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2,3,5-triphenyltetrazolium chloride (TTC) may convert into phenyl-benzo[c]

tetrazolocinnolium chloride (PTC) and 1,3,5-triphenylformazan (TPF) under

irradiation with light. The latter reaction, albeit enzymatically rather than

photochemically, is used in so-called TTC assays indicating cellular

respiration and cell growth. In this paper, we address the photochemistry of

TPF with time-resolved spectroscopy on various time scales. TPF is stabilized by

an intramolecular hydrogen bond and switches photochemically via an E-Z

isomerization around an N=N double bond into another TPF-stereoisomer,

from which further isomerizations around the C=N double bond of the

phenylhydrazone group are possible. We investigate the underlying

processes by time-resolved spectroscopy in dependence on excitation

wavelength and solvent environment, resolving several intermediates over a

temporal range spanning 15 orders of magnitude (hundreds of femtoseconds to

hundreds of seconds) along the reaction path. In a quantum-chemical analysis,

we identify 16 stable ground-state isomers and discuss which ones are

identified in the experimental data. We derive a detailed scheme how these

species are thermally and photochemically interconnected and conclude that

proton transfer processes are involved.
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1 Introduction

Formazans comprise an azo group (–N=N–) and a hydrazone group (–C=N–N–),

with both being capable to isomerize at the double bond upon excitation with visible light.

The most investigated representative is 1,3,5-triphenylformazan (TPF, Figure 1). TPF can

be generated by a photochemical conversion of 2,3,5-triphenyltetrazolium chloride

(TTC), accompanied by a color change of the solution from colorless to red (Hausser

et al., 1949a; Grummt and Langbein, 1981). TPF exhibits a unique photochromism which

depends on the excitation conditions and the solvent environment. We investigated in an

earlier study to which extent the thermal back relaxation around the C=N double bond is

sensitive to the polarity and the hydrogen-bond donating ability of the solvent

(Wortmann et al., 2022). While polar solvents with a higher polarity result in a

decrease of the activation barrier of the anti-syn isomerization around the C=N bond,
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hydrogen bonding has an oppositely directed effect and can

stabilize the trans-anti isomer under certain conditions. Due to

its distinct photochromism and this high sensitivity toward

external influences, but mostly because of its enzymatic

formation from TTC, TPF is found in a wide field of

applications. These are found in biological assays to indicate

cellular respiration and cell growth (Ziegler, 1953; Mosmann,

1983; Berridge et al., 2005), in agriculture to verify the

germinability of seeds (Lakon, 1942; Smith, 1951), in

medicine, especially in cancer research (Carmichael et al.,

1987; Alley et al., 1988; Scudiere et al., 1988), but also in areas

like dosimetry (Kovács et al., 1996), chemical synthesis

(Neugebauer and Russell, 1968; Lipunova et al., 2019), or as

chelating agents in organometallic chemistry (Lipunova et al.,

2019; Gilroy and Otten, 2020). In general, most of these

applications rely on the reduction of the colorless tetrazolium

salt TTC to TPF, so that a colorless solution turns red (Hausser

et al., 1949a). The photochemistry of the precursor TTC has

already been explored in detail with various techniques

(Pechmann and Runge, 1894; Hausser et al., 1949b; Nineham,

1955; Neugebauer and Russell, 1968; Umemoto, 1985; Gonzalez

and San Roman, 1989; Kovács et al., 1996; Kanal et al., 2015;

Bolze et al., 2018). Despite several studies with a focus on

quantum-chemical calculations (Buemi et al., 1998; Buemi and

Zuccarello, 2002; King and Murrin, 2004; Tezcan and Tokay,

2010; Sherif, 2015), luminescence (Turkoglu et al., 2015),

solvatochromism (Sherif, 1997; Kumar et al., 2014; Wortmann

et al., 2022), Raman and infrared studies (Schiele, 1965; Otting

and Neugebauer, 1968; Otting and Neugebauer, 1969; Lewis and

Sandorfy, 1983; Hiura and Takahashi, 1989a; Hiura and

Takahashi, 1989b; Tezcan and Ozkan, 2003), or

electrochemical properties (Gökçe et al., 2005; Sherif, 2015;

Turkoglu et al., 2015) of formazans, also investigated under

temperature (Kuhn and Weitz, 1953; Langbein, 1979; Grummt

and Langbein, 1981; Sueishi and Nishimura, 1983) or pressure

variation (Sueishi and Nishimura, 1983), the interplay of light-

induced processes which set in on an ultrafast time scale and

extend tominutes has not been comprehensively studied for TPF.

With regard to the involved intermediate species of TPF, several

photoisomerization mechanisms of TPF are discussed in

literature, with the one proposed by Grummt and Langbein

which was derived from laser flash photolysis experiments

(Grummt and Langbein, 1981) being in closest accordance to

the one inferred in our recent study (Wortmann et al., 2022).

