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Two new sesquiterpenoids, curcumanes E (1) and F (2), were isolated from the

rhizome of Curcuma longa, and their structures and absolute configurations

were examined using extensive spectroscopic analyses and ECD calculations.

Interestingly, compounds 1 and 2 are diastereoisomers possessing a rare

sesquiterpenoid skeleton that has been reported only once before. Both

curcumanes E and F exhibit significant vasorelaxant effects against KCl-

induced contraction of rat aortic rings, with EC50 values of 5.10 ± 0.79 and

5.58 ± 1.77 μM, respectively. These findings enrich the data concerning this rare

type of sesquiterpenoids and further indicate that these rare sesquiterpenoids

can effectively reduce blood pressure.
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Introduction

Sesquiterpenoids are representative terpenoid molecules that are widely distributed in

plants, microbes, and microorganisms. Over 300 natural sesquiterpenoid skeletons have

been reported so far (Cane, 1999; Liu et al., 2012), and novel skeletons are being

discovered on a regular basis. The reported compounds have been found to have

extensive bioactivities, such as anti-inflammatory (Chang et al., 2020), lipid regulatory

(Zhu et al., 2020; Yin et al., 2021), antiviral (Liu et al., 2021), anti-proliferative (Wu et al.,

2021), and proangiogenic (Han et al., 2022) activities. Thus, their intriguing structures

and impressive bioactivities have attracted the attention of many chemists and

pharmacologists.

Curcuma longa L. (Zingiberaceae) is used as a traditional Chinese medicine (TCM) to

promote blood circulation and remove blood stasis, and it is often added to food as a
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coloring and flavoring agent (Chen et al., 2010; Sun et al., 2017;

Yuan et al., 2018). So far, more than 200 chemical components

have been isolated from C. longa, including curcuminoids,

sesquiterpenoids, monoterpenoids, and alkaloids (Singh et al.,

2010; Xiao et al., 2011; Lin et al., 2012; Prete et al., 2016; Sun et al.,

2017). These components exhibit a variety of pharmacological

effects, including anti-inflammatory (Ti et al., 2021), antibacterial

(Moghadamtousi et al., 2014), anticancer (Chen et al., 2014), and

antioxidant (Llano et al., 2019) effects. As part of our long-term

project to explore active natural compounds in blood-activating

TCMs, we have continuously investigated the extract of the C.

longa rhizome, and we have successfully isolated several novel

sesquiterpenoids with significant vasorelaxant activity (Liu et al.,

2019; Qiao et al., 2019; Chen et al., 2022). In particular, two

bicyclic sesquiterpenoids (curcumanes A and B) possessing

unprecedented skeletons with a dicyclo [3.2.1]octane or a

dicyclo [3.3.1]nonane moiety have been isolated and identified

(Liu et al., 2019). In addition, an unusual seco-cadinane

sesquiterpenoid (curcumane C) and a pair of unusual nor-

bisabolene enantiomers (curcumane D) with significant

vasorelaxant activity have been isolated from C. longa (Qiao

et al., 2019). To explore whether other rare sesquiterpenoids play

a role in the vasorelaxant effect of C. longa, two curcumane B

analogues (1 and 2) featuring a dicyclo [3.3.1]nonane moiety

were isolated and characterized in this study (Figure 1). The

isolation, structure elucidation, absolute configuration, and

vasorelaxant activities of 1 and 2 are detailed hereafter.

