be attributed to

the formation of Cu0 or Cu+ (Liu et al., 2015; Li et al., 2016). In the

Cu/SiO2-EI, Cu/SiO2-DP and Cu/SiO2-HT-6.5 catalysts, Cu 2p3/

2 has both low binding energy (932.1~932.3) and high binding

energy (933.7~934.1), indicating that Cu element in these three

catalysts exists not only as Cu+ or Cu0, but also as Cu2+ species (Li

et al., 2016). In contrast, no high binding energy peak of Cu 2p3/2
was observed in Cu/SiO2-HT-8.5 catalyst, attributed to the

disappearance of Cu2+ species after reduction. These XPS

results indicate the highest reducibility of Cu/SiO2-HT-8.5,

which is in well accordance with H2-TPR results.

Since it is difficult to distinguish the Cu0 and Cu+ by XPS

spectra, XAES was carried out to determine the surface Cu0 and

Cu+ species of the reduced Cu/SiO2 catalysts. All the reduced

FIGURE 2
Typical TEM images of Cu/SiO2 catalysts prepared by differentmethod after reduction. (A)Cu/SiO2-EI, (B)Cu/SiO2-DP, (C)Cu/SiO2-HT-6.5, (D)
Cu/SiO2-HT-8.5.
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catalysts exhibit the Auger kinetic energy peaks of Cu LMM at

917.0 and 913.0 eV (Figure 3B), corresponding to Cu0 and Cu+

species, respectively (Zhang Z. et al., 2019). According to the peak

area of the kinetic energy peak of Cu LMMXAES spectra, we can

calculated the ratio of Cu0/(Cu0+ Cu+) (Table 2). The peak area

ratio of surface Cu0/(Cu0+ Cu+) varies from 0.40 to 0.59 as the

different synthetic method of Cu/SiO2, with the Cu/SiO2-HT-

8.5 catalyst showing the largest proportion of Cu0. It is known

that the weaker interaction between Cu species and the support

leads to the easier reduction of CuO to Cu0, while the stronger

interaction generates more Cu+ species. The largest proportion of

Cu0 in Cu/SiO2-HT-8.5 catalyst indicates that the weakest metal-

support interaction compared with the other three catalysts,

which is consistent with the H2-TPR results.

Catalytic performances for
hydroxymethylfurfural hydrogenolysis

The reaction activity of Cu/SiO2 catalysts prepared by

different methods in HMF hydrogenolysis is shown in

Table 3. HMF was completely converted in all cases,

indicating the hydrogenation of HMF to BHMF is easy over

Cu-based catalysts. However, the selectivity of the products was

obviously different. Among them, the catalyst prepared by over-

impregnation method (Cu/SiO2-EI) and deposition precipitation

method (Cu/SiO2-DP) gave 2,5-dihydroxymethylfuran (BHMF)

as a main product with 83.1 and 84.9% yield, respectively, while

the total yields of 2.5-dimethylfuran (DMF) and further

hydrogenation product 2.5-dimethyltetrahydrofuran

(DMTHF) were less than 10%, suggesting a poor

hydrogenolysis activity. In contrast, Cu/SiO2 prepared by

hydrothermal method offered a much stronger hydrogenolysis

activity with DMF and DMTHF as the majority products,

especially for Cu/SiO2-HT-8.5 which achieving the highest

activity in HMF hydrohydrolysis with 57.1% yield of DMF

and 34.5% yield of DMTHF. It was reported that the activity

of Cu-based catalysts in HMF hydrogenolysis is proportional to

the specific surface area of the metallic Cu0. The high activity for

HMF hydrogenolysis over Cu/SiO2-HT-8.5 catalyst can be

attributed to the high Cu dispersion, small Cu particle size

and high proportion of Cu0, which is well evidenced by XRD

characterization, H2-TPR, TEM images, XPS and XAES spectra.

