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The zero-divisor graph of a commutative ring R, denoted by Γ(R), is a graph

whose two distinct vertices x and y are joined by an edge if and only if xy = 0 or

yx = 0. The main problem of the study of graphs defined on algebraic structure

is to recognize finite rings through the properties of various graphs defined on it.

The main objective of this article is to study the Wiener index of zero-divisor

graph and compressed zero-divisor graph of the ring of integer modulo psqt for

all distinct primes p, q and s, t ∈ N. We study the structure of these graphs by

dividing the vertex set. Furthermore, a formula for the Wiener index of zero-

divisor graph of Γ(R), and a formula for the Wiener index of associated

compressed zero-divisor graph ΓE(R) are derived for R � Zpsqt .
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Introduction

The study of graphs defined on algebraic structures has been an active topic of

research in the last few decades. The main question in the area is to recognize finite

rings through the properties of various graphs defined on it. The notion of the zero-

divisor graph of a commutative ring was introduced by I. Beck in (Beck, 1988), where

he considered the set of zero divisors including zero and introduced the concepts

such as diameter, grith and clique number of a zero divisor graph. Then later on in

(Anderson and Livingston, 1999), Anderson and Livingston changed the vertex set of

the zero-divisor graph, they considered only the vertices of the non-zero zero-

divisors. For more details, one may see the survey (Singh and Bhat, 2020) and the

references therein for the vast literature on the study of zero-divisor graphs.

The Wiener index is one of the important graph indices, and has a variety of

applications in pharmaceutical science and in the structure of nanotubes. For results

and applications of Wiener index, see (Devillers and Balaban, 1999; Dobrynin et al.,

2001; Dehmer and Emmert-Streib, 2014; Dobrynin and Iranmanesh, 2020). There

are some works of the Wiener index were done for the ring of integers modulo n. Let

us review some of the work done on the topological indices of the zero-divisor

graphs. Let p, q be distinct prime numbers. Ahmadi et al. (Ahmadi and Nezhad,

2011) in 2011 has provided an algorithm to determining the Wiener index of Zn for

n = p2, pq. In 2018, Mohammad et al. (Mohammad and Authman, 2018) has extended
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the result by determining the Wiener index of a zero-divisor

graph of Γ(Zn) for n = pm and pmq, where m ∈ Z and m ≥ 2

using the Hosoya polynomial. Pirzada et al. (Pirzada et al.,

2020) in 2020 determined the Wiener index of a zero-divisor

graph and a compressed zero-divisor of Zpm for m ∈ N. In

(Asir and Rabikka, 2021), recently a constructed method to

calculate the Wiener index of zero-divisor graph of Zn for any

positive integer n is determined. The authors of (Asir and

Rabikka, 2021) calculated the complete formula through

restrict n as product of distinct primes and the remaining

cases. In 2022, Selvakumar et al. (Selvakumar et al., 2022)

visualized the zero-divisor graph Γ(R) as a generalized

composition of suitable choices of graphs and derived a

formula for the Wiener index of the graph Γ(Zn).
In this paper, we are interested in the parameter Wiener index

of graphs for the rings of integers modulo psqt. Although the

formulas in the general case for the rings of Zn have been obtained

in literatures (Asir and Rabikka, 2021) and (Selvakumar et al.,

2022), compared with their results, our formula is more direct and

convenient for calculation theWiener indexW(Γ(Zpsqt )). We also

get the formula for compressed zero-divisor graph.

Preliminaries

Throughout this paper we assume that R denotes a

commutative ring with identity, Z(R) be its set of zero-

divisors, the (nonempty) set of nonzero zero-divisors and

unit elements denoted by Z(R)* and U(R). We use Z to note

the ring of integers.

Definition 1. Let G be a graph and let u and v be two vertices of

G. The distance between u and v, denoted by dG(u, v), is defined to

be the length of the shortest path between u and v. The Wiener

index of the graph G, denoted by W(G), is defined to be the sum of

all distanced between any two vertices of G.

Let dG(v) denote the sum of distances of the vertex v from all

the vertices of G, then the Wiener index can be redefined as

W G( ) � 1
2

∑
v∈V G( )

dG v( ).