Experimental

General experimental procedures

IR spectra and optical rotations were measured using an

Agilent cary 600 FT-IR microscope (Agilent Technologies Inc.,

CA, United States) and an Anton Paar MCP 200 automatic

polarimeter (Anton Paar GmbH, Austria), respectively. ECD

spectra were recorded on an Applied photophysics Chirascan

and Chirascan-plus circular dichroism spectrometer (Applied

Photophysics Ltd., Leatherhead, England), while NMR spectra

were recorded on a Bruker Avance III 600 NMR spectrometer

(Bruker Corporation, Billerica, MA, United States) with solvent

peaks as internal standards. HRESIMS measurements were

carried out using a Q Exactive instrument (Thermo

Scientific™, MA, United States), and TLC experiments were

performed using glass plates precoated with silica gel (GF254,

Qingdao Marine Chemical Inc., Qingdao, China). Silica gel

(200–300 mesh, Yantai Institute of Chemical Technology,

Yantai, China) and Sephadex LH-20 (Amersham Pharmacia

Biotech AB, Uppsala, Sweden) were used for column

chromatography. HPLC separations were achieved using an

Agilent 1100 instrument (Agilent Technologies Inc., CA,

United States) equipped with a Zorbax SB-C18 (250 ×

9.4 mm2, 5 μm) semipreparative column. Vasorelaxant activity

assays were conducted using a PL3508B6/C-V Panlab 8 Chamber

Organ Bath System (including stimulating electrodes, Panlab

eight-chamber organ baths, organ chambers, tissue hooks, and

Labchart Pro software).

Plant material

The rhizome of Curcuma longa L. (Zingiberaceae) was

purchased from Sichuan Neautus Traditional Chinese

Medicine Co., Ltd. (Chengdu, China) and identified by Prof.

Min Li of Chengdu University of Traditional Chinese Medicine

(Chengdu, China). A voucher specimen (CL-20160803) was

deposited at the Institute of Innovative Medicine Ingredients

of Southwest Specialty Medicinal Materials at Chengdu

University of Traditional Chinese Medicine.

Extraction and isolation

The dried rhizome of C. longa (50 kg) were extracted three

times with 95% EtOH under reflux. The durations of the first,

second, and third extractions were 3, 2, and 1.5 h, respectively.

The yellow residue (7 kg) obtained by evaporating the EtOH

extract under reduced pressure was dispersed in H2O and

partitioned sequentially with petroleum ether and EtOAc. The

EtOAc extract (3 kg) was separated on a silica gel column,

using gradient elution with petroleum ether–EtOAc (1:0, 7:3,

and 4:6) and EtOAc–MeOH (1:0, 1:1, and 0:1) to yield six

fractions (A–F). Fraction B was separated further on a silica

gel column using CH2Cl2–EtOAc (1:0–0:1) as eluent to yield

16 fractions (F1–F16). Subfractions F6-1–F6-12 were obtained

from fraction F6 via RP-MPLC with gradient elution using a

solution of MeOH in H2O (30–100%) as mobile phase. The F6-

7 subfraction was further fractionated on a Sephadex LH-20

column (petroleum ether–CH2Cl2–MeOH, 5:5:1) to obtain

subfractions F6-7-1 and F6-7-2. Finally, purification of F6-7-1
by preparative TLC (CH2Cl2–EtOAc, 15:1) and RP

semipreparative HPLC (69% MeOH in H2O) afforded 1

(4.8 mg) and 2 (3.7 mg).

Spectroscopic data

Curcumane E (1): colorless oil; [α]25D +38.0 (c 0.16, MeOH);

ECD (MeCN) λmax (Δε) 190 (–32.7), 220 (+31.1), 248 (–11.9)

nm, 339 (–4.4) nm; UV (MeCN) λmax (log ε) 191 (3.78), 224

(3.44) nm; IR (ATR) ]max 3389, 2919, 2865, 2720, 1686, 1523,

1450, 1381, 1256, 1162, 1004, 886, 827, 739, 679, 562 cm−1; 1H

NMR (acetone-d6, 600 MHz) and 13C NMR (acetone-d6,

150 MHz) data, see Table 1. (+)-HRESIMS m/z 257.1504 [M

+ Na]+ (calcd for C15H22O2Na, 257.1512).
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Curcumane F (2): colorless oil; [α]25D –31.0 (c 0.09, MeOH);