Reaction pathway study and reaction
optimization for hydroxymethylfurfural
hydrogenolysis

The reaction pathway of HMF hydrogenolysis over Cu/

SiO2-HT-8.5 was studied by analyzing the product

distribution at different reaction time, as shown in

Figure 4. It can be seen that HMF has been completely

converted when reaction for 2 h, along with a large number

of intermediates BHMF (49.8%) and HMMF (11.2%), as well

FIGURE 3
Cu 2p XPS (A) and Cu LMM XAFS (B) profiles of Cu/SiO2 catalysts prepared by different method after reduction. (a) Cu/SiO2-EI, (b) Cu/SiO2-DP,
(c) Cu/SiO2-HT-6.5, (d) Cu/SiO2-HT-8.5.

TABLE 2 Kinetic energy and ratio of Cu0/(Cu0+ Cu+) of Cu/SiO2

catalysts prepared by different method.

Catalyst KEa (eV) Cu0/(Cu0+ Cu+)b

Cu+ Cu0

Cu/SiO2-EI 913.4 916.9 0.51

Cu/SiO2-DP 913.4 917.0 0.40

Cu/SiO2-HT-6.5 913.4 917.0 0.54

Cu/SiO2-HT-8.5 913.0 916.7 0.59

aKinetic energy.
bThe ratio of Cu0/(Cu0+ Cu+) was calculated from Cu LMM XAES spectra.
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as 23.5% yield of product DMF. This result indicated that the

hydrogenation of exocyclic aldehyde group (C=O bond) is a

rapid and facile step over Cu/SiO2-HT-8.5 catalyst,

confirming the high hydrogenation activity of Cu species. It

is noted that no 5-methylfurfural (5-MF) was detected,

revealing that HMF was first undergo hydrogenation of

aldehyde group to BHMF rather than hydrogenolysis of

hydroxyl group to 5-MF. After reaction for 4 h, the yield of

DMF gradually increased to 29.8%, with the decrease of

BHMF to 41.8% and slight increase of HMMF to 13.0%.

Only trace of DMTHF was produced at this time,

indicating that the hydrogenolysis of hydroxyl group is

much faster than the hydrogenation of furan ring over Cu/

SiO2-HT-8.5. As the reaction further extended to 8 h, the yield

of DMF continued to increase to 58.6%, with the complete

conversion of BHMF and HMMF. At the same time, it is

noteworthy that the yield of DMTHF also increased rapidly to

30.2%, as well as a small amount of hydration ring opening

products of DMF. When the reaction was further extended to

12 h, the yield of DMF decreased from 58.6 to 49.8%, and the

yield of DMTHF further increased to 38.8%, indicating that

the further extension of reaction time would promote the

cyclic hydrogenation reaction of DMF to DMTHF. During the

reaction period, small amount of other by-products (such as

BHMTHF, HMMTHF, hexanols etc., denoted by others) were

also detected, totally account for ca. 10%。According to the

variation tendency of product distribution versus reaction

time, the reaction pathways of HMF hydrogenolysis to

DMF and DMTHF over Cu/SiO2-HT-8.5 was proposed in

Figure 4B.

To further tailor the catalytic performance of Cu/SiO2 for HMF

hydrogenolysis, we investigated the influence of reaction

temperature and H2 pressure on the reaction performance, as

shown in Table 4. When increase the reaction temperature from

180 to 220oC at 0.6 MPa H2 pressure, the yield of DMF first

increased from 47.5 to 57.1% and then decreased to 51.0%.

TABLE 3 Catalytic performance of HMF hydrogenolysis over Cu/SiO2 catalysts prepared by different methods.

Catalysts Conv.
of HMF(%)

Yield (%) or selectivity (%)

DMF DMTHF BHMF HMMF Carbon
balance

Cu/SiO2-EI >99.9 5.0 1.6 83.1 7.6 97.3

Cu/SiO2-DP >99.9 3.4 0.5 84.9 7.8 96.6

Cu/SiO2-
HT-6.5

>99.9 42.9 41.4 0 5.0 90.6

Cu/SiO2-
HT-8.5

>99.9 57.1 34.5 0 0 93.6

Reaction condition: 0.05 g HMF, 0.05 g catalyst, 100 µL tridecane, 5 ml THF, 200°C, 8 h.

