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Combining the core-shell structure with the optimization of surface

composition and structure in the shell is a fantastic strategy to enhance

the electrocatalytic performances. Here, we synthesized trimetallic Au@

PtxSny core-shell nanoparticles (NPs) with tunable composition and

structure of Pt-Sn alloyed shells. Impressively, the Au@PtSn core-shell

NPs with hexagonal PtSn alloyed shells exhibited the highest mass activity

and specific activity toward ethanol oxidation reaction (EOR) in alkaline

electrolyte, which are 13.0 and 12.7 times higher than those of the

commercial Pt/C. In addition, the Au@PtSn core-shell NPs displayed the

best stability compared to commercial Pt/C, with only 44.8% loss vs. 86.8%

loss in mass activity after 1,000 s due to the stronger anti-poisoning ability

for reaction intermediates. The theory calculations reveal that the

introduction of Au core and alloying Pt with Sn both endow Pt with an

appropriate d-band center, and thus effectively boosting the EOR activity.
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Introduction

Direct ethanol fuel cells (DEFCs) have emerged as a competitive candidate

among the energy conversion devices. Ethanol, as a renewable source of energy, not

only possesses high energy density, but also can be derived in large quantities from

biomass. Furthermore, ethanol takes the advantages of ease of storage and

transportation of liquid fuels, avoiding some thorny problems caused by gaseous

fuels (e.g., H2) (Kamarudin et al., 2013; Akhairi and Kamarudin, 2016). Platinum

(Pt) and Pt-based nanomaterials are considered to be the most promising catalysts

towards the ethanol oxidation reaction (EOR) at the anode (Kowal et al., 2009; Li

et al., 2010; Sulaiman et al., 2017; Li M. et al., 2019). However, Pt-based catalysts
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suffers from scarce abundance and high price of Pt, and is

prone to be poisoned by the byproducts (e.g., CO) generated

during reaction (Li J. et al., 2019; Wang et al., 2019; Luo et al.,

2020; Yang et al., 2021), leading to low efficiency in activity

and poor durability. Therefore, it is urgent to enhance the

performance of electrocatalysts for EOR and simultaneously

reduce the usage of Pt through rational design of

compositions and structures.

Production of core-shell structure is an effective strategy to

increase the atomic utilization of shell metal in nanocrystals.

Meanwhile, the interactions between the core and shell metals

may improve the electrocatalytic performances (Li et al., 2020;

He et al., 2021b; Wang et al., 2021; Wu et al., 2021). As reported

previously, the tensile strain on the Pt-skin introduced by the

inner cores, such as Au, would be benefit to boost the activity

for EOR (Li et al., 2012; Liang et al., 2019; Zhang et al., 2019;

Luo et al., 2021). Another promising route is alloying Pt with a

second metal, such as Rh (Erini et al., 2017; Almeida et al., 2019;

Zhu Y. et al., 2019; Luo et al., 2021), Ir (Chang et al., 2019; Liang

et al., 2019), Sn (Song et al., 2017; Rizo et al., 2018; Roca-Ayats

et al., 2018; Wang et al., 2020; Zhu et al., 2020). The synergistic

effect and electronic coupling effect are believed to exist in these

multicomponent systems, leading to the enhancement in

catalytic properties for EOR. Sn, as an oxophilic metal, is

one of the most commonly used elements in the design of

advanced EOR electrocatalysts. It is widely accepted that the

oxophilic metals would offer additional adsorbed hydroxyl

groups (OHad) at low potential to promote further oxidation

of the carbonaceous intermediates on the Pt sites, thereby

alleviating CO poisoning (i.e., bifunctional mechanism)

(Song et al., 2017; Roca-Ayats et al., 2018). The electronic

coupling between Pt and another metal also changes the

adsorption strength and configurations of intermediates on

Pt sites by shifting the d-band center of Pt (Dai et al., 2018).

Taking the Pt-Sn binary system as an example, the Pt-Sn

electrocatalysts have a great adjustability in compositions

and structures, thus providing a valuable opportunity to tune

the electrochemical performance (Rizo et al., 2017; Wu et al.,

2018). In this sense, combining the core-shell structure and

alloying strategy should be a feasible and powerful means to

boost ethanol oxidation. Unfortunately, for EOR, such works

are just a rare sight.

Herein, we report one-pot approach for the synthesis of

trimetallic Au@PtxSny core-shell nanoparticles (NPs) with

tunable composition and structure of Pt-Sn alloyed shells.