ECD (MeCN) λmax (Δε) 214 (+2.6), 241 (–9.1) nm; UV (MeCN)

λmax (log ε) 194 (3.75), 221 (3.53) nm; IR (ATR) ]max 3413, 2923,

2862, 2717, 1681, 1453, 1385, 1310, 1253, 1166, 1101, 1015, 961,

880, 660, 556cm−1; 1H NMR (CDCl3, 600 MHz) and 13C NMR

(CDCl3, 150 MHz) data, see Table 1. (+)-HRESIMS m/z

257.1502 [M + Na]+ (calcd for C15H22O2Na, 257.1512).

Effects of compounds 1 and 2 on the KCl-
induced contractions of rat aortic rings

Male Sprague-Dawley rats (180–220 g) were purchased from

Da Shuo Biotechnology Co., Ltd (Chengdu, Sichuan, China). All

of the rats were housed under standard environmental conditions

at a temperature between 25 ± 1°C, humidity between 50 ± 5%,

and food and water were provided ad-libitum during the study

period. All of the experimental procedures and protocols were

approved by the Committee on the Ethics of Animal

Experiments of Chengdu University of Traditional Chinese

Medicine (Approval No. 2020–04) and followed the guidelines

of the Management Committee for Experimental Animals,

China.

The thoracic aorta of SD rats was carefully dissected and

immediately immersed in 4°C oxygenated Krebs-Henseleit

(K-H) solution [composition (mM): NaCl, 120; KCl, 4.6;

KH2PO4, 1.2; MgSO4, 1.2; NaHCO3, 25; glucose, 10; CaCl2,

2.5]. Subsequently, 3–5-mm-long rings were prepared by

cleaning the fat and connective tissues surrounding the

aorta then cutting it. Before starting the experiment, the

aortic rings were equilibrated in a 20 ml K-H solution

(constant temperature of 37°C; bubbled with a gas mixture

of 95% O2 and 5% CO2) for 1 h under 1 g initial tension. The

aortic rings were stably pre-contracted by induction with

60 mM KCl solution, then cumulative concentrations of the

test compounds (0.25, 0.75, 2.5, 7.5, and 25 μM) were added

to the organ bath. All of the data were recorded using a

computerized system, and Labchart Pro software was used to

measure the tension of the prepared samples.

Methoxyverapamil was used as a positive control (Xiong

et al., 2015; Hu et al., 2018). The EC50 and Emax (maximal

vasorelaxation) values of the test compounds and the

positive drug were calculated based on the cumulative

concentration–tension curves, and the relaxant responses

of KCl-induced maximal contractile tension were

TABLE 1 1H (600 MHz) and13C NMR (150 MHz) data of 1 and 2 (δ in
ppm, J in Hz).

Position 1a 2b

δH δC δH δC

1 2.81 m 31.1 2.65 q (3.0) 31.4

2 2.53 m 40.2 2.35 m 34.0

3a 1.24 dt (13.2, 4.2) 34.6 1.19 m 31.8

3b 0.70 q (13.2) 1.05 m

4 1.71 m 35.2 1.94 m 29.3

5 1.91 m 43.0 1.94 m 42.6

6 4.21 d (3.6) 63.8 4.27 d (3.6) 63.8

7 6.90 brd (3.6) 152.9 6.82 dd (3.6, 1.2) 149.3

8 143.2 146.2

9a 1.75 dt (12.0, 3.6) 30.1 1.81 dt (13.2, 2.4) 23.6

9b 1.57 m 1.53 m

10 4.53 brd (9.6) 129.0 5.46 brd (9.0) 125.6

11 130.8 133.1

12 1.55 brs 25.9 1.73 brs 26.1

13 1.63 brs 18.0 1.71 brs 18.0

14 1.00 d (7.2) 19.9 0.97 d (6.6) 20.0

15 9.49 s 193.8 9.50 s 193.6

OH 4.15 s

aData were measured in acetone-d6.
bData were measured in CDCl3.

FIGURE 1
Structures of compounds 1 and 2.
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considered 100%. Statistical analysis was performed using

Student′s t-test, and p < 0.05 signified a statistically

significant difference. All of the values are expressed as

mean ± SEM.

Results and discussion

Structure elucidation of compounds

Compound 1 was obtained as a colorless oil, and based on

HRESIMS analysis, its molecular formula is C15H22O2 (m/z

257.1504 [M + Na]+; calcd 257.1512), which signifies that it

has five degrees of unsaturation. The IR spectrum of 1 exhibits

absorption bands corresponding to hydroxy (3389 cm−1),

aldehyde (2865, 2720, and 1686 cm−1), and olefinic

(1523 cm−1) groups. The resonance peaks observed in its 1H

NMR spectrum may be attributed to three methyl groups [δH
1.00 (d, J = 7.2 Hz), 1.55 (brs), and 1.63 (brs)], two olefinic

methines [δH 4.53 (brd, J = 9.6 Hz) and 6.90 (brd, J = 3.6 Hz)], an

oxymethine [δH 4.21 (d, J = 3.6 Hz)], an aldehyde group [δH 9.49

(s)], and several aliphatic methylenes and methines between δH
0.70 and 2.81 (Table 1). The 13C NMR and DEPT data of 1 reveal

the presence of one carbonylic carbon (δC 193.8), one oxygenated

carbon [δC 63.8 (CH)], and four olefinic carbons [δC 129.0 (CH),

130.8 (C), 143.2 (C), 152.9 (CH)] (Table 1). Overall, the

spectroscopic data indicate that compound 1 is a bicyclic

sesquiterpenoid possessing an oxymethine group, an aldehyde

group, and two trisubstituted double bonds. Based on the 1H−1H

COSY correlations of H-1/H-2/H2-3/H-4/H-5/H2-9/H-1, H-2/

H-10, and H-4/H3-14, as well as the HMBC correlations of H3-

14 with C-3, C-4, and C-5; H2-3 with C-1, C-2, C-4, C-10, and C-

14; H2-9 with C-1, C-2, C-4, and C-5; H-10 with C-1, C-2, C-3, C-

12, and C-13; and H3-12 and H3-13 with C-10 and C-11

(Figure 2), compound 1 comprises a six-membered ring A

with an isobutenyl unit at C-2 and a methyl group at C-4.

The elucidation of the other six-membered ring B possessing

OH-6 and CHO-8 substituents is based on the HMBC

correlations of OH-6 with C-5, C-6, and C-7; H-15 with C-1,

C-7, and C-8; H2-9 with C-6 and C-8; H-2 with C-8; and H-7

FIGURE 2
(A) Key 1H–1H COSY and HMBC correlations of 1; (B) Key 1D-NOE and NOESY correlations of 1.

FIGURE 3
Calculated and experimental ECD spectra of 1 in MeCN.
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with C-1, C-5, and C-15. Thus, the planar structure of 1 is

determined.

The NOE difference spectrum of 1 shows that the H-2

and H-9b signals are enhanced when H-1 is irradiated; and

the H-4 and H-9b signals are enhanced when H-5 is

irradiated (Figure 2). This indicates that H-2 and H-4

have the same orientation as the methano bridge (C-1−C-

9−C-5), which is consistent with the NOESY correlations of

H-2 with H-4 and H-9b. However, the correlations of H3-14/

H-6, H-3b/H-6, and H-3b/H-10 indicate that these protons

are oriented in the opposite direction of the methano bridge.

Based on the comparison of calculated and experimental

ECD data, the absolute configuration of 1 is 1R,2R,4R,5S, 6S

(Figure 3). Interestingly, compound 1 is an analogue of

curcumane B, which was reported as a sesquiterpenoid

with an unprecedented skeleton in 2019 (Liu et al., 2019).

Compound 1 is labelled curcumane E.

The UV, IR, HRESIMS, and NMR data of compound 2

suggest that it is an isomer of compound 1. Analysis of the 2D

NMR (1H−1H COSY and HMBC) data of 2 (Figure 4) confirms

that this compound has the same planar structure as 1.

However, the H-3b, H-4, H-10, and H-12 resonances in the
1H NMR spectrum of 2 are deshielded by ΔδH +0.35, +0.23,

+0.93, and 0.18 ppm, respectively, compared to the same

resonances in the spectrum of 1. Meanwhile, the H-1 and H-

2 resonances are shielded by ΔδH −0.16 and −0.18 ppm,

respectively. The 13C chemical shifts of C-2, C-3, C-4, C-7,

C-8, C-9, and C-10 in 2 are also different from those of the same

carbon atoms in 1. Therefore, compounds 2 and 1 are a pair of

diastereomers. The NOESY spectrum of 2 exhibits correlations

of H-6 with H3-14 and H-3b; and H-10 with H-9a and H-3a,

which reveals that the isobutenyl-2, H-4, and OH-6 moieties are

FIGURE 4
(A) Key 1H–1H COSY and HMBC correlations of 2; (B) Key 1D-NOE and NOESY correlations of 2.

FIGURE 5
Calculated and experimental ECD spectra of 2 in MeCN.
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close to the methano bridges (C-1–C-9–C-5), while H-2, Me-4,

and H-6 are oriented in the opposite direction of this bridge

(Figure 4). Finally, the absolute configuration of 2 is elucidated

as 1S,2R,4S,5R,6R, based on the comparison of the calculated

and experimental ECD data (Figure 5). Compound 2 is labelled

curcumane F.

Effects of compounds 1 and 2 on the KCl-
induced contractions of rat aortic rings

Previous studies show that the sesquiterpenoids isolated

from C. longa possess endothelium-dependent vasorelaxant

activity, endothelium-independent vasorelaxant activity, or

both (Liu et al., 2019; Qiao et al., 2019; Chen et al., 2022).

Therefore, the vasorelaxant effects of compounds 1 and 2 on

pre-contracted rat aorta rings were investigated in this study,

using methoxyverapamil as the positive control. As shown in

Figure 6, compounds 1 and 2 exhibit a concentration-

dependent relaxation effect on the KCl-induced contraction

of rat aortic rings, with EC50 values of 5.10 ± 0.79 and 5.58 ±

1.77 μM, respectively (EC50 = 0.50 ± 0.05 μM for

methoxyverapamil). The Emax values corresponding to the

activities of 1, 2, and methoxyverapamil against KCl-induced

contractions are 82.87 ± 5.36%, 83.44 ± 5.24%, and 100.00%,

respectively. Unfortunately, no follow-up mechanism

research was carried out due to the limited amounts of 1

and 2. Notably, the vasorelaxant activities of 1 and 2 are

similar, which suggests that this activity is not significantly

affected by stereochemistry. However, a comparison of the

EC50 values of compound 1 and curcumane B (Liu et al., 2019)

indicates that the substituents at C-3 and C-8 play an

important role in vasorelaxation.

Conclusion

In summary, two unusual sesquiterpenoids with a dicyclo

[3.3.1]nonane moiety (curcumanes E and F) were isolated

from the rhizome of C. longa. The sesquiterpenoid skeleton

characterized herein has been reported only once before (Liu

et al., 2019). Moreover, curcumanes E and F are a pair of

diastereomers that have similar vasorelaxant effects on the

contracted rat aortic rings induced by KCl. Collectively, this

study and our previous studies (Liu et al., 2019; Qiao et al.,

2019) reveal that the rare sesquiterpenoids extracted from

the rhizome of C. longa are considerably effective substances,

even though they are not the main types of sesquiterpenoids

in C. longa.
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