FIGURE 4
Reaction pathway study of HMF hydrogenolysis over Cu/SiO2-HT-8.5 catalyst. (A) Product distribution of HMF hydrogenolysis at different
reaction time; (B) Proposed reaction pathways for HMF hydrogenolysis over Cu/SiO2-HT-8.5 catalyst. Reaction conditions: 0.05 g HMF, 0.05 g
catalyst, 100 µL tridecane, 5 ml THF, 200°C, 0.6 MPa.
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According to the detection of the product distribution, lower

temperature (180oC) led to the incomplete conversion of

intermediate HMMF and higher temperature (220oC) resulted in

a small amount of side reaction of DMF to hydration by-products.

At the same time, the yield of DMTHF continuously increased from

30.7 to 36% with the increase of reaction temperature, indicating

that higher temperature accelerated the reaction rate of furan ring

hydrogenation and in favor of the production of DMTHF.

When the reaction temperature was fixed at 200oC, the variation

ofH2 pressure showed that the H2 pressure for HMF hydrogenolysis

can be as low as 0.2 MPa, at which a high DMF yield of 66.8% was

reached, along with 24.3% yield of DMTHF. This result further

confirms the high activity of Cu/SiO2-HT-8.5 catalyst for HMF

hydrogenolysis. Increasing of the H2 pressure from 0.2 to 1.4 MPa

led to the decrease of the DMF yield from 66.8 to 46.5%with a slight

increase of DMTHF, indicating that high H2 pressure in favor of the

hydrogenation of furan ring, leading to a decline of DMF yield.

Stability test

The stability of a catalyst is an important factor to evaluate

its prospect for industrial application. Therefore, the cycle

stability of Cu/SiO2-HT-8.5 catalyst for HMF hydrohydrolysis

was also investigated under the optimal reaction conditions

(200oC, 0.6 MPa, 8 h). After the first run, the catalyst was

separated from the liquid phase by centrifugation, washed

with THF, dried and re-used directly for the second run. No

obvious activity loss was found after five successive runs and

the total yield of DMF and DMTHF maintain close to the

values as the first run (Figure 5), revealing the high stability

and recyclability of Cu/SiO2-HT-8.5 catalyst. These results

suggest that the high dispersion of Cu species with smaller Cu

particle offers not only high activity for HMF hydrogenolysis,

but also high catalyst stability.

Conclusion

In summary, we have studied the structure-activity

relationships of four Cu/SiO2 catalysts prepared by

different method for HMF hydrogenolysis. It was

demonstrated that Cu/SiO2-HT-8.5 catalyst prepared by

hydrothermal method showed the best catalytic activity in

HMF hydrohydrolysis reaction. Under the optimal reaction

condition, the total yield of liquid fuels reaches 91.6% with

57.1% yield of DMF and 34.5% yield of DMTHF in THF

solvent. A combination of multiple characterization revealed

that the Cu particles in the Cu/SiO2-HT-8.5 catalyst have

uniform size and high dispersion. The Cu species and the

SiO2 support have relatively weak interaction and are easy to

be reduced to Cu0, which makes it an excellent catalyst for the

hydrogenolysis of HMF. This work provides a new possibility

for cheap monometallic catalyst design for biomass

valorization.

TABLE 4 The effects of temperature and pressure on the conversion of HMF over Cu/SiO2-HT-8.5 catalyst.

Entry T/°C P/MPa Conv. of
HMF

YDMF YDMTHF YDMF+DMTHF

1 180 0.6 >99.9 47.5 30.7 88.2

2 200 0.6 >99.9 57.1 34.5 91.6

3 220 0.6 >99.9 51.0 36.0 87.0

4 200 0.2 >99.9 66.8 24.3 91.1

5 200 1.0 >99.9 58.1 35.4 93.5

6 200 1.4 >99.9 46.5 34.4 80.9

Reaction conditions: 0.05 g HMF, 0.05 g catalyst, 100 µL tridecane, 5 ml THF, 8 h.

FIGURE 5
The cycle stability test for HMF hydrogenolysis over Cu/SiO2-
HT-8.5 catalyst. Reaction conditions: 0.05 g HMF, 0.05 g catalyst,
100 µL tridecane, 5 ml THF, 200°C, 0.6 MPa, 8 h.
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