Note that also the orientation of the single bonds adjacent to the

double bonds are sometimes drawn differently (Lewis and

Sandorfy, 1983; Veas-Arancibia, 1986) and lead to further

stable isomers, as we will discuss in detail in Section 4. The

energetically most-stable isomer is the trans-syn form (also called

“red I”, Figure 1), which is stabilized by an intramolecular

hydrogen bond, forming a quasi-aromatic heterocycle.

Illumination with visible light leads to an isomerization

around the N=N double bond, yielding a cis-syn isomer

(“red II”, Figure 1). For this species, an intramolecular

hydrogen bonding can occur as well. Afterwards, thermal

isomerization around both N=N and C=N leads to the trans-

anti analogue (“yellow I”, Figure 1), which is accompanied by a

color change of the solution from red to yellow. Spectroscopically,

a hypsochromic shift from around 490 nm to 405 nm is observable

in toluene solutions (Kuhn and Weitz, 1953; Langbein, 1979;

Grummt and Langbein, 1981; Atabekyan et al., 2011;

Wortmann et al., 2022). Under dark conditions, the trans-anti

isomer relaxes back into the energetically-favored trans-syn form

via an anti-syn isomerization around the C=N double bond.

However, when absorbing visible light, the trans-anti isomer

may follow another pathway, yielding a second yellow species,

the cis-anti analogue (“yellow II”, Figure 1). Both yellow forms can

be characterized by absorption spectra with different extinction

coefficients (Hausser et al., 1949a; Langbein, 1979; Grummt and

Langbein, 1981) and a broader absorption band for yellow II.

Here, we address three aspects of the light-induced reactions of

TPF. First, we want to monitor all relevant time scales, from the

primary steps occurring in sub-ps to the slowest thermal

equilibrations occurring within minutes. Several different pump-

probe setups were used to monitor this extended time window, that

is fs to ns transient absorption (TA) based on femtosecond lasers, ns

to ms TA with ns excitation pulses, and ms up to minutes with

pulsed light-emitting diodes (LEDs) as pump source. Second, we

reassess the assignment of the involved isomers by DFT and TD-

DFT calculations. Third, we discuss the role of proton transfer to the

thermal interconversion of the isomers.

2 Materials and methods

TPF was purchased from Sigma-Aldrich, used without further

purification, and dissolved in anhydrous acetonitrile (Sigma-

Aldrich) or methanol (Uvasol, Merck) of spectroscopic grade.

UV-Vis absorption spectra were recorded on a

spectrophotometer (Cary60, Agilent) which could be combined

with LED excitation in a perpendicular arrangement in order to

record ms to min TA data with a time increment of 12.5 ms. For

some of the employed LEDs, a different spectrophotometer (UV

1800, Shimadzu) was employed for the same purpose, with a time

increment of 480 ms. The LED temporal rectangular pulse width

was also set to 12.5 or 480 ms, respectively. The sample (250 μL) was

inside a rectangular quartz cuvette (Starna, 10 mm× 2mm) and the

absorption wasmonitored over the 10 mmoptical path length, while

the LEDwas adjusted to illuminate the entire sample, thus aiming at

a homogeneous illumination over the 2 mm path length.

For ns to ms TA, a Nd:YAG laser (Surelite II, Continuum) in

combination with an optical parametric oscillator (Surelite OPO

Plus, Continuum) generated the pump pulses, while the broadband

probe light originated from a Xenon flash lamp (MSP-05, Müller

Elektronik-Optik). A streak camera (C7700, Hamamatsu Photonics)

with spectrograph and CCD camera (ORCA-CR, Hamamatsu
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Photonics) was employed for detection [see (Kutta et al., 2013; Dick

et al., 2019) for further details on the experimental implementation].

The sample was circulated through the 2 mm (excitation path) ×

10 mm (probe path) quartz cuvette from an external reservoir

of 4 mL.

For fs to ns TA, a Ti:Sa amplifier system (Libra, Coherent)

generated laser pulses at a repetition rate of 1 kHz centered at 800 nm

that were used to pump an optical parametric amplifier (TOPAS-C,

Light Conversion), yielding pulses at 530 nm or (after a further

nonlinear process) 330 nm used for excitation of the sample. For the

probe beam, parts of the 800 nm were used to pump a home-built

noncollinear optical parametric amplifier adjusted to ca. 500 nm that

then was focused into a moving calcium fluoride plate generating a

white-light supercontinuum (Dobryakov et al., 2010). This was split

into a reference bypassing the sample and a probe beam traversing

the sample. These two beams were independently imaged onto two

home-built grating spectrographs, and their spectra were recorded

with photodiode arrays (S3901-512Q, Hamamatsu, 512 pixels) at

1.5 nm resolution. The polarizations of pump and probe beams were

set to the magic angle (Megerle et al., 2009; Schott et al., 2014) before

reaching the 2 mm× 10mmquartz cuvette. The temporal resolution

was around 100 fs, and the temporal delay was introduced by a

cornercube retroreflector on a delay stage (M-531.2S, Physik

Instrumente) placed in the pump beam. More details on the

employed setup are given in (Brandl et al., 2020).

Quantum-mechanical calculations on all stable TPF

conformers were performed using the Orca package (Neese,

2012; Neese, 2018). All ground-state structures were optimized

on the level of restricted closed shell density functional theory

(RHF-DFT) using the B3LYP functional and the def2-TZVP

basis set with D4 dispersion correction. Potential barriers

connecting the individual conformers were roughly estimated

(as DFT is not able to correctly describe the bond rotation around

double bonds) from the crossing points for the relaxed potential

energy surfaces along the rotational motion around a

corresponding bond starting from each stable conformer using

B3LYP/def2-TZVP level of theory.

3 Experimental results and discussion

The steady-state UV-Vis absorption spectra of TPF detected in

methanol and acetonitrile solution are nearly identical, with twomain

absorption bands peaking around 300 and 480 nm, of which the latter

comprises a weak shoulder on its red edge (see Figure 2). In

unsubstituted formazan, the lowest electronic transition is of n −
πp character (Buemi et al., 1998). The same is found for TPF, albeit

with a negligible oscillator strength, so that themajor absorption band

in the visible is dominated by a π − πp transition (Avramenko and

Stepanov, 1974;Nădejde et al., 2009) to the second excited state S2 (see

also Supplementary Figure S6 with corresponding DFT calculations).

For the TPF absorption spectrum in toluene solution, a small spectral

shift of the low-frequency π − πp transition band by ~10 nm is

observed. Under irradiation with visible light, the formation of the

yellow isomeric species was reported to occur in acetonitrile (Wilhite,

1991) as well as in toluene/benzene solutions (Kuhn andWeitz, 1953;

Langbein, 1979; Grummt and Langbein, 1981; Atabekyan et al., 2011)

and is manifested by an increased absorption around 400 nm.

Constantly illuminating TPF in methanol solution with 520 nm

light also leads to the formation of the yellow species (Figure 2).

In comparison to toluene, where the equilibrium is nearly fully shifted

under these conditions, in acetonitrile and methanol a distinct

amount of TPF molecules is observed in its initial conformation,

indicated by both the lower absorption around 400 nm (yellow I) and

the remaining contribution at 500 nm (compare black/red dashed

curves in Figure 2 with the blue dashed curve).

3.1 fs-ns transient absorption of 1,3,5-
triphenylformazan

The initial photodynamics of TPF were followed by recording

the TA on a fs to ns time scale after excitation either at 530 or

330 nm. Transient absorption spectra of TPF are shown in

FIGURE 1
The two most prominent photoisomerization schemes of
TPF after excitation, as introduced by Kuhn and Weitz (Kuhn and
Weitz, 1953) and by Grummt and Langbein (Grummt and Langbein,
1981). Black arrows and symbols indicate pathways present in
both models, while gray elements are only found in the Kuhn-
Weitz scheme and red elements only in the Grummt-Langbein
scheme, respectively. The nomenclature, e.g., trans-syn,
corresponds to the N=N double bond (blue) and the C=N double
bond (green). The orientation of the adjacent C–N and N–N single
bonds will be discussed in Section 4.
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Figures 3A,C for methanol solution. In both cases, two regions of

increased absorption around 400 and 600 nm are observed, together

with the ground-state bleach (GSB) in the spectral region around

500 nm. Whereas the overall signal intensity decreases with time, a

contribution persists beyond the experimental time window of

2 ns (Kanal et al., 2015). The decay-associated difference spectra

(DADS), resulting from a global multiexponential fit to the data

matrices with four time constants, are displayed in Figures 3B,D,

respectively [contributions for modelling the coherent artefact

(Megerle et al., 2009) are not shown for clarity].

The fastest process, with decay time τ1 being 0.3 and 0.2 ps,

respectively, for the two excitation wavelengths, may be assigned to

isomerization dynamics connected to the azo group. For trans-

azobenzene, the excited-state dynamics directly towards a conical

intersection exhibit a decay time around 0.3 ps (Nägele et al., 1997; Lu

et al., 2002; Satzger et al., 2003; Satzger et al., 2004; Pancur et al., 2005;

Quick et al., 2014; Nenov et al., 2018), with similar values reported for

related compounds (Siewertsen et al., 2011; Slavov et al., 2016;

Grimmelsmann et al., 2017). However, there is also a further

excited-state motion in trans-azobenzene on a time scale of

1–3 ps, assigned to diffusion-type motion (Nägele et al., 1997) or

the passage of a barrier in the excited state (Quick et al., 2014). Along

these lines, the positive signals around 400 and 600 nm (redDADS in

Figure 3B,D)may indicate absorption features of molecules still in an

excited state that depopulates with decay time τ2 mainly into the

ground state configuration that was present prior to excitation, as can

be seen by the negative contribution in the red DADS. We link the

more pronounced excited state absorption (ESA) for excitation at

330 nm compared to 530 nm to the excess energy introduced by the

higher photon energy. The DADS with τ3 (green DADS)may reflect

relaxation dynamics accompanied by vibrational cooling of

molecules either in the excited state or already in the ground state

all ending in the most stable conformer that was initially excited.

Although the dominant fraction of excited molecules returns to the

initial ground state configuration, a GSB at 480 nm and a product

absorption around 330 nm remains on a time scale > 2 ns (see also

blue DADS) substantiating the formation of another stable

photoisomer. Note that TPF is in an equilibrium of two ground

state conformers with predominantly red I but also a few red II

conformers, so that the TA data observed after excitation at 330 nm

resemble the superposed dynamics of both isomers which explains

the small differences in the absorption strength and dynamics

compared to the situation when exciting at 530 nm. This aspect

will become more evident on a longer time scale (vide infra).

The TA data in the fs-ns time range of TPF in the solvent

acetonitrile are very similar and can be analyzed and interpreted

accordingly (see Supplementary Figure S1). Only time constant τ3
assigned to vibrational cooling is by a factor of two larger compared

to the situation in methanol. The more rapid vibrational cooling in

methanol compared to acetonitrile was reported for other systems

and is related to intermolecular hydrogen-bonding in protic

environments aggravating energy transfer from the solute to the

solvent (Middleton et al., 2007; Ghosh et al., 2019).

There is an alternative rationale for the dynamics on the ps time

scale. From resonance Raman studies it was concluded that the

initial photoinduced process is an excited-state intramolecular

proton transfer (ESIPT) (Lewis and Sandorfy, 1983). Since the

isomer red I that predominates in solution is a hydrogen-bonded

quasi-aromatic heterocycle, there is a striking congruence with

intramolecularly H-bonded ß-diketones which have been studied

with laser flash photolysis (Veierov et al., 1977; Kobayashi et al.,

2013) and ultrafast spectroscopy approaches (Xu et al., 2004; Poisson

et al., 2008; Verma et al., 2014; Verma et al., 2015; Verma et al.,

2016). The latter revealed that ESIPT occurs within less than 0.1 ps,

followed by relaxation to the lowest excited state in a few ps, and

subsequent depopulation of the excited state on a time scale of 10 ps

both by relaxation to the hydrogen-bonded ground-state isomer and

the formation of other isomers by rotation around a single or double

bond. Given the similarity of the molecular system and of the

detected time scales, an analogous assignment of processes to the

observed dynamics is plausible as well.

A quantitative analysis of our data assuming a fully branched

model, in which each transient species is partially converting into

each other and partially converting back into the ground-state

species, gave a value of 7% for the quantum yield of product

formation [see (Kutta et al., 2013), also containing detailed

discussion on the general analysis of global fit data]. This is

significantly lower than both isomer formation after ESIPT in ß-

ketones [e.g., 36% for acetylacetone in acetonitrile (Verma et al.,

2014)] and N=N isomerization in trans-azobenzene [31% for

n − πp and 15% for π − πp excitation in acetonitrile, slightly

different yields in other solvents (Quick et al., 2014)], so that an

FIGURE 2
Steady-state absorption spectra of TPF dissolved in methanol
(black), acetonitrile (red), and toluene (blue). The solid curves
display the ground-state absorption spectra (normalized to the
maximum around 500 nm), while the dashed spectra
correspond to the photostationary state under illumination with
520 nm light.
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identification of the initial reaction step is not unambiguous

from the TA data but will be further analyzed in Section 4.

The rather low quantum yield could be related to the significant

π − πp character (delocalized over the entire molecular framework)

of the initially excited S2 in TPF (see Supplementary Figure S6), but

might also originate from the intramolecular hydrogen bond

stabilizing the planar configuration of the six-membered chelated

ring, thereby disfavoring an out-of-plane motion required for

photoisomerization. Nonetheless, our TA data corroborates

that although the vast majority of excited red I molecules

returns to the red I configuration, the decision along

which reaction pathway the system evolves involving several

thermal isomerizations (vide infra) is already made within the

first few ps.

3.2 ns-ms transient absorption of 1,3,5-
triphenylformazan

In order to follow the reaction dynamics further on a ns to ms

time scale, the TA of TPF after exciting at 532 or 355 nm was

recorded with a pump-flashlamp-probe spectrometer using a

streak camera as detection unit. The TA data recorded for TPF in

methanol after excitation at 532 nm consist of one absorption

band around 340 nm and the GSB at 480 nm. Both features rise

faster than the temporal resolution of the used setup, which

agrees with the formation of these two TA features within a few

ps as determined in Section 3.1, and persist beyond the time

window of 1 ms. Hence, a global monoexponential model

yielding one DADS (magenta curve in Figure 4A) is sufficient

to fully describe the data, and this DADS matches the one for τ4
of the fs-ns TA measurements (blue-dotted curve in Figure 4A).

When exciting at 355 nm, the same absorption band at 340 nm

is observed as after 532 nm excitation. However, the GSB is broader

in this case, ranging from 350 nm up to 600 nm. Comparing the

DADS with the absorption spectrum of TPF under 520 nm

illumination (black-dashed line in Figure 2) reveals the origin for

this behavior. The intense Xe-flashlamp of ms duration used as

probe source in the ns-ms TA experiment is sufficient to prepare a

mixture of red I and yellow I isomers prior to the excitation of the

system by the intense pump pulse so that exciting at 532 nm leaves

the yellow isomers unaffected, whereas exciting at 355 nm allows the

excitation of both isomers, causing a GSB signal comprising the

spectral signature of both. To note, in the fs-ns TA experiment (blue-

dashed line in Figure 4B) no accumulation of a probe-light induced

photostationary equilibrium between forms red I and yellow I is

observed due to significantly shorter and less intense probe pulses.

Again, the ns-ms TA data obtained for TPF in acetonitrile

(Supplementary Figure S2) are very similar to the ones recorded

in methanol.

FIGURE 3
Transient absorption of TPF in methanol after excitation at 530 nm (A) and 330 nm (C) after defined delay times on a fs-ns time scale. The
corresponding DADS from a global exponential fit to the data are given in (B,D). The scaled and inverted absorption spectrum of the initial sample is
given by a gray-dashed line for comparison.
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3.3 ms–min transient absorption of 1,3,5-
triphenylformazan

The preceding two TA measurement series have shown

that the species absorbing around 340 nm is formed on an

ultrafast time scale and persists well beyond 1 ms. Hence, ms

to min TA measurements were performed exciting TPF

either at 390, 405, 455, or 530 nm. The maximal time

window of all four measurements was set to 1 min,

sufficient for detecting the full recovering process to the

initial ground state situation of TPF in methanol. All data

matrices were analyzed by a global biexponential fit, yielding

the DADS shown in Figure 5.

The cyan DADS corresponding to τ4 exhibits a positive

absorption peaking around 340 nm for all excitation

wavelengths. Comparison to the DADS from the ns-ms

TA measurements (pink curve in Figures 5A,D) confirms

that the same dynamics that were monitored up to 1 ms can

now be followed completely. This absorption band was

already identified in toluene solution (Wortmann et al.,

2022) and assigned to the red II form of TPF, in

accordance with the isomerization scheme of Figure 1.

The DADS furthermore comprises negative contributions

around 500 nm and around 405 nm. These negative

amplitudes resemble spectral features of red I and yellow I,

respectively, and thus give evidence that photochemically

formed red II thermally relaxes back to red I and to yellow I

with a decay time of a few hundred milliseconds. The typical

absorption feature of formed yellow I is seen at 405 nm in the

orange DADS corresponding to τ5. Thus, the slowest dynamics

observed after 530 nm excitation are described by the orange

DADS, which shows the spectral features of red I as a negative

amplitude (compare the gray-dashed inverted ground-state

absorption spectrum) and the absorption feature of yellow I as

a positive amplitude, demonstrating the thermally activated back

relaxation to red I on a time scale of 10 s (Figure 5A).

Figure 5B shows a similar experiment, but with 455 nm

excitation. As red I and red II both absorb at 455 nm, here

contributions of both isomers show up in the data. The

observed dynamics can nonetheless be interpreted on the

lines of the 530 nm excitation experiment in Figure 5A, as

the additional contribution of excited red II are

rather low.

The situation changes when exciting TPF at 405 nm

(Figure 5C). Now, only a small amount of red I is excited,

again giving rise to the dynamics described by the cyan DADS

that is very similar to the two situations with 530 or 455 nm

excitation, respectively. However, since in the dark also

yellow I contributes to a small amount to the ground state

equilibrium (see Figure 1) it is excited by 405 nm light giving

rise to yellow II formation. This is substantiated by the second

DADS (orange) that shows a positive absorption feature of

yellow II at around 500 nm that decays with a lifetime of ca. 7 s

(Figure 5C) back into yellow I identified by the characteristic

negative amplitude at 405 nm. The data recorded with 390 nm

excitation (Figure 5D) agrees with this interpretation, because

at this wavelength, red I can be excited even worse, whereas

yellow I still has a high extinction coefficient, so that the cyan

DADS (mostly representing relaxation after generation of red

II from red I) becomes smaller whereas the orange DADS

(comprising yellow II photogenerated from yellow I) gains in

relative intensity.

In comparison to the kinetics in methanol, the ground-

state processes of TPF on a ms to min time scale are slower in

acetonitrile (see Supplementary Figure S3), but much faster

than in toluene solution (Wortmann et al., 2022). There, it

was shown that the solvent’s ability to participate in

hydrogen bonds is decisive for how fast the equilibration

proceeds.

In the following, we try to develop a line of reasoning with the

help of quantum-chemical calculations for how the isomers are

interconnected, explaining the slow processes observed for TPF

after photoexcitation.

FIGURE 4
DADS of TPF in methanol after excitation at 532 nm (A) and
355 nm (B). ThemagentaDADS result froma globalmonoexponential
fit to the data on a 1 ms timewindow. The blue dashed curves are the
DADS corresponding to τ4 of the fs-ns TA experiments (blue
curves in Figures 3B,D) scaled to match the negative contribution at
around 500 nm. The inverted absorption spectrum of the initial
sample also scaled to the negative contribution at around 500 nm is
given by a gray-dashed line for comparison.
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4 Analysis of reaction pathways

4.1 Simulation of ground-state
conformers

Most of the previous experimental studies on the

photochemical processes of TPF do not differentiate possible

rotamers beyond the four isomers obtained from the cis-trans

isomerizations around the N=N and the C=N double bond,

resulting in the trans-syn nomenclature also displayed in

Figure 1. Theoretical studies [e.g., (Buemi et al., 1998; King

and Murrin, 2004)] have addressed further rotamers, as we

will also do in the following. For our discussion of the

reaction pathways, we further take into account the rotations

around the two adjacent single bonds, so that each of the four

isomers labelled in Figure 1 may lead to four distinguishable

conformers. Our calculations at the B3LYP/def2-TZVP/D4 level

of theory indeed result in 16 corresponding ground-state

minima, i.e., 16 potentially stable conformers, which however

strongly differ in energy and the height of the barriers

connecting them.

The optimized structures of the 16 conformers are plotted

in Figure 6, together with the absorption spectra obtained

from the calculations. For a systematic description, we use the

E/Z nomenclature and start from the N=N double bond. Thus,

the most stable isomer (red I, trans-syn) with the

intramolecular hydrogen bond is the EZZE conformer,

reflecting the E (trans) configuration with regard to the

N=N double bond, Z with regard to N–C, Z (syn) for C=N,

and E for the N–N single bond, respectively. Each row of

panels in Figure 6 represents a variation of a single bond, as

indicated on the left, whereas each column represents an

isomerization of a double bond.

The absorption spectra, even within one column and hence

only due to rotation around single bonds, vary substantially (for a

comparison with calculations using the CAM-B3LYP functional

and including a conductor-like polarizable continuummodel, see

Supplementary Figures S4, S5). To allow a comparison to

experiment, the lowest row of panels in Figure 6 gives

experimental absorption spectra, where always one isomeric

species is dominating. Starting on the left with the absorption

spectrum of the solution in the dark (corresponding to red I),

followed by the spectrum of red II derived from spectra of

intermediates in time-resolved experiments, additionally to the

spectrum of yellow I measured directly after illumination and the

spectrum of yellow II obtained in the photostationary state. In the

visible spectral range, the simulated spectra of EZZE and EEZE

are very similar and match best with the experimental spectrum

corresponding to red I, although the experimental data is red-

shifted and exhibits a shoulder at longer wavelengths not

reproduced in the simulations. Both aspects might be related

to a significant stabilization effect caused by the intramolecular

hydrogen bond, which the calculations might underestimate. The

spectrum of the intermediate red II matches best with ZZZE or

FIGURE 5
DADS of TPF dissolved in methanol, obtained by a global biexponential fit to the data matrices detected after excitation at 530 nm (A), 455 nm
(B), 405 nm (C) and 390 nm (D). The gray-dashed line represents the absorption spectrum of the solution, while the pink DADS are taken from
Figure 4 for comparison.
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ZEZE, substantiating that the initial process after

photoexcitation involves a trans-cis isomerization around

the N=N double bond. Comparing the experimental and

theoretical spectra, also the assignment of EZEE as the

yellow I species is confirmed. Furthermore, a comparison

of the experimental spectrum of yellow II with the

calculated spectra in the right-hand column yields the best

agreement for the ZZEE conformer, whose absorption peaks

around 400 and 490 nm might not be identifiable as separate

peaks in the experimental spectrum.

FIGURE 6
Top 16 panels: Results from DFT calculations for the 16 isomers considered in this study. The optimized ground-state geometries are displayed
together with the calculated absorption spectra (the oscillator strengths at the corresponding transition energies are given as stick spectrum
convoluted each with a Gaussian of a 40 nmwidth at half maximum). The orientations with respect to the N=N and C=N double bonds are identical
within each column, whereas the ones with respect to the C–N and N–N single bond are the same for each row. Bottom 4 panels:
Experimentally determined spectra of the four isomers corresponding to the double-bond orientations given at the top of each column. The red I
spectrum is the ground-state absorption spectrum of a toluene solution, yellow I was measured directly after illumination with 455 nm of a toluene
solution, yellow II corresponds to the photostationary state in toluene induced by 455 nm light (Wortmann et al., 2022), and red II is estimated by
subtracting the GSB from the pink DADS in Figure 4A.
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While the juxtaposition of the theoretical with the

experimental spectra from time-resolved measurements

confirms the involvement of the four species initially included

in the Kuhn-Weitz and Grummt-Langbein reaction schemes (see

Figure 1), the actual sequence of transformations cannot be

deduced. Especially, the thermal process from red II (ZEZE)

to yellow I (EZEE) in the Grummt-Langbein scheme (diagonal

arrow in Figure 1) formally necessitates isomerization around

both the N=N and the C=N double bond. Experiments indicated

that this might be a bimolecular process and that two TPF

molecules are required (Grummt and Langbein, 1981). In the

following section, we provide an analysis for identifying which

conformers are involved.

4.2 Interconnection among isomers

For merocyanine systems in which eight cis/trans isomers can

occur, it is illustrative to represent them as the corners of a cube, so

that each edge of the cube corresponds to a change of one

orientation from cis to trans or vice versa (Ernsting et al., 1990).

For an analogous treatment of TPF and the 16 structures shown in

Figure 6, a four-dimensional hypercube, often called tesseract, would

be required, which has 16 corners (i.e., isomers) and 32 edges

(i.e., reaction pathways involving one rotation). In order to plot it in

two dimensions, the tesseract can be represented for instance by its

Schlegel diagram (a perspective 3D view, with the fourth dimension

pointing inwards, Figure 7A) or by an orthogonal projection

(Coxeter, 1948), from which the hypercube graph Q4 is obtained

(Maehara, 2016; Hammack and Kainen, 2021). Transferred to the

TPF isomer manifold (Figure 7B), each of the 16 isomers is thus

connected to four other isomers by a line. As follows from the

properties of hypercube graphs (Hammack and Kainen, 2021), the

lines can be separated into 4 groups, which correspond to the

4 possible rotational degrees of freedom in TPF as indicated by the

color in Figure 7B. Note that each isomer is connected to one line of

each color (as there are four possible rotations), and lines of identical

color are parallel in this representation.

We have further calculated the energy of the 16 isomers (given

in the circles together with the abbreviation of the isomer) as well as

the 32 barriers (values given above the lines representing the

rotation) to go from one isomer to another. In this way, one can

visualize nicely how the reaction might proceed.

The EZZE (red I) isomer is the energetically most favorable

one, and all four possible rotations to reach another isomer are

energetically uphill, exhibit a significant barrier, or both. As

inferred from the experiments, EZZE performs a trans/cis

isomerization around the N=N bond (i.e., it follows the blue

line in Figure 7B) upon photoexcitation, reaching ZZZE. Looking

at the possible pathways of ZZZE, one can deduce that an almost

barrierless and slightly downhill pathway is possible by rotation

around the N–C bond (orange line), yielding ZEZE (isomer red

II). From there, no further rotation is plausible, because of too

high barriers and energetically disfavored isomers.

So how is it possible that a thermal process leads from ZEZE

(red II) to EZEE (yellow I) without any detectable intermediates? In

chelated formazan isomers exhibiting an intramolecular hydrogen

bond, intramolecular proton transfer was reported to occur in the

ground state (Fischer et al., 1968; Hutton and Irving, 1980; Hutton

and Irving, 1982; Grummt et al., 1984), and also IR spectra in

solution and in the solid state point towards this pathway (Otting

FIGURE 7
Reaction pathways illustrated as Schlegel diagram (A) or
hypercube graph (B). The isomers’ calculated energies, referenced
to the energetically most stable geometry EZZE, are written in the
circles, barrier heights are shown above the reaction
pathway; all values are in eV. The final single point energies of the
individual isomers were optimized by DFT calculations on the
B3LYP/def2-TZVP level of theory. The energy barriers between
two adjacent isomeric species of TPF are roughly estimated by
relaxed surface scans along a fixed torsional angle. The stated
values along the possible pathways always describe the amount of
energy to overcome the energy barrier from the energetically
higher lying isomer to the energetically more favored species. The
performed calculations are summarized in Supplementary Figure
S8. Note that in case of one barrier height the calculation did not
converge (n.c.). (C) exemplarily displays that a proton transfer from
the phenylhydrazone to the azo group is associated with the
formation of an isomer with reversed nomenclature.
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and Neugebauer, 1968; Otting and Neugebauer, 1969). A combined

IR and resonance Raman study, also of unsymmetrical derivates of

TPF, found evidence for this tautomerism even in the

photochemical generation of non-chelated isomers and

interpreted the transfer step to occur in the excited state (Lewis

and Sandorfy, 1983). Owing to the symmetry of the TPF molecule,

transferring a proton from the phenylhydrazone to the azo group

reverts the order of single and double bonds. Thus, the

nomenclature is reverted, as exemplarily shown in Figure 7C. In

the hypercube graph of Figure 7B, this means that such a proton

transfer eventually is equivalent to a reflection on the central vertical

line (dashed in gray).

Hence, for chelated isomer ZEZE (red II), the next stepmight be

a proton transfer, resulting in the formation of EZEZ, which will

immediately relax to the energetically lower-lying EZEE (yellow I).

Therefore, we infer that for the thermal process from red II to

yellow I in Figure 1, it is not necessary to isomerize around both

double bonds, but only to transfer a proton.

The same rationale can also explain how the reaction proceeds

further. From EZEE (yellow I), a return to the most stable isomer

EZZE (red I) formally necessitates a thermal rotation around the

C=N double bond. If the proton is transferred, EEZE is obtained,

from where it is much easier to reach EZZE because only a rotation

around the N–C single bond is required.

While for chelated isomers, the proton transfer may

proceed directly, for other isomers the distance between the

donating and the accepting nitrogen atom is too far. In

principle, also an intermediate [as is of relevance in

formazan synthesis (Hegarty and Scott, 1966; Hegarty and

Scott, 1967; King and Murrin, 2004)] with two azo groups and

the H atom at the interjacent C atom is conceivable, but much

less stable than the formazan tautomers (Buemi et al., 1998)

(see also Supplementary Figure S7). However, the transfer

might occur via a proton wire mechanism, i.e., in a Grotthuss-

type fashion (Agmon, 1995; Miyake and Rolandi, 2015;

Adams et al., 2021) as was found in water but also

identified in other protic solvents (Stoyanov et al., 2008;

Fujii et al., 2018; Long et al., 2020). Hence, the

isomerization involving proton transfer should only be

possible in protic solvents or in aprotic solvents containing

at least traces of protic cosolvents. Indeed, the thermal

isomerization from EZEE (yellow I) to EZZE (red I) occurs

extremely slow in thoroughly dried toluene, and values up to

138.9 h (Kuhn and Weitz, 1953) are reported for the half-life

of EZEE. Addition of slight amounts of protic solvents

drastically accelerate the reaction (Kuhn and Weitz, 1953;

Sueishi and Nishimura, 1983), and in case of alcohols as a

cosolvent, a correlation with the H-bonding donating ability

of the alcohol was found (Wortmann et al., 2022). Hence,

while hydrogen bonding to nitrogen atoms being part of a

double bond may also facilitate a ground-state isomerization,

in the case of TPF an actual proton transfer might contribute

to a significant extent.

5 Summary and conclusion

The primary reaction step when exciting TPF with light is an

isomerization around the N=N double bond through which the

electronic ground state is reached on an ultrafast time scale. Our

combined experimental and theoretical study unveiled that the

initially excited conformer EZZE (red I) thus turns into ZZZE

and from there directly to ZEZE. The low barrier found for the latter

step might even imply that the excited-state isomerization and

rotation around the N–C single bond might proceed in a

concerted fashion. Following spectroscopically the evolution of

the newly formed ZEZE (red II), it was shown that the next

reaction step occurs on a time scale of hundreds of milliseconds,

yielding EZEE (yellow I). For this reaction step, we propose that an

intramolecular proton transfer significantly contributes, so that no

isomerization around a double bond is necessary. Along these lines,

the reaction step from EZEE back to EZZE might also include a

proton transfer and proceed via EEZE, so that again no rotation

around a double bond is required.

The above conclusion are supported by observations in different

solvents and interpreted in the context of a Grotthuss-type

mechanism, also explaining the remarkably high decay times

reported for the last step of the TPF photocycle in dried aprotic

solvents. It might be worthwhile to investigate whether also in

molecules with a larger separation between the azo and the

hydrazone group, a similar acceleration of the ground-state

equilibration is found in protic solvent environments. These

aspects could also be of interest in the field of organocatalysis,

where hydrazone compounds find increased attention (Müller and

List, 2009; Landge et al., 2011; Müller et al., 2011; de Gracia

Retamosa et al., 2016; Aprahamian, 2017; Cvrtila et al., 2017;

Mader et al., 2022; Žabka and Gschwind, 2022).
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