Let R be an arbitrary finite commutative ring with unity. We

define an equivalence relation ~ on Z(R)* as follows. For x, y ∈
Z(R)*, define x ~ y if and only if ann(x) = ann(y) where ann(x) =

{r ∈ R|rx = 0}. We call these classes the equiv-annihilator classes

of the zero-divisor graph Γ(R).
We write d (x, y) to denote the distance between x and y in

Z(R)*, and write x ~ y to denote x and y are adjacent, otherwise

x § y. Let U, V be subsets of the vertex of Γ(R), the U ↔ V shall

denote that each vertex of U is adjacent to every vertex of V, and

UO V denotes that no vertex ofU is adjacent to every vertex ofV.

The so-called compressed zero-divisor graph of a ring was

first defined by the Spiroff et al. in (Spiroff and Wickham, 2011).

Definition 2. For a commutative ring R with 1 ≠ 0, a compressed

zero-divisor graph of a ring R is the undirected graph ΓE(R) with
vertex set Z(RE) − [0] = RE − {[0], [1]} defined by RE = {[x]|x ∈ R},
where [x] = {y ∈ R|ann(x) = ann(y)} and two distinct vertices [x]

and [y] are adjacent if and only if [x][y] = [0] = [xy], that is, if and

only if xy = 0.

In what follows, we use the graph-theoretic notions from

(Douglas, 2001).

Main results

In this section, we first give a structure of R � Zpsqt using the

method of equivalence classification.

Let p, q be distinct prime numbers and s, t ∈ N, the vertex set

of R � Zpsqt be divided into disjoint subsets V00, . . ., Vij, . . ., Vst,

where

Vij �
kpiqj ∈ Zn|p§k and q§k{ } if i< s and j< t
kpiqt ∈ Zn|p§k{ } if i< s and j � t
kpsqj ∈ Zn|q§k{ } if i � s and j< t.

⎧⎪⎨⎪⎩ (1)

We noted that Vst =∅ and V00?Z(Zpsqt )*. For the

convenience of presentation, we always assumes that V00 and Vst

are empty sets in the following, unless otherwise specified. Therefore

V Γ Zpsqt( )( ) � ⋃
0≤i≤s

⋃
0≤j≤t

Vij( ).

Example 1. Consider the ring R � Z22×32 . The vertex set of

Γ(Z22×32 ) is
V Γ Z22×32( )( ) � V01 ⋃ V02 ⋃ V10 ⋃ V11 ⋃ V12 ⋃ V20 ⋃ V21

� 3, 15, 21, 33{ } ⋃ 9, 27{ } ⋃ 2, 10, 14, 22, 26, 34{ }
⋃ 6, 30{ } ⋃ 18{ } ⋃ 4, 8, 16, 20, 28, 32{ } ⋃ 12, 24{ }.

It is not difficult to see that Vij be the equiv-annihilator

classes of Γ(Zpsqt ), where 0 ≤ i ≤ s and 0 ≤ j ≤ t. If i < s and j < t, for

any x, y ∈ Vij. Let z ∈ ann(x), then z = k′ps−iqt−j. So yz = (kpiqj)

(k′ps−iqt−j) = kk′psqt, that is, z ∈ ann(y). If i < s and j = t, for any x,

y ∈ Vij. Let z ∈ ann(x), then z = k′ps−i. So yz = (kpiqt) (k′ps−i) =
kk′psqt, that is, z ∈ ann(y). If i = s and j < t, for any x, y ∈Vij. Let z ∈
ann(x), then z = k′qt−j. So yz = (kpsqj) (k′qt−j) = kk′psqt, that is, z ∈
ann(y). Thus ann(x) = ann(y) for any x, y ∈ Vij.

Next, we prove some elementary properties of the vertex

subsets Vij.

Lemma 1. For distinct prime numbers p, q, let n = psqt for some

s, t ∈ N and Vij be the equiv-annihilator classes of Γ(Zn)where 0 ≤
i ≤ s and 0 ≤ j ≤ t. Then

(1) |Vij| �
(p − 1)ps−i−1(q − 1)qt−j−1 if i ≠ s and j ≠ t
(q − 1)qt−j−1 if i � s
(p − 1)ps−i−1 if j � t.

⎧⎪⎨⎪⎩
(2)

Vij ↔ Vi′j′ if and only if i + i′ ≥ s and j + j′ ≥ t.
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Proof. (1) we consider the following cases.

Case 1: i ≠ s and j ≠ t.

Let Sij be the set of all the elements that can be divisible by piqj

in Zn. By the inclusion-exclusion principle,

|Vij| � |Sij| − |pSij| − |qSij| + |pqSij|.

Note that |Sij| = |{kpiqj|0 ≤ k < ps−iqt−j}| = ps−iqt−j. Since

|pSij| � | kpi+1qj|0≤ k<ps−i−1qt−j{ }| � ps−i−1qt−j

|qSij| � | kpiqj+1|0≤ k<ps−iqt−j−1{ }| � ps−iqt−j−1

And

|pqSsj| � | kpi+1qj+1|0≤ k<ps−i−1qt−j−1{ }| � ps−i−1qt−j−1.

Then

|Vij| � ps−iqt−j − ps−i−1qt−j − ps−iqt−j−1 + ps−i−1qt−j−1

� p − 1( )ps−i−1 q − 1( )qt−j−1.
Case 2: i = s.

Since

|Ssj| � | kpsqj|0≤ k< qt−j and q§k{ }|
Then

|Ssj| � qt−j − qt−j−1 � q − 1( )qt−j−1.
Case 3: j = t.

Since

|Sit| � | kpiqt|0≤ k<ps−i and p§k{ }|
Then

|Sit| � ps−i − ps−i−1 � p − 1( )ps−i−1.

(2) Let x = kijp
iqj ∈ Vij, y = ki′j′p

i′qj′ ∈ Vi′j′. If i + i′ ≥ s and j + j′ ≥
t, then

xy � kijki′j′p
i+i′qj+j′ � kijki′j′p

i+i′−sqj+j′−tn ≡ 0 modn( ).

So x is adjacent to y.

Conversely, suppose Vij ↔ Vi′j′. If i + i′ < s or j + j′ < t. We

have xy = kijki′j′p
i+i′qj+j′ can’t be a multiple of n, a

contradiction.

The following result characterized the distance between the

equiv-annihilator classes.

Proposition 1. For distinct prime numbers p, q, let

x, y ∈ V(Γ(Zpsqt )) for some s, t ∈ N. Then d(x, y) = 1, 2 or 3.

Proof. Let V01, V10, / , Vs,t−1, Vs−1,t be the equiv-annihilator

classes of Γ(Zpsqt ), where Vij defined by (1). For x ∈ Vi1j1 and

y ∈ Vi2j2, where 0 ≤ i1, i2 ≤ s and 0 ≤ j1, j2 ≤ t.

If i1 + i2 ≥ s and j1 + j2 ≥ s, then x ~ y and d (x, y) = 1 by lemma

1. So we only need to consider the cases of i1 + i2 < s or j1 + j2 < s

in the following, that is, x§ y. Without loss of generality,we may

assume that i1 + i2 < s. Consider the following cases.

Case 1: 0 < i1, i2 < s.

Let i = s −min{i1, i2}, j = t. We have i1 + i ≥ s and j1 + j ≥ t, also

i + i2 ≥ s and j + j2 ≥ t. Then Vi1j1 ↔ Vij ↔ Vi2j2. Hence, d (x,

y) = 2.

Case 2: i1 = 0 and i2 = 0.

Let i = s, j = t −min{j1, j2}. We have i1 + i ≥ s and j1 + j ≥ t, also

i + i2 ≥ s and j + j2 ≥ t. Then Vi1j1 ↔ Vij ↔ Vi2j2. Hence, d

(x, y) = 2.

Case 3: i1 = 0 and i2 ≠ 0. Consider the following subcases.

Subcase3.1: If j2 = 0. Let i3 = s, i4 = s − i2, j3 = t − j1, and j4 = t.

We have

i1 + i3 � s, i2 + i4 � s, i3 + i4 � s + s − i2( )> s

And

j1 + j3 � t, j2 + j4 � t, j3 + j4 � t − j1( ) + t> t.

Thus Vi1j1 ↔ Vi3j3 ↔ Vi4j4 ↔ Vi2j2.

Since

i1 + i4 � 0 + s − i2( )< s, j3 + j2 � t − j1( ) + 0< t,

Then Vi1j1OVi4j4 and Vi3j3OVi2j2. Therefore, d (x, y) = 3.

Subcase3.2: If j2 ≠ 0. Let i = s and j = t − min{j1, j2}. We

have

i1 + i � s, j1 + j≥ t

And

i + i2 > s, j + j2 ≥ t.

Thus Vi1j1 ↔ Vij ↔ Vi2j2. Therefore, d (x, y) = 2.

Case 4: i1 ≠ 0 and i2 = 0. A similar argument as in Case

3 shows that d (x, y) = 2 or 3.

We have already shown that in any case, d (x, y) = 1, 2 or 3.

Now, we can calculate the Wiener index of Γ(Zpsqt ).

Theorem 1. For distinct prime numbers p, q, and some s, t ∈ N.

The Wiener index
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W Γ Zpsqt( )( ) � ∑
⌈s

2⌉−1
i�0

∑t
j�0

|Vij| |Vij| − 1( ) +∑s
i�0

× ∑
⌈t

2⌉−1
j�0

|Vij| |Vij| − 1( ) − ∑
⌈s

2⌉−1
i�0

× ∑
⌈t

2⌉−1
j�0

|Vij |Vij| − 1( ) + ∑s
i�⌈s

2⌉
× ∑t

j�⌈t
2⌉

|Vij| |Vij| − 1( )
2

+ 2∑s
i�0

× ∑t
j�0

|Vij| ∑t
j′�j+1

|Vij′| + ∑s
i′�i+1

∑t
j′�0

|Vi′j′|⎛⎝ ⎞⎠

− ∑s
i�⌈s

2⌉
∑t
j�0

|Vij| ∑t
j′�max t−j,j+1{ }

|Vij′|⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ −∑s−1
i�0

× ∑t
j�0

|Vij| ∑s
i′�max s−i,i+1{ }

∑t
j′�t−j

|Vi′j′|⎛⎝ ⎞⎠ +∑t
j�0

× ∑s
i′�0

|V0j‖Vi′0| − |Vs0‖V0t|

where

|Vij| �
(p − 1)ps−i−1(q − 1)qt−j−1 if i ≠ s and j ≠ t
(q − 1)qt−j−1 if i � s
(p − 1)ps−i−1 if j � t.

⎧⎪⎨⎪⎩
Proof. Let n = psqt, we have V01, V10, . . ., Vs−1,t, Vs,t−1 is the

partition of V(Γ(Zpsqt )) ,where Vij defined by (1). For any two

different elements x, y in Vij. By the proof of Proposition 1, there

are the following cases.

Case 1: 0≤ i≤ �s2� − 1 or 0≤ j≤ �t2� − 1.

In this case, we have d (x, y) = 2. Then

∑
x,y∈Vij

d x, y( ) � ∑|Vij |

k�2
d x1, xk( ) + ∑|Vij |

k�3
d x2, xk( ) +/ + d x|Vij |−1, x|Vij |( )

� 2 |Vij| − 1( ) + 2 |Vij| − 2( ) +/ + 2

� |Vij| |Vij| − 1( ).
Case 2: �s2�≤ i≤ s and �t2�≤ j≤ t.

In this case, d (x, y) = 1. Then

∑
x,y∈Vij

d x, y( ) � ∑|Vij |

k�2
d x1, xk( ) + ∑|Vij |

k�3
d x2, xk( ) +/ + d x|Vij |−1, x|Vij |( )

� |Vij| − 1( ) + |Vij| − 2( ) +/ + 1

� |Vij| |Vij| − 1( )
2

.

Let x and y be the elements in the two different equiv-annihilator

classes, Vij and Vi′j′, respectively. Consider the following cases.

Case 3: i + i′ ≥ s and j + j′ ≥ t.

By Lemma 1, d (x, y) = 1. Then

∑
x∈Vij

∑
y∈Vi′j′

d x, y( ) � |Vij‖Vi′j′|.

Case 4: 0 < i + i′ < s or 0 < j + j′ < t.

Subcase 4.1: i = 0 and j′ = 0.

In this case, we have d (x, y) = 3. Hence

∑
x∈Vij

∑
y∈Vi′j′

d x, y( ) � 3|Vij‖Vi′j′|.

Subcase 4.2: i′ = 0 and j = 0.

In this case, d (x, y) = 3. Hence

∑
x∈Vij

∑
y∈Vi′j′

d x, y( ) � 3|Vij‖Vi′j′|.

Subcase 4.3: If i, j′ are not both equal to 0, and i′, j are not
both equal to 0.

In this case, d (x, y) = 2. Hence

∑
x∈Vij

∑
y∈Vi′j′

d x, y( ) � 2|Vij‖Vi′j′|.

In conclusion, the Weiner index is

W Γ Zpsqt( )( � ∑s
i�0

∑t
j�0

∑
x,y∈Vij

d x, y( )⎛⎝ ⎞⎠ + ∑s
i,i′�0

× ∑t
j,j′�0

∑
x∈Vij

∑
y∈Vi′j′

d x, y( )⎛⎜⎝ ⎞⎟⎠

� ∑
⌈s

2⌉−1
i�0

∑t
j�0

|Vij| |Vij| − 1( ) +∑s
i�0

∑
⌈t

2⌉−1
j�0

|Vij| |Vij| − 1( )

− ∑
⌈s

2⌉−1
i�0

∑
⌈t

2⌉−1
j�0

|Vij| |Vij| − 1( ) + ∑s
i�⌈s

2⌉
× ∑t

j�⌈t
2⌉

|Vij| |Vij| − 1( )
2

+ 2∑s
i�0

× ∑t
j�0

|Vij| ∑t
j′�j+1

|Vij′| + ∑s
i′�i+1

∑t
j′�0

|Vi′j′|⎛⎝ ⎞⎠

− ∑s
i�⌈s

2⌉
∑t
j�0

|Vij| × ∑t
j′�max t−j,j+1{ }

|Vij′|⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ −∑s
i�0

× ∑t
j�0

|Vij| ∑s
i′�max s−i,i+1{ }

∑t
j′�t−j

|Vi′j′|⎛⎝ ⎞⎠ +∑t
j�0

× ∑s
i′�0

|V0j‖Vi′0| − |Vs0‖V0t|.

Therefore the result holds, by Lemma 1.
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The following Table gives the exact value of W(Γ(Zn)) for
n = 2s3t, where 1 ≤ s ≤ 3 and 1 ≤ t ≤ 3.

The compressed zero-divisor graph of Zpsqt can be

obtained by treating the set Vij, 0 ≤ i ≤ s, 0 ≤ j ≤ t, as a

single vertex. To illustrate, let’s give an example in the

following.

Example 2. Consider the ring R � Z22×33 , the vertex set of

Γ(Z22×33 ) is divided into 10 sets V01, V02, V03, V10, V11, V12,

V13, V20, V21, V22. Then the associated compressed zero-divisor

graph ΓE(Z22×33 ) is shown in Figure 1.

Before proving the next result we need the following lemma.

Lemma 2. For distinct prime numbers p, q, let n = psqt for some

s, t ∈ N and G � ΓE(Zn) be the compressed zero-divisor graph of

Zn. Then

(1) V(G) = {Vij|0 ≤ i ≤ s, 0 ≤ j ≤ t} .

(2) dG(Vij)�

2(s+1)(t+1)+s−j−6 if i�0and0<j<t
2(s+1)(t+1)+s−t−7 if i�0andj� t
2(s+1)(t+1)+t− i−6 if0<i<t andj�0
2(s+1)(t+1)+t−s−7 if i�s andj�0
2(s+1)(t+1)−(i+1)(j+1)−4 if i≥⌈s

2
⌉andj≥⌈t

2
⌉

2(s+1)(t+1)−(i+1)(j+1)−5 otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Proof. (1) Note that

Z Zn( )p � upiqj ∈ Zn|u ∈ U Zn( ) and i, j( ) ≠ 0, 0( ), s, t( ){ },
where U(Zn) be the units set of Zn.

Let x � u1piqj, y � u2pi′qj′ ∈ Z(Zn)p, such that ann(x) =

ann(y). Assume that (i, j) ≠ (i′, j′). Without loss of generality, we

may let i < i′. There are the following cases.

Case 1: i < i′ < s.

Since z = ups−i′qt ∈ ann(y). But xz = u1up
s−i′+iqt+j is not

divisible by n, a contradiction. therefore, (i, j) = (i′, j′) and [x] =

[y] = Vij.

Case 2: i < s < i′.
Since z = ups−i−1qt ∈ ann(y). But xz = u1up

s−1qt+j is not divisible

by n, a contradiction. therefore, (i, j) = (i′, j′) and [x] = [y] = Vij.

Case 3: s < i < i′.
In this case, we have j < t and j′ < t. If j ≠ j′, then z = uqmin

{t−j,t−j′} ∈ ann(x) or z = uqmin{t−j,t−j′} ∈ ann(y) but not both. A

contradiction. therefore, j = j′ and [x] = [y] = Vsj.

Then the result is holds.

(2) Let dkG(Vij) denote the sum of distances of the vertex Vij

from the vertices of G with a distance of k, where k = 1, 2 or

3 by Proposition 1. Then

dG Vij( ) � d1
G Vij( ) + d2

G Vij( ) + d3
G Vij( ).

There are the following cases.

Case 1: i = 0 and 0 < j < t.

By Lemma 1 there areVij↔Vi′j′ if and only if i + i′ ≥ s and j +

j′ ≥ t. So in this case d1G(Vij) � j because i′ = s and j′ = t − 1, . . .,

t − j. By the proof of Proposition 1, d (Vij, Vi′j′) = 3 if and only if

i′ = 1, 2, . . ., s and j′ = 0. So d3G(Vij) � 3s. therefore

d2
G Vij( ) � 2 |V G( )| − d1

G Vij( ) − 1
3
d3
G Vij( ) − | V00, Vij, Vst{ }|( )

� 2 s + 1( ) t + 1( ) − j − s − 3( ).
Hence, dG (Vij) = 2 (s + 1) (t + 1) + s − j − 6.

Case 2: i = 0 and j = t.

As case 1, d1G(Vij) � t because i′ = s and j′ = t − 1, t − 2, . . ., 0.

Since d (Vij, Vi′j′) = 3 if and only if i′ = 1, 2, . . ., s − 1 and j′ = 0.

Then d3G(Vij) � 3(s − 1). Therefore

d2
G Vij( ) � 2 |V G( )| − d1

G Vij( ) − 1
3
d3
G Vij( ) − | V00, Vij, Vst{ }|( )

� 2 s + 1( ) t + 1( ) − t − s − 1( ) − 3( ).

Hence, dG (Vij) = 2 (s + 1) (t + 1) + s − t − 7.

Case 3: 0 < i < s and j = 0.

A similar argument as in Case 1 shows that, dG (Vij) = 2 (s + 1)

(t + 1) + t − i − 6.

Case 4: i = s and j = 0.

A similar argument as in Case 2 shows that, dG (Vij) = 2 (s + 1)

(t + 1) + t − s − 7.

Case 5: 0< i≤ �s2� − 1 and j ≠ 0, or 0< j≤ �t2� − 1 and i ≠ 0.

Since d (Vij,Vi′j′) = 1 if and only if i′ = s, s − 1, . . ., s − i and j′ =
t, t − 1, . . ., t − j except Vst. So d1G(Vij) � (i + 1)(j + 1) − 1. In

this case, d3G(Vij) � 0. Therefore

FIGURE 1
the compressed zero-divisor graph ΓE(Z22×33 ).
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d2
G Vij( ) � 2 |V G( )| − d1

G Vij( ) − 1
3
d3
G Vij( ) − | V00, Vij, Vst{ }|( )

� 2 s + 1( ) t + 1( ) − i + 1( ) j + 1( ) − 1( ) − 3( )
Hence, dG (Vij) = 2 (s + 1) (t + 1) − (i + 1) (j + 1) − 5.

Case 6: i≥ �s2� and j≥ �t2�.
Since d (Vij,Vi′j′) = 1 if and only if i′ = s, s − 1, . . ., s − i and j′ =

t, t − 1, . . ., t − j exceptVst,Vij. So d
1
G(Vij) � (i + 1)(j + 1) − 2. In

this case, d3G(Vij) � 0. Therefore

d2
G Vij( ) � 2 |V G( )| − d1

G Vij( ) − 1
3
d3
G Vij( ) − | V00, Vij, Vst{ }|( )

� 2 s + 1( ) t + 1( ) − i + 1( ) j + 1( ) − 2( ) − 3( )
Hence, dG (Vij) = 2 (s + 1) (t + 1) − (i + 1) (j + 1) − 4.

This completes the proof of the lemma.

Remark 1. From the above lemma, it can be easily

seen that the cardinalities of the vertex set of G, that is, |

V(G)| = (s + 1) (t + 1) − 2. So |V(Z22×33 )| � 10 as shown in

Example 1.

The following theorem gives the Wiener index of ΓE(Zpsqt ).

Theorem 2. For distinct prime numbers p, q, and some s, t ∈ N.

The Wiener index of the compressed zero-divisor graph

Γ(Zpsqt ) is

W ΓE Zpsqt( )( ) � 1
2

2 s + 1( ) t + 1( ) s + t + st( )(

−1
2
s s + 1( ) − 1

2
t t + 1( )

− s s + 3( )t t + 3( )
4

−4st + s − ⌈s
2
⌉ + 1( ) t − ⌈t

2
⌉ + 1( )

−7 s + t( ) + 1).

Proof. Let n = psqt, and G � ΓE(Zn). we have V01, V10, . . .,

Vs−1,t, Vs,t−1 are all the vertices of G by Lemma 2, where Vij

defined by (1). Then

W G( ) � 1
2

∑t
j�1

dG V0j( ) +∑s
i�1

dG Vi0( ) +∑s
i�1

∑t
j�1

dG Vij( ) − dG Vst( )⎛⎝ ⎞⎠
� 1
2

∑t
j�1

2 s + 1( ) t + 1( ) + s − j − 6[ ] +∑s
i�1

2 s + 1( ) t + 1( ) + t − i − 6[ ] − 2⎛⎝

+∑s
i�1

∑t
j�1

2 s + 1( ) t + 1( ) − i + 1( ) j + 1( ) − 5[ ] + ∑s
i�⌈s

2⌉
∑t

j�⌈t
2⌉
1 − i + 1( ) j + 1( ) − 4[ ]⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1
2

2 s + 1( ) t + 1( ) s + t + st( ) − 1
2
s s + 1( ) − 1

2
t t + 1( ) − s s + 3( )t t + 3( )

4
− 4st(

+ s − ⌈s
2
⌉ + 1( ) t − ⌈t

2
⌉ + 1( ) − 7 s + t( ) + 1).

Example 3. Consider the ring R � Z22×33 . The Wiener index of

the compressed zero-divisor graph ΓE(Z22×33 ) is
W ΓE Z22×33( )( ) � 78

By Theorem 2.

Conclusion

In this paper, we have described the structure of the graph

Γ(Zps×qt ) for all distinct primes p, q and s, t ∈ N by partition of

the vertex set. Consider the partition of the vertex set into the

subsets V01, V10, . . ., Vij,/ , Vs−1,t, Vs,t−1 as seen (1). Then Vij ↔
Vi′j′ if and only if i + i′ ≥ s and j + j′ ≥ t. Based on this structure, we

proved that the distance of two vertices of Γ(Zps×qt ) are contained
in the set {1, 2, 3}, and derived an explicit formula for Wiener

index of the graph in Theorem 1 using the basic counting

principles.

In addition, we run the formula obtained through MATLAB

software and get the data in Table 1. Then, we studied the

structure of the compressed zero-factor graph of Zpsqt by

treating the set Vij as a single vertex of the compressed zero-

divisor graph ΓE(Zpsqt ). We showed that the degree of vertex Vij

generally includes six cases, with the number of the vertices of the

graph be (s + 1) (t + 1) − 2. Finally we derive the corresponding

formula for Wiener index W(ΓE(Zpsqt )) in Theorem 2. Of

course, we can also implement it in software if needed.

TABLE 1 The Wiener index of Γ (Zn) for n = 2s3t.

Zn 2 × 3 22 × 3 23 × 3 2 × 32 22 × 32 23 × 32 2 × 33 22 × 33 23 × 33

W(Γ(Zn)) 4 38 210 109 504 2294 1267 5152 22136
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