Impressively, the Au@PtSn core-shell NPs with hexagonal

PtSn alloyed shells exhibited the highest mass activity and

specific activity toward EOR in alkaline electrolyte, which are

13.0 and 12.7 times higher than those of the commercial Pt/C.

We attributed such huge enhancement to the synergistic effect

between the core-shell and alloyed surface structures, causing an

appropriate d-band center that determined by density functional

theory (DFT) calculations.

Experimental section

Chemicals

Chloroauric acid tetrahydrate (HAuCl4·4H2O, Sinopharm,

99.9%), platinum (II) acetylacetonate (Pt (acac)2, Sigma-Aldrich,

97%), tin (II) chloride (SnCl2, Sigma-Aldrich, 98%), oleylamine

(OAm, Aladdin, 80%–90%), oleic acid (OA, Sigma-Aldrich,

90%), cyclohexane (C6H12, Sinopharm, 99.7%), ethanol

(C2H5OH, Sinopharm, 99.7%), trichloromethane (CHCl3,

Sinopharm, 99%), carbon black (XC-72R, Cabot), tert-

butylamine (C4H11N, Aladdin, 99%), methanol (CH3OH,

Sinopharm, 99.5%), isopropyl alcohol ((CH3)2CHOH, Sigma-

Aldrich, 99.7%), Nafion 117 solution (Sigma-Aldrich, 5%),

potassium hydroxide (KOH, Sigma-Aldrich, 99.99%), ethanol

(C2H5OH, Macklin, 99.8%, for electrochemical measurements).

All the chemicals and materials were used as received.

Synthesis of Au@Pt, Au@Pt3Sn, Au@PtSn,
Au@PtSn2, Au@PtSn-2 core-shell NPs

In a typical preparation of Au@PtSn NPs, 0.025 mmol

HAuCl4·4H2O, 0.025 mmol Pt (acac)2, 0.025 mmol SnCl2 were

dissolved into amixture containing 5 ml OAm and 0.25 ml OA in

a 20 ml glass vial. The mixture was stirred over 30 min to form a

homogeneous solution. Subsequently, the resulting solution was

heated to 200°C in an oil bath under vigorous stirring and kept it

for 2 h. After naturally cooling to room temperature, the product

was collected by centrifugation and washed with cyclohexane and

ethanol for three times. For the synthesis of Au@Pt, Au@Pt3Sn,

Au@PtSn2 core-shell NPs, no SnCl2, 0.0125 and 0.05 mmol SnCl2
were used, respectively. For the synthesis of Au@PtSn-2 core-

shell NPs, we double the amount of Pt (acac)2 and SnCl2 relative

to those used in the preparation of the Au@PtSn NPs, with other

conditions being the same as the typical procedure.

Characterizations

The transmission electron microscope (TEM) and high-

resolution transmission electron microscope (HRTEM) images

were achieved from a Hitachi HT-7700 microscope operated at

100 kV and a FEI Tecnai G2 F20 microscope operated at 200 kV,

respectively. A FEI Titan ChemiSTEM equipped with a probe-

corrector and a Super-X EDX detector system was employed to

obtain the high-angle annular dark-field scanning TEM

(HAADF-STEM) and energy dispersive X-ray (EDX) mapping

images. The X-ray diffraction (XRD) characterization was

performed on a Rigaku Ultima Ⅳ x-ray diffractometer with

graphite monochromatized Cu Kα radiation (λ = 1.54178 Å).

The chemical states of samples were characterized by a Shimadzu

AXIS Supra X-ray photoelectron Spectroscopy (XPS) with Al Kα
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radiation. The percentage of each element in the electrocatalysts

was recorded by a Thermofisher iCAP Pro Ⅹ inductively coupled

plasma atomic emission spectrometer (ICP-AES).

Electrochemical measurements

All the electrochemical measurements were conducted in a

three-electrode cell using a CHI 760e electrochemical

workstation at the room temperature. A saturated calomel

electrode (SCE), a Pt wire and a glass-carbon rotating disk

electrode (GCE) (diameter: 5 mm and area: 0.196 cm2) were

used as reference electrode, counter electrode and working

electrode, respectively. The as-received data had been

converted to reversible hydrogen electrode (RHE). For

preparing the working electrode, catalyst ink was needed to be

produced. For this purpose, 5 mg catalyst was dispersed in a

mixture containing 4 ml deionized water, 1 ml isopropyl alcohol

FIGURE 1
(A) TEM image (B) HRTEM image (C) aberration-corrected HAADF-STEM image (D) schematic diagram, and (E–I) EDX mapping images of the
Au@PtSn core-shell nanoparticles.
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and 0.025 ml 5 wt% Nafion solution, and ultrasonicated for a

while to ensure adequate dispersion. After that, a certain volume

of ink containing 2 μg noble metals (Pt + Au) was dropped onto

the GCE and dried in the air. The cyclic voltammetry (CV) tests

were performed in an Ar-saturated 1 M KOH solution between

0 and 1 V vs. RHE at a scan rate of 50 mV/s. The ethanol

oxidation reaction (EOR) measurements were conducted in an

Ar-saturated 1 M KOH +1 M ethanol (EtOH) solution between

0.37 and 1.37 V vs. RHE at a scan rate of 50 mV/s. The

chronoamperometry (I-t) curves were recorded at 0.72 V vs.

RHE for 3,600 s in an Ar-saturated 1 M KOH +1 M EtOH

solution. The electrochemical active surface area (ECSA) was

determined by CO stripping measurements through integrating

the oxidation peak of CO in 1 M KOH solution. The mass and

specific activities were calculated by normalizing the current

density with respect to the mass loading and the ECSA of the

catalyst, respectively.

Results and discussion

Characterizations of Au@PtxSny core-shell
nanoparticles

The Au@PtSn core-shell NPs were synthesized through a

one-pot approach by co-reducing of HAuCl4·4H2O, Pt (acac)2
and SnCl2 in a mixture containing oleylamine and oleic acid at

200°C. The morphology, structure and composition

characterizations of the Au@PtSn core-shell NPs are shown

in Figure 1. As observed, the nanoparticles are well dispersed

and have a uniform size distribution with a diameter of 5.51 ±

0.80 nm (Figure 1A and Supplementary Figure S1A). The

HRTEM image of an individual nanoparticle in Figure 1B

shows that the fringes with a lattice spacing of 0.235 nm can be

indexed to the {111} planes of face-centered cubic (fcc) Au

core. The HAADF-STEM images show the different contrast

in the interior and exterior of the nanoparticle, suggesting a

core-shell structure (Figures 1C,D). The core-shell structure

can also be confirmed by the EDX mapping and line-scan

analyses (Figures 1E–I, Supplementary Figure S1B). As

observed, the shells are dominated by Pt and Sn, while, Au

mainly distributes in the cores, indicating a Au (core)-PtSn

(shell) structure. We also synthesized Au@Pt, Au@Pt3Sn,

Au@PtSn2 core-shell nanoparticles by changing the amount

of SnCl2 precursor, with other conditions being the same as

the typical procedure. Through TEM and EDX analyses

(Supplementary Figures S2–S4), these samples have similar

size and core-shell structure with different compositions

compared to the Au@PtSn NPs. The atomic ratios of these

three samples were determined by ICP-AES analysis, showing

3:1, 1:1, and 1:2 of Pt/Sn for the Au@Pt3Sn, Au@PtSn, and

Au@PtSn2 core-shell NPs, respectively (Supplementary

Table S1).

To further understand the growth mechanism of such core-

shell nanostructures, we carried out a set of experiments by

collecting the nanoparticles at different reaction times. As shown

in Supplementary Figure S5, Au3+ ions were preferentially

reduced and rapidly formed small nanoparticles. The content

of Au in the solution determined by ICP-AES hardly increased

anymore after 80 s, indicating that Au3+ ions were almost

completely reduced. But at this moment, Pt2+ and Sn2+ ions

had not been reduced yet. We found that Pt2+ and Sn2+ ions were

partially reduced after 3 min. As the reaction proceeded, the

content of Pt and Sn gradually increased while maintaining an

atomic ratio of ~1. In addition, we conducted a control

experiment in which no Au precursor was added. From TEM

image in Supplementary Figure S6, the dendritic nanostructures

instead of core-shell nanostructures were obtained. This result

indicated that the pre-formed Au nanoparticles acted as seeds to

promote conformal growth of PtSn shells.

The crystal structure of PtSn shells in the core-shell

nanostructures with different Pt/Sn atomic ratios was

characterized by XRD analysis (Figure 2). As observed, the

(111) diffraction peak of the Au@Pt sample is located at 38.7°

between those of standard fcc Au (111) and fcc Pt (111) (i.e., 38.2°

vs. 39.8°). The (111) diffraction peak of standard fcc Pt3Sn is

located at 38.9°, which is lower than that of fcc Pt (111). As such,

the (111) diffraction peak of the Au@Pt3Sn sample shifted to a

lower angle relative to that of the Au@Pt sample due to the

smaller atomic size of Sn than Pt. When the molar ratio of Sn and

Pt increased to 1, the (102) diffraction peak associated with

hexagonal PtSn phase appeared and the (111) diffraction peak of

fcc phase shifted to the location of Au. This result demonstrates

that the fcc Pt3Sn phase transforms to the hexagonal PtSn phase

with the increase in the amount of Sn precursor fed in the

FIGURE 2
XRD patterns of the Au@PtxSny nanoparticles.
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synthesis. As the Sn/Pt molar ratio increased to 2, the (102)

diffraction peak of hexagonal PtSn phase is much more obvious.

However, the diffraction peaks associated with tin oxide (SnO2)

appeared, which can be attributed to the oxidation of excess Sn in

the presence of residual oxygen (Rizo et al., 2017).

The surface compositions and valence states of such core-

shell nanostructures were characterized by the XPS

measurements. The binding energies of Pt 4f, Sn 3 days and

Au 4f were all corrected with respect to that of C 1s peak at

284.5 eV. The fitting curves of Pt 4f and Sn 3 days peaks

indicate that Pt and Sn elements on the surface both exist in

metallic and oxidation states (Pt0/PtⅡ, Sn0/SnⅣ), with the

metallic state being in the majority (Figures 3A,B). For Au

element, no peak of the oxidation state was observed in

Figure 3C, indicating that all Au exists in the metallic state

(Zhang et al., 2021; Bi et al., 2020; Zhang T. et al., 2018).

Compared to the binding energy of Pt0 in the commercial Pt/

C, there is an obvious negative shift for that of the Au@Pt NPs

(Figure 3A), owing to the tensile strain in the Pt shells and the

electronic coupling both introduced by the inner Au cores

(Liu et al., 2021). However, for the Au@PtSn NPs, a slight

positive shift of the binding energy of Pt0 can be observed

compared to the Au@Pt NPs (Figure 3A), due to the formation

of PtSn alloy. As a result, the binding energy of Pt0 for these

three samples increased in a sequence of Au@Pt < Au@PtSn <
Pt/C (Figure 3A). The XPS spectra of other two samples (Au@

Pt3Sn and Au@PtSn2) were also analyzed, as shown in

Supplementary Figure S7. The binding energy of Pt0 of

these two samples is close to that of the Au@PtSn NPs and

is also located between those of the Au@Pt NPs and

commercial Pt/C. As such, the core-shell structure with Au

as the inner cores and the alloying between Pt and Sn in the

shells play critical roles in modulating the electronic structure

of surface Pt, which is likely to be beneficial for EOR (He et al.,

2021a). In addition, the percentage of the metallic and

oxidation state of Sn in Au@Pt3Sn, Au@PtSn and Au@

PtSn2 are 94.3% Sn0/5.7% SnⅣ, 91.5% Sn0/8.5% SnⅣ and

87.9% Sn0/12.1% SnⅣ, respectively, calculated by the peak

area of Sn0 and SnⅣ in the XPS spectra (Figure 3B,

Supplementary Figure S7C). The much more SnⅣ in the

Au@PtSn2 agrees well with the appearance of diffraction

peaks associated with SnO2 in the XRD pattern (Wang

et al., 2020; Zhang Z. et al., 2018).

Electrochemical performances and
analysis

The Au@Pt, Au@Pt3Sn, Au@PtSn, Au@PtSn2 core-shell NPs

were loaded onto the carbon black (Cabot XC-72R) and then

evaluated as electrocatalysts for EOR using a three-electrode

system. The cyclic voltammetry (CV) tests of these carbon-

supported electrocatalysts were first conducted to clean the

surface in Ar-saturated 1 M KOH solution between 0 and 1 V

vs RHE at a scan rate of 50 mV/s (Supplementary Figure S8). The

currents of CV curves had been normalized against the Pt loading

on the GCE. The ECSA of each sample was determined by CO

stripping measurements through integrating the oxidation peak

of CO in 1 M KOH solution (Xiong et al., 2017) (Supplementary

Figures S9A–E). As listed in Supplementary Table S2, the ECSAs

of the Au@Pt, Au@Pt3Sn, Au@PtSn, Au@PtSn2 NPs and

commercial Pt/C are about 67.4, 55.3, 51.9, 45.1, and 50.6 m2/

gPt, respectively. Considering the larger particle sizes but similar

or even larger ECSAs of these four core-shell NPs compared to

the commercial Pt/C, we believe that the core-shell structure

effectively improves the atomic utilization of Pt. The CV curves

FIGURE 3
(A) Pt 4f (B) Sn 3 days and (C) Au 4f XPS spectra of the Au@PtSn, Au@Pt and commercial Pt/C, respectively.
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for EOR recorded in an Ar-saturated 1 M KOH +1 M ethanol

(EtOH) solution between 0.37 and 1.37 V vs RHE at a scan rate of

50 mV/s. The current of each curve was normalized against the Pt

mass and the ECSA to obtain the mass activity (MA) and specific

activity (SA) for EOR, respectively (Figures 4A,B). The forward

scan peaks correspond the oxidation process of ethanol to

intermediates, and the backward scan peaks correspond the

further oxidation of intermediates (Zhang et al., 2019; Peng

et al., 2021; Zhang et al., 2021). As observed, the Au@Pt, Au@

Pt3Sn, Au@PtSn and Au@PtSn2 NPs exhibited much higher

mass and specific activities compared to the commercial Pt/C.

Notably, the Au@PtSn core-shell NPs achieved the highest MA

(15.65 A mgPt
−1) and SA (30.17 mA cm−2), which are 13.0 and

12.7 times higher than those of the commercial Pt/C (Figure 4C).

As listed in Supplementary Table S3, we summarized the EOR

mass activities of recently reported state-of-art Pt-based

electrocatalysts in alkaline electrolyte. Intuitively, our Au@

PtSn core-shell NPs outperform most of the previously

reported Pt-based electrocatalysts towards EOR in alkaline

media. Moreover, it is well accepted that the ratio of the peak

current of the forward scan peak and backward scan peak reflects

the anti-poisoning ability to the intermediates (Fan et al., 2019;

Zhang et al., 2019). The Au@PtSn NPs have a much higher ratio

(If/Ir = 6.34) than other samples (Supplementary Figure S10),

indicating that the Au@PtSn NPs possess an excellent anti-

poisoning ability. To further confirm the effect of the Au

cores on EOR performance, taking the Au@PtSn NPs as a

typical sample, we synthesized another sample with a thicker

PtSn shell through doubling the amount of Pt and Sn precursors

without changing the amount of Au precursor, denoted as Au@

PtSn-2. The morphology, composition and structure

characterizations of the Au@PtSn-2 NPs (Supplementary

Figures S11, S12) indicate the formation of a core-shell

structure with a hexagonal PtSn alloy shell. From the Pt 4f

XPS spectra of Au@PtSn-2 (Supplementary Figure S13A), the

binding energy of Pt0 4f7/2 is 71.46 eV, which is close to that of the

Au@PtSn NPs (71.41 eV). The atomic ratio of Au, Pt and Sn in

the Au@PtSn-2 sample is 18.2/42.4/39.4, determined by ICP-

AES, and the atomic ratio of Pt and Sn is approximately 1:1

(Supplementary Table S4). The ECSA of Au@PtSn-2 sample is

FIGURE 4
(A,B) Cyclic voltammograms (CV) curves normalized by Pt loadings and ECSAs, respectively (C)mass and specific activities at the peak position
of forward curves and (D) current-time (I-t) curves at 0.72 V of the Au@PtxSny core-shell NPs and commercial Pt/C in Ar-saturated 1 M KOH +1 M
ethanol solution at a scan rate of 50 mV/s.

Frontiers in Chemistry frontiersin.org06

Qian et al. 10.3389/fchem.2022.993894

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.993894


52.9 m2/gPt determined by the CO stripping curves in

Supplementary Figure S9F. The Au@PtSn-2 NPs exhibited a

mass activity of 8.62 A mg/Pt and a specific activity of 15.65 mA/

cm2, which are 52.9 and 51.9% of those of the Au@PtSn NPs,

respectively (Supplementary Figure S14). As we all known, the

thicker the shell, the weaker the influence of the core (Yan et al.,

2016; Zhao et al., 2016; Zhang et al., 2021; Zhu J. et al., 2019). This

result indicates that the inner Au cores play an important role in

boosting the EOR performance, owing to the strain effect and

electronic coupling effect (Li et al., 2012; Liu et al., 2021).

Generally, the as-synthesized Au@PtxSny core-shell NPs

exhibited significantly enhanced activities toward alkaline

EOR relative to the commercial Pt/C, which can be

attributed to the unique core-shell structure with Au as the

cores and the formation of Pt-Sn alloy. In addition, the activity

of the Au@PtSn NPs is higher than that of the Au@Pt3Sn NPs,

indicating that the hexagonal PtSn phase is more active than

the fcc Pt3Sn phase towards EOR. For the Au@PtSn2 NPs,

although the signal of the hexagonal PtSn phase is stronger in

the XRD pattern, the existence of SnO2 probably covers part of

the active sites (smaller ECSA), leading to the decrease of the

activity for EOR relative to the Au@PtSn NPs (Du et al., 2014;

Fan et al., 2019; Huang et al., 2019). To have a better

understanding of the origin of the enhanced activity, DFT

calculations were conducted. Nørskov et al. demonstrated that

the d-band center of catalysts has a decisive effect on the

reactivity and is an important descriptor for designing

advanced catalysts (Greeley et al., 2002). An upper d-band

center generally means a more reactive surface, which tends to

have stronger adsorption of intermediates, while, a surface

with a lower d-band center usually has weaker adsorptions of

intermediates (Greeley et al., 2002; Li et al., 2012). Since the

lattice constant of Au is larger than that of Pt, the introduction

of the Au core can expand the lattice of Pt and up-shift the

d-band center of Pt. When the Pt shell is alloyed with Sn, the

d-band center of Pt is appropriately moved down. Therefore,

the d-band center of Au@PtSn falls between those of the Au@

Pt and Pt (Figure 5A), resulting in suitable adsorption

strengths toward the intermediates. As well known,

*CH3CO is a key intermediate in the EOR process (Dai

et al., 2018), we further calculated the adsorption energies

of *CH3CO on the Au@Pt3Sn and Au@PtSn surfaces. The

adsorption energies of *CH3CO on Au@PtSn and Au@Pt3Sn

are −2.21 eV and −1.94 eV, respectively (Figures 5B,C),

suggesting that the adsorption of *CH3CO on Au@PtSn is

stronger than that on Au@Pt3Sn. We believe that it is

beneficial to promote the subsequent reaction kinetics of

*CH3CO.

At last, we measured the electrochemical stabilities of all the

samples mentioned above by chronoamperometry technique at

0.72 V vs RHE for 3,600 s in an Ar-saturated 1 M KOH +1 M

EtOH solution. From the I-t curves in Figure 4D, Supplementary

Figure S14F, the Au@PtSn core-shell NPs displayed the best

stability among these five samples, with 55.2 and 7.9% of themass

activity left after 1,000 and 3,600 s, respectively. However, the

commercial Pt/C only remained 13.2 and 1.0% of the mass

activity after 1,000 and 3,600 s, respectively. The superior

stability of the Au@PtSn electrocatalyst can be attributed to

the excellent anti-poisoning ability towards reaction

intermediates. The TEM images of the Au@PtSn

electrocatalyst and the commercial Pt/C before and after the

stability measurements are shown in Supplementary Figure S15.

FIGURE 5
(A) PDOS of the Pt 5 days orbits on the surfaces of the Au@PtSn, Au@Pt and Pt models (B,C) Adsorption energies of *CH3CO on the surfaces of
the Au@PtSn and Au@Pt3Sn models, respectively.
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The decline of the activity of the Au@PtSn electrocatalyst is

mainly due to the agglomeration of the NPs and the destruction

of the core-shell structure.

Conclusion

In summary, we reported a facile and one-pot approach to

synthesize trimetallic Au@PtxSny core-shell NPs with tunable

composition and structure of the Pt-Sn alloyed shells. The Au@

PtxSny core-shell NPs exhibited the substantially enhanced

activity and stability for EOR compared to the commercial Pt/

C. In addition, the nanoparticles with hexagonal PtSn alloyed

shells were superior to those with the fcc Pt3Sn alloy phase with

the Au@PtSn core-shell NPs being the best one. Specifically, the

Au@PtSn core-shell NPs achieved the highest mass activity

(15.65 A mgPt
−1) and specific activity (30.17 mA cm−2) in

alkaline media, which are 13.0 and 12.7 times higher than

those of the commercial Pt/C. DFT calculations indicate that

the introduction of Au core and alloying Pt with Sn endow Pt

with an appropriate d-band center, leading to the huge

enhancement in the activity for EOR. This work offers a new

sight for the design of high-performance electrocatalysts.
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