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Artificial photosynthesis (AP) has been proved to be a promising way of

alleviating global climate change and energy crisis. Among various materials

for AP, molecular complexes play an important role due to their favorable

efficiency, stability, and activity. As a result of its importance, the topic has been

extensively reviewed, however, most of them paid attention to the designs and

preparations of complexes and their water splitting mechanisms. In fact, ligands

design and preparation also play an important role in metal complexes’

properties and catalysis performance. In this review, we focus on the ligands

that are suitable for designing mononuclear catalysts for water splitting,

providing a coherent discussion at the strategic level because of the

availability of various activity studies for the selected complexes. Two main

designing strategies for ligands inmolecular catalysts, substituents modification

and backbone construction, are discussed in detail in terms of their potentials

for water splitting catalysts.
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1 Introduction

To address the problems of climate change and energy crisis, solar energy

technologies have been developing and applying for decades thanks to the abundant,

renewable energy sources of Sun light. Although photovoltaic technologies can convert

solar energy into electrical energy, the energy conversion and utilization are highly

dependent on the weather and time of a day. The intermittent and diffuse nature of solar

energy and the need for taking full advantages of Sun light promote the development of

more efficient storage technologies for solar energy (Akbari et al., 2019; Liu et al., 2019;

Palacios et al., 2020).

Inspiring from the natural photosynthesis process, during which one oxygen, four

protons and four electrons are liberated in water oxidation phase then the protons and

electrons contributed to carbon dioxide fixation in the photosystem II (PSII), artificial

photosynthesis has been extensively studied and is considered as an attractive technology

to produce green and sustainable energy (Whang and Apaydin, 2018; Ye et al., 2018;

Dogutan and Nocera, 2019; Zhang and Reisner, 2020). In artificial photosynthesis, water

splitting including oxygen-evolving reaction (OER), Eq. 1, and hydrogen-evolving
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reaction (HER), Eq. 2, is attractive for the solar energy utilization

and storage, where OER, due to the thermodynamical and

kinetical barriers, is the bottleneck of this process.

2H2O → O2 + 4H+ + 4e−(E � 1.23 V vs NHE) (1)
2H+ + 2e− → H2(E � 0 V vs NHE) (2)

There are two major mechanistic classifications for each

water splitting process: 1) OER reaction: I2M, WNA, and 2)

HER reaction: ECEC, EECC, as shown in Figure 1 (Blakemore

et al., 2015; Shaffer et al., 2017; Wang et al., 2019). The general

two types of OER mechanisms both involve O-O bond

formation, where an O-O radical coupling interaction of two

metallo-oxy radicals are involved in the coupling (I2M

mechanism) or a water molecular attack on an electrophilic

metal-oxo or metal-oxyl (WNA mechanism) (Shaffer et al.,

2017). The two types of HER mechanisms are distinguished

by the initial reduction: 1) one electron and two H-M(n−1)+ react

with each other to generate H2 (ECEC mechanism), 2) two

electrons and the resultant M(n−2)+ can be protonated to

H-Mn+, which then can react with an external proton to yield

H2 (EECC mechanism) (Wang et al., 2019).

Among catalysts for water splitting, molecular metal

complexes have been paid tremendous attention due to the

following advantages: 1) designable steric configuration and

electronic structure; 2) tunable intrinsic activity; 3) clear

catalytic mechanisms; 4) high selectivity of products 5) high

atomic economy; 6) compatible with the development of various

spectroscopic instruments. Over the last few decades, many

efficient molecular water oxidation catalysts (WOCs) and

water reduction catalysts (WRCs) were developed, such as the

ruthenium catalysts (Concepcion et al., 2009b), iridium catalysts

(Moore et al., 2011), manganese catalysts (Najafpour and

Allakhverdiev, 2012), cobalt catalysts (Eckenhoff et al., 2013),

platinum catalysts (Wang et al., 2015), iron catalysts (Mehrabani

et al., 2020), copper catalysts (Liu et al., 2018), and nickel catalysts

(Shaffer et al., 2017; Wang et al., 2019) etc. Thereby, many

reviews are available in the literature, comparing various kinds

of molecular catalysts comprehensively and summarizing

catalytic mechanisms for water splitting (Meyer et al., 2017;

Stolarczyk et al., 2018; Zhang and Sun, 2019a).

Several procedures are involved in developing molecular

catalysts for water splitting: 1) ligand design, synthesis, and

characterization; 2) metal complexes synthesis and

performance characterization; 3) catalytic mechanism studies.

In fact, the flourish of various ligands designed for WOCs and

WRCs, as well as active metal site, establish the foundation of

molecular catalysts performance. The combination of different

metals and ligands will create thousands of molecular catalysts.

Therefore, the modification strategies of ligands are recognized as

one of the challenges to improve the intrinsic catalytic activity

and stability of water splitting catalysts (WSCs).

In this review, we emphasize the modification strategies of

ligands and their effect on the properties and performance of

WSCs. We address here the two major designing strategies of

FIGURE 1
Schematic representation of general mechanisms for Water Oxidation and Water Reduction catalyzed by metal complexes.
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ligands for mononuclear water splitting outlined in Figure 2B,

including 1) substituents modification, and 2) backbone

construction. We consider four strategies for substituents

modification, including electronic effect, intermolecular

interactions, steric hindrance, and anchoring groups, with

providing corresponding examples for each of them. The

backbone construction refers to the parent configurations that

are organized by coordination number, including monodentate,

bidentate, and polydentate ligands. In the end, we summarize the

ligands’ designing strategies and highlight their prospects in

future research of molecular complexes for artificial

photosynthesis.

2 Substituent-modification strategies
of ligands

The large variety of organic substituents as well as the

straightforward synthesis of both ligands and metal

complexes open a large new window for the design of

ligand-based WSCs. Though the same type of ligands may have

different effect on WSCs’ performance depending on the

mechanism of catalysts and the central active metal site, the

major substituents modification strategies can be briefly

summarized as: electronic effect, intramolecular interactions,

steric hindrance, and anchoring groups.

2.1 Electronic effect

Over the last decade, the exploration of electronic effect on

the properties of metal complexes has been dramatically

increased owning to its easy-monitored nature by various

methods (Allen and Cook, 1963; Lanznaster et al., 2006;

Kieltsch et al., 2010; Feng et al., 2014; Chen et al., 2015;

Bellows et al., 2016; Matheu et al., 2019a; Meza-Chincha et al.,

2020). It is worth to note that the electronic effect can usually be

reflected by the Hammette parameter σ (σm or σp, depending on
the position of substituent), which increases with the increasing

of electron-withdrawing ability. Hansch et al. (1991) summarized

σ values of various substituents, reporting that electron-

withdrawing groups such as -CF3 and -Br possess positive

values while the electron-donating groups such as -NH2 and

-OEt have negative values, and σ of hydrogen (H) equals to zero.

As a result, a plenty of works studied the relationships between σ
and redox potential, λ, or reactivity, etc (Clark et al., 2018; Zhang
et al., 2018; Suresh et al., 2022).

The electronic changes have notable effects on the electron

density over metal center, resulting in changes of NMR spectra

and electrochemical properties. NMR analysis from previous

studies (Figures 3A,B) demonstrated that an electron-donating

group causes significant up-shifting of protons in ligand(s), and

an electron-withdrawing group has the opposite effect, i.e., lower

the field chemical shifts of protons in NMR spectra (An et al.,

2012; Duan et al., 2013; Sato et al., 2015). In general, electron-

withdrawing groups decrease electronic density and stabilize the

metal’s lower oxidation state, leading to more positive redox

potentials as well as the overpotentials and less back-bonding

into coordinated ligands. On the contrary, electron-donating

groups can increase the stability of the higher oxidation state

via increasing the electronic density over the metal center,

resulting in more back-bonding interactions with coordinated

ligands (Yoshida et al., 2010; Garrido-Barros et al., 2015). Typical

examples of this case areWO catalysts [Ru (bda)L2] (complex 1a)

FIGURE 2
(A) Number of published papers related to molecular catalysts for water splitting from 2000 to 2022 (data obtained on 30 July 2022, from a
search performed in the Web of Science for “molecular water splitting*“, “molecular water oxidation*“, and “molecular water reduction*” topics). (B)
Designing strategies of ligands for molecular water splitting catalysts.
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FIGURE 3
Plot of σ-Hammett parameter versus (A) 1H NMR chemical shift of ortho-proton on the pyridine ligands, data from Sato et al. (2015), (B) 13C NMR
chemical shift of quaternary carbon atom on the Cp, data from Rodriguez et al. (2021), (C) Redox couples RuIII/RuII, adapt with permission from
Angew. Chem. 2021,133,14625–14632. Copyright 2021 Angewandte Chemie published by Wiley-VCHGmbH, (D) The oxidation potential of [Ru
(bda)-(pyR)2], Sato et al. (2015), (E,F) Turnover frequency (TOF) for complex 3, data from Abdel-Magied et al. (2017).

FIGURE 4
Selected water splitting catalysts with electron-withdrawing/-donating substituents.
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(Duan et al., 2013; Sato et al., 2015), HER catalyst

[NiP2
PhN2

C6H4X]2 (complex 4) (Kilgore et al., 2011a) and Pt

(bpy-R2)Cl2 (complex 10) (Mcinnes et al., 1999), shown in

Figure 4. The electrochemical investigation illustrated that the

overpotential is drastically reduced as the electron-donating

ability increases, and the redox potentials become more

positive with introducing a more electron-withdrawing

substituent, following a positive linear relationship between

E1/2 and σ, shown in Figures 3C,D (Kilgore et al., 2011a; An

et al., 2012; Duan et al., 2013; Duan et al., 2015; Mognon et al.,

2015; Sato et al., 2015).

Though the catalytic activity is determined by multiple

factors, for the same series of catalysts with various

electronic power, the introducing of electron donating

groups usually tends to increase the catalytic activity of

WOCs (Figures 3E,F), as predicted from the linear free

energy relationships (Mognon et al., 2015; Abdel-Magied

et al., 2017; Timmer et al., 2020). In their systematic study,

Sun et al. reported how electron density affects catalytic

performance of Ru-bda complex 1 (An et al., 2012; Duan

et al., 2013; Sato et al., 2015; Zhang and Sun, 2019b;

Corbucci et al., 2019). Proceeding by a I2M pathway, an

electron-withdrawing group on 1 causes destabilization of

the RuV = O species, favoring the O-O bond formation. For

catalysts following WNA pathway, Rodriguez et al. (2021)

reported that increasing electron-withdrawing ability can

facilitate the nucleophilic attack at the IrV intermediate (a

rate-determining step), therefore enhance the catalytic

activity of [Cp*Ir (Xpic)NO3], as indicated by the

correlations between σ and the measured TOFmax.

Yoshida et al. (2010) and Abdel-Magied et al. (2017) reported

that for single-site Ru complex, a more electron-donating

substituent affords a smaller oxidation potential of Ru center

and enhances its catalytic activity. Besides the O2 evolution

mechanism, in their case, the influence of substituents on

deactivation pathway is important in changing catalytic

efficiency. In another example, a HER catalyst

[NiP2
PhN2

C6H4X]2 with electron-withdrawing -Br substituent

shows a higher catalytic activity (TOF= 740 s−1) than its

stronger competitor -CF3 (TOF = 95 s−1) because the reduced

species can’t be protonated by the most electron-withdrawing

groups in this family (Kilgore et al., 2011a).

Electron-donating/withdrawing substituents can also impact

the UV-vis spectra. It is proposed that increasing the electronic

power of substituents can improve the ligand field, hence affect

the UV-vis absorptions. Take [Ru (bda) (py-4-R)] (complex 1a)

as an example, the metal-to-ligand charge-transfer (1MLCT)

band can be largely shifted to longer wavelength when a more

electron-withdrawing substituent is modified on ligand (Sato

et al., 2015). In fact, a linear relationship between the energy of

the lowest LMCT band of complexes [Fe (bbpen-R)]ClO4

(complex 11 in Figure 4) and the Hammett parameter σ was

found by Lanznaster et al. (2006). The properties of complexes

with different electronic effect have been summarized in Table 1.

2.2 Intermolecular interactions

Intermolecular interactions are ubiquitous and often being

used in pre-organizing molecular structures (Wang et al., 2019)

or constructing dye-catalyst model for photocatalysis (Wang

et al., 2022). In fact, non-covalent interactions in inter-catalyst

coupling, such as hydrophobic effects, π—π stacking, halogen

aromatic interactions, electrostatic interactions, off-set

interaction etc., have shown impacts on the properties and

catalytic activities of metal complexes in many studies (Zhang

and Sun, 2019b).

2.2.1 Hydrophobic effect
The hydrophobic effect is often introduced by using

lipophilic substituents. Generally, the hydrophobicity

modification of ligands can pre-organize complexes and boost

the association of two metal centers, thus improving water

splitting catalytic activity. Complex 1a, complex 12, and

complex 13 WO catalysts are good examples of this

phenomenon. The hydrophobic modification on ligands

improves the WO catalytic activity of Ru-bda from 22 s−1 to

146 s−1 (Liu et al., 2021). The octyl substituent in the carbene

ligand of triazolylidene Cp*Ir-complexes induces the association

of the iridium species, leading to a ~10-fold increase of TOF

(101 min−1) comparing with their methyl counterparts (TOF =

9.9 min−1), shown in Figure 5A (Corbucci et al., 2015). By

exploiting the extreme hydrophobicity of semi-fluorinated side

chains (Figure 5B), Chen et al. (2016) reported an enhanced

efficient WOC, Co-(BimC3F8), with a TOF of 1.83 s−1, a 15-fold

increase, at neutral pH without soluble cobalt, salts.

2.2.2 π—π interactions
π—π interactions were extensively used in multi-components

photocatalytic system, especially in promoting the electron transfer

between photosensitizers and catalysts (Wang et al., 2022). Neel et al.

(2017) reviewed how to exploit non-covalent π interactions for

catalyst design. In chemical-driven water splitting process, π—π
stacking is employed to facilitate the intermolecular interactions and

accelerate bimolecular coupling. For example, complex 14 with

isoquinoline (isoq) displays an order of magnitude higher TOF

of 303 s−1 than that of 32 s−1 for complex 1a with picoline (pic), as

shown in Figure 5C (Duan et al., 2012b). A faster catalysis was

observed by introducing MeO-isoq, which causes a more favorable

π—π stacking effects in water (Richmond et al., 2014). Correlated ab

initio calculations demonstrated that modulation of π—π stacking

dispersion interactions can lower activation barrier, therefore a

smaller driving force for the catalysis is obtained (Johansson

et al., 2021).
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2.2.3 Halogen interactions
Attempts to improve the performance of WSCs also

include the introduction of halogen substituents. Xie et al.

(2018) studied in detail the influence of halogen substituents

on the performance of complex 1b (Figure 5D). A 10-fold

enhancement of TOF (330 s−1) was found for R = I compare

to R = H, which revealed that iodine can accelerate the O-O

bond formation by facilitating the intermolecular

FIGURE 5
(A) TON of complex 12 at pH 1 measured by UV−vis spectroscopy, adapt with permission from ACS Catal. 2015, 5, 5, 2,714–2,718. Copyright
2015 American Chemical Society. (B) Chemical structure of complex 13. (C,D) Schematic diagram for noncovalent interactions between the axial
ligands for complex 14 and complex 2.

FIGURE 6
Effect of electrostatic interactions on Ru-bda catalysts, adapt with permission from J. Am. Chem. Soc. 2021, 143, 6, 2,484–2,490. Copyright
2021 American Chemical Society.
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interactions i.e. bimolecular coupling, due to its easy-

polarization.

2.2.4 Electrostatic interactions
Electrostatic interactions were found to be another effective

strategy to regulate binuclear catalysis. While attractive

electrostatic interactions can facilitate inter-catalyst coupling

and promote the catalytic performance, repulsive electrostatic

interactions have a negative effect on the catalytic activity

(Sampson et al., 2014; Pye and Mankad, 2017). In their

recent study, Yi et al. (2021) prepared a family of Ru-bda

catalysts (complex 15, Figure 6), functionalized with

positively charged Me-bpy+ (Nmethyl-4,4′-bipyridinium)

and/or negatively charged p-SO3-py
- (pyridine-4-sulfonate)

group, and identified the intermolecular electrostatic

interactions by various methods. Complex 15c and the

mixture M ([15a]: [15b] = 1:1) present 8–20 times higher

TOF than complex 15a and 15b with repulsive effects. It was

proved that electrostatic interactions are benefit to the

formation of pre-reactive dimers, which were key

intermediates in improving the catalytic activities. In fact,

Richmond et al. (2014) had discovered the electrostatic effect

in their earlier report, but they attributed the lowered catalytic

activity to the high steric hindrance between the Me-bpy+

ligands.

2.2.5 Off-set interactions
In addition to aforementioned intermolecular interactions,

Timmer et al. (2021) discovered that off-set interactions that

introduced by de-symmetrization of the axial ligands in complex

16 and 17 (Figure 7A) can provide enough space for the O-O

bond formation and reduce reaction barrier. DFT calculations

suggested that reduced kinetic barrier of the second-order O-O

bond formation ensures high catalytic performance especially at

low catalyst concentrations. For Ru-bda catalysts with isoq in the

axis, the position of pyridine substituents is crucial for stacking.

Instead of direct π—π interactions, the off-set interaction

brought by bromide shorten the distance of Ru-Ru in the pre-

reactive dimer.

2.2.6 Hydrogen bonding interactions
Another attractive way to facilitate the catalytic activity is to

govern proton-coupled electron transfer (PCET) process by

introducing proton acceptors/donators on ligands (Young

et al., 2009; Wang et al., 2019; Zhang et al., 2021). Zhang

et al. (2014) proposed ligand assisted PCET process for

complex 18, where H on the 6 and 6′positions of bpy is

replaced with hydroxyl groups, an internal base for proton

transfer (Figure 7B). This directly lower the potential of

complex about 200 mV, consequently resulting in its

capability of driving WO to peroxide at a relatively low

FIGURE 7
(A) The chemical structures of complex 16 and 17, and the off-set interactions involved in Ru-bda catalyst, adapt with permission from Angew.
Chem. Int. Ed. 2021, 60, 14504–14511. Copyright 2021 Angewandte Chemie International Edition published by Wiley-VCHGmbH. (B–G) Chemical
structure of (B) copper complex 18 [Cu(bpy)(OH)2](Zhang et al., 2014), (C)Mn corrole complexes 19 (Gao et al., 2007), (D) nickel hangman complex
20 (Bediako et al., 2014), (E) cobalt hangman complex 21 (Dogutan et al., 2011; Neuman et al., 2020; Zhang et al., 2021), (F) cobalt corroles
complex 22 (Sun et al., 2017), (G) iron porphyrins complex 23 (Graham and Nocera, 2014).
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TABLE 1 Properties of metal complexes with different electron-donating/-withdrawing substituents. σ Data from ref (Hansch et al., 1991).

Catalyst Substituent σ E1/2 (V) Eonset (V) WS conditions TON TOF (s−1) ref

1a R5 = H N(Me)2 −0.83 — — 0.365 M CAN 790 14 Duan et al. (2013)

OMe −0.27 −0.09a — 0.365 M CAN 760 25 Duan et al. (2013)

Me −0.17 −0.06a 0.97 0.365 M CAN 2,070 33.4 Sato et al. (2015)

H 0 −0.03a — 0.365 M CAN 580 25 Duan et al. (2013)

Br 0.23 0.01a — 0.365 M CAN 4,500 115 Duan et al. (2013)

CO2Me 0.45 0.05a — 0.365 M CAN — 114 Sato et al. (2015)

CO2Et 0.45 — — 0.365 M CAN 4,800 119 Duan et al. (2013)

CF3 0.54 0.08a 1.01 0.365 M CAN 3,397 111 Sato et al. (2015)

OMe −0.27 0.42, 0.8d 1.3 0.2 M CAN 148 — Yoshida et al. (2010)

2 Me −0.17 0.48, 0.85d 1.37 0.2 M CAN 173 —

H 0 0.55, 0.9d 1.4 0.2 M CAN 251 —

OMe −0.27 0.58, 0.93d 1.23 0.2 M CAN 123 — Yoshida et al. (2010)

3 Me −0.17 0.63, 0.98d 1.27 0.2 M CAN 184 —

H 0 0.68, 1.15d 1.29 0.2 M CAN 253 —

4 OH −0.37 — −1.23a HClO4, CH3CN 262 — Kilgore et al. (2011a)

OMe −0.27 −0.88, −1.07c −0.9a [(DMF)H]+OTf−, H2O, CH3CN 30.5 310

Me −0.17 −0.84, −1.05c — [(DMF)H]+OTf−, H2O, CH3CN — 590

H 0 −0.83, −1.02c — [(DMF)H]+OTf−, H2O, CH3CN — 590

PO(OEt)2 0.06 −0.84, −1.02c — [(DMF)H]+OTf−, H2O, CH3CN — 500

Br 0.23 −0.79, −0.97c — [(DMF)H]+OTf−, H2O, CH3CN — 740

CF3 0.54 −0.74, −0.89c — [(DMF)H]+OTf−, H2O, CH3CN — 95

5a R5 = H NH2 −0.66 — — 20 mM NaIO4 489 0.433 Rodriguez et al. (2021)

OMe −0.27 — — 20 mM NaIO4 525 1.88

Me −0.17 — — 20 mM NaIO4 395 2.83

CF3 0.54 — — 20 mM NaIO4 439 2.783

5b R4 = H NH2 −0.16 — — 20 mM NaIO4 413 1.55

NO2 0.71 — — 20 mM NaIO4 452 1.833

6 OMe 0.12 — 1.3b 0.1 M PBS, [Ru (bpy)3](PF6)3 26 0.50 Abdel-Magied et al. (2017)

Me −0.07 — 1.28b 0.1 M PBS, [Ru (bpy)3](PF6)3 21 0.45

CF3 0.43 — — 0.1 M PBS, [Ru (bpy)3](PF6)3 15 0.34

NO2 0.71 — 1.32b 0.1 M PBS, [Ru (bpy)3](PF6)3 20 0.25

1b R4 = H NH2 −0.16 0.705, 1.125b — 0.365 M CAN — 5.2 Timmer et al. (2021)

NMe2 −0.15 0.685, 1.235b — 0.365 M CAN — 10.6

Me −0.07 0.66, 1.15b — 0.365 M CAN — 86.9

OMe 0.12 0.69, 1.185b — 0.365 M CAN — 45

CHO 0.35 0.745, 1.155b — 0.365 M CAN — 67.7

Br 0.39 0.745, 1.16b — 0.365 M CAN — 330.7

7 H 0 0.8d — — 390 Tseng et al. (2008)

Me −0.17 0.76d — — 190

(Continued on following page)
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potential. Gao et al. (2007) designed bio-inspired manganese

complex 19 with corrole ligands. The electrochemical data show

that Mn corrole complexes 19 can catalyze oxidation of water to

produce oxygen at quite low oxidation potentials, as indicated by

its easy oxidation to high-valent states. Nocera et al.

systematically studied the electrocatalytic behavior of Co/Ni

hangman porphyrins complexes. They reported that owing to

the pre-organization of water within the hangman cleft, the

catalytic performance of these complexes (20, 21) can be

dramatically boosted by employing carboxyl acid as a proton

acceptor (Dogutan et al., 2011; Bediako et al., 2014; Neuman

et al., 2020). Later, Sun et al. (2017) synthesized complex 22 and

proved that the pendant hangman carboxyl moiety can act as

intramolecular base to accelerate the APT process during the

O-O bond formation. In the following up study, Nocera et al.

found that the rate of catalysis of hangman iron porphyrins

complexes 23 can be affected by nearly 3 orders of magnitude by

improving the hanging group’s proton-donating ability

(Graham and Nocera, 2014). Recently, the impact of

carboxylate unites on electrocatalyzed WO process were

deeply discussed by Das et al. (2021) Same as previous

studies, the free carboxylic acid/carboxylate units can

provide proton donor/acceptor sites through a chemically

non-innocent way, hence can improve the overpotential and

activity of the WO reaction dramatically.

Clearly, these intermolecular interactions offer inspirations for

future design of WSCs. The comparison between modified and

parent complexes have been summarized in Table 2.

2.3 Steric hindrance

It has been proposed that steric hindrance plays an key role in

the overall catalytic rate (Richmond et al., 2019). Steric hindrance

can bring changes in the properties and catalytic performance for

water splitting catalysts by changing the geometry and

conformation (such as bond angles and bond lengths) of

metal complexes. It is interesting to note that bulky group can

also switch the catalytic reactivity. Smith et al. reported that with

small substituents (R = H, Me), complexes 24 ([(Py2NR2)

Mn(H2O)2]
2+) in Figure 8 catalytically disproportionate H2O2

in aqueous solution while this reaction is shut down with a

bulkier substituent (R = tBu), but becomes active for aqueous

electrocatalytic H2O oxidation (Lee et al., 2014; Crandell et al.,

2017).

Generally, a bulky ligand can raise the activation barrier

and slow down the reaction rates through steric tension in

transition states or intermediates. Large substituents can

shield the formation of active intermediate, hence lower

the catalytic activity. Iron coordinating complex 25 with

sharing a common structural topology but different

geometry present different WO activity under the same

condition. As indicated by L-Fe-L angle around 95–100°,

the bulkier group inhibit the formation of the FeIV(O)-(μ-

O)CeIV(OH) species (Fillol et al., 2011; Panchbhai et al.,

2016). The steric hindrance is also observed for Ru-type

complexes 26. When replacing H in the phen ligand (26a)

with one (26b) or two methyl groups (26c), the activity and

TABLE 1 (Continued) Properties of metal complexes with different electron-donating/-withdrawing substituents. σ Data from ref (Hansch et al., 1991).

Catalyst Substituent σ E1/2 (V) Eonset (V) WS conditions TON TOF (s−1) ref

OMe −0.27 0.7d — — 110

NO2 0.71 1.03d — — 260

COOEt 0.45 0.92d — — 570

8 OMe 0.12 −1.14c — [(DMF)H]+OTf−, H2O, CH3CN — 22,000 Stewart et al. (2013)

Me −0.07 −1.13c — [(DMF)H]+OTf−, H2O, CH3CN — 96,000

H 0 −1.12c — [(DMF)H]+OTf−, H2O, CH3CN — 106,000

Br 0.39 −1.08c — [(DMF)H]+OTf−, H2O, CH3CN — 17,000

Cl 0.37 −1.08c — [(DMF)H]+OTf−, H2O, CH3CN — 15,000

CF3 0.43 −1.05c — [(DMF)H]+OTf−, H2O, CH3CN — 4,100

9 H 0 0.78, 1.28a — 0.36 M CAN 16,200 0.0390 Li and Bernhard, (2017)

Cl 0.37 0.92, 1.41a — 0.36 M CAN 15,860 0.0324

F 0.34 0.64, 0.86a — 0.36 M CAN 13,210 0.0169

CH3 −0.17 0.67, 1.15a — 0.36 M CAN 14,700 0.0213

aPotential versus ferrocene.
bPotential versus NHE.
cPotential versus Cp2Fe+/Cp2Fe couple.
dPotential versus SCE.

Frontiers in Chemistry frontiersin.org09

Wang and Wang 10.3389/fchem.2022.996383

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.996383


TABLE 2 Properties of metal complexes with different intermolecular interactions.

Complex Factors Substituent Eonset
(V)

WS conditions TON TOF
(s−1)

FE
(%)

ref

1 Hydrophobic effect CH3 — 1.2 mM CAN — 22 — Liu et al. (2021)

CO(OC2H4)2(OCH3) — 1.2 mM CAN — 81 — Liu et al. (2021)

COOC2H5 — 100 mM CAN — 119 Richmond et al. (2014)

CONHC2H5 — 1.2 mM CAN — 118 — Liu et al. (2021)

CONHC4H9 — 1.2 mM CAN — 146 — Liu et al. (2021)

12 Hydrophobic effect Me — 5 mM CAN 2,024 0.17 — Corbucci et al. (2015)

n-Oct — 5 mM CAN 1,885 1.87 —

13 Hydrophobic effect C4H9 1.83a MeOH, CPEd — 0.12 — Chen et al. (2016)

CH2(C2H5)(C4H9) 1.81a MeOH, CPEd — 0.16 —

C10H21 1.69a MeOH, CPEd — 1.11 —

C3H6C8F17 1.61a MeOH, CPEd 78,000 1.83 100

1 π - π stacking CH3 1.25a 0.51 M CAN ~2,150 32 — Duan et al. (2012b)

14 H 1.27a 0.51 M CAN ~8,450 303 — Duan et al. (2012b)

14 OCH3 — 0.10 M CAN — 923 — Richmond et al. (2014)

2 halogen−aromatic
interaction

H — 0.365 M CAN 580 25 — Duan et al. (2013)

F 1.37a 0.365 M CAN — 53.8 — Timmer et al. (2021)

Cl 1.48a 0.365 M CAN 3,182 62 93 Xie et al. (2018)

Br 1.43a 0.365 M CAN 4,942 101 90 Xie et al. (2018)

I 1.36a 0.365 M CAN 5,280 334 96 Xie et al. (2018)

15 electrostatic interaction 15a — 0.6 M CAN — 1.54 — Yi et al. (2021)

15b — 0.6 M CAN — 1.54 —

15c — 0.6 M CAN — 12.4 —

[15a]: [15b] = 1:1 — 0.6 M CAN — 34.4 —

1 off-set interaction Br — 0.365 M CAN 4,500 115 — Duan et al. (2013); Sato
et al. (2015)

16 Br — 0.365 M CAN ~3,500 245 — Timmer et al. (2021)

17 Br — 0.365 M CAN 12,500 460 — Timmer et al. (2021)

20 hydrogen bonding
interaction

Br −1.37b — — — — Bediako et al. (2014)

COOH −1.34b — — 0.025 —

21 hydrogen bonding
interaction

H 0.77b 0.1 M PBS — — — Dogutan et al. (2011)

F 0.87b 0.1M PBS — 0.81 100

22 hydrogen bonding
interaction

Br — 0.1M PBS — lowest 91 Sun et al. (2017)

COOH — 0.1M PBS — lower 95

PO(OH)2 — 0.1M PBS — higher 95

(Continued on following page)
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stability of complex is prohibited by the methyl group. The

lowest TOF of 0.005 s−1 and TON of 60 were observed for

complex 26c with two methyl groups, and a moderate TOF of

0.008 s−1 and TON of 155 were found for complex 26b

(Kaveevivitchai et al., 2012). Similar observations were also

reported for complex 27. When the benzene is proximal to Cl

ligand (27b), the TOF is reduced as compared to complex

27a. The activity is fully suppressed when the bpy ligand is

extended by two benzene rings, as shown in complex 27c

(Kaveevivitchai et al., 2012).

Steric hindrance can also play its role by affecting the

protonation reaction which, as we mentioned before, can

influence water splitting activity. For example, for complex

28, the protonation reaction may occur in either 2-endo or 2-

exo positions as shown in Figure 9. Clearly, the 2-endo

protonation site of the Ni(I) intermediate 28–1 is favored

for complex 28 to enter the catalytic cycle because the strong

hydride donor abilities of the metal center can accelerate the

rate of H2 elimination from 28–1. However, the bulky

phosphine substituent can hinder the endo protonation of

amines in these intermediates and also influence the hydride

donor ability of [HNi (P2
RNPh2)2]

+ derivatives (Kilgore et al.,

2011b; Wiese et al., 2012).

Ir-based WO complex 12 bearing pyridine triazolylidene

ligands with hydrophobic octyl substituent has shown an

enhanced activity as a consequence of the association of the

iridium species. However, with studying the same complex

with variable steric hindrance, Corbucci et al. (2019)

FIGURE 8
Chemical structures of complexes 24–27.

TABLE 2 (Continued) Properties of metal complexes with different intermolecular interactions.

Complex Factors Substituent Eonset
(V)

WS conditions TON TOF
(s−1)

FE
(%)

ref

CH2PO(OH)2 1.27c 0.1M PBS — highest 96

23 hydrogen bonding
interaction

H — 0.1 M [TEA]+[TsO]−,
CH3CN

— — 67 Graham and Nocera,
(2014)

0.1 M [TEA]+[TsO]−,
CH3CN

SO3
− — 0.1 M [TEA]+[TsO]−,

CH3CN
— — 65

NMe2 — 0.1 M [TEA]+[TsO]−,
CH3CN

— — 65

aPotential versus RHE.
bPotential versus ferrocene.
cPotential versus RHE.
dCPE: controlled potential electrolysis.

Frontiers in Chemistry frontiersin.org11

Wang and Wang 10.3389/fchem.2022.996383

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.996383


TABLE 3 Properties of metal complexes with different steric hindrance effect.

Complex Substituent E1/2 (V) WS conditions TON TOF (s−1) FE (%) ref

24 H — 3.7 M H2O2, pH 3.9 830 86 74–81 Lee et al. (2014)

Me — 3.7 M H2O2, pH 3.9 58,000 27 74–81

tBu — 3.7 M H2O2, pH 3.9 — — 74–81

25a Me — 0.125 M CAN 145 0.14 — Fillol et al. (2011)

iPr — 0.150 M CAN 14 0.18 — Panchbhai et al. (2016)

25b — — 0.125 M CAN 63 0.0464 — Fillol et al. (2011)

26a H — 0.2 M CAN 400 0.002 — Kaveevivitchai et al. (2012)

26b Me — 0.2 M CAN 155 0.008 —

26c 2dMe — 0.2 M CAN — — —

27a — — 0.2 M CAN 9 50 — Kaveevivitchai et al. (2012)

27b — — 0.2 M CAN 66 10 —

27c — — 0.2 M CAN — — —

28 Me — [(DMF)H]OTf 10 6,700 94 (Kilgore et al., 2011b; Wiese et al., 2012)

Benzyl −0.83, −1.12c [(DMF)H]OTf — 130 —

n-Bu −0.93, −1.23c [(DMF)H]OTf — 1,820 —

2-phenylethyl −0.90, −1.16c [(DMF)H]OTf 9 1,080 95

2,4,4-trimethylpentyl −0.89, −1.17c [(DMF)H]OTf — 69 —

cyclohexyl −0.60, −1.12c [(DMF)H]OTf — 69 —

phenyl −0.84, −1.02c [(DMF)H]OTf — 720 —

12 H 5 mM CAN, 0.1M HNO3, H2O 723 0.2 58 Corbucci et al. (2019)

Me 5 mM CAN, 0.1M HNO3, H2O 1,010 0.2 81

Et 5 mM CAN, 0.1M HNO3, H2O 905 1.1 71

nPr — 5 mM CAN, 0.1M HNO3, H2O 863 1.5 70

iPr — 5 mM CAN, 0.1M HNO3, H2O 1,017 1.05 80

Bu — 5 mM CAN, 0.1M HNO3, H2O 875 1.37 70

Oct — 5 mM CAN, 0.1M HNO3, H2O 945 1.5 76

14 F 1.38a 1.5 mM CAN 9,822 790 90 Xie et al. (2018)

Cl 1.28a 1.5 mM CAN 26,992 364 98

Br 1.28a 1.5 mM CAN 7,371 88 67

29a H 0.80a 0.2 M CAN 390 20 — Kaveevivitchai et al. (2012)

t-butyl 0.71a 0.2 M CAN 667 63 —

29b t-butyl 0.80a 0.2 M CAN 218 33 —

29c t-butyl 0.66a 0.2 M CAN 94 3 —

30 H 0.76a 0.2 M CAN 1,170 13 — Kaveevivitchai et al. (2012)

t-butyl 0.65a 0.2 M CAN 274 20 —

31 H 0.75a 0.2 M CAN 370 50 — Kaveevivitchai et al. (2012)

t-butyl 0.68a 0.2 M CAN 310 40 —

(Continued on following page)
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discovered that a discontinuity of activity when change R from

Me to Et, showing that steric group can inhibit the transfer of

hydroperoxo or peroxo moiety from Ir intermediate to

cerium, a process that slows oxygen evolution in cerium-

driven WO process (Bucci et al., 2016).

In contrast to the halogen interaction that improves the

catalytic WO activity for [Ru (bda)(R-py)2], heavy halogen

atoms such as iodine (I) decreases the catalytic activity of [Ru

(bda)(R-isoq)2] due to the steric hindrance of π−π overlap,

demonstrating the importance of balance between

polarizability and favorable π−π interactions (Xie et al.,

2018). The complicated effect of steric effect was also

found on Ru(II) complexes 29–31, show in Figure 10.

Cyclic voltammetry and water oxidation studies illustrated

that the complexes with tri-butyl-tpy ligand are easier to be

oxidized because of donor attribute, hence showed boosted

activity. However, these WOCs must involve a water molecule

in the coordination sphere of metal to make the catalysis

happen. The steric hindrance could severely inhibit the

binding of water, resulting in a weakened catalytic activity

when more t-butyl groups were introduced (Kaveevivitchai

et al., 2012).

The steric hindrance can sometimes benefit catalysis when

the isolation of transient intermediates is enabled (Chen et al.,

2015). Lu et al. prepared three Ni complexes 32 with different

number methyl group and studied their catalytic performance

in aqueous buffer at pH 7.0. The catalytic activity increases with

increasing the number of methyl group, suggesting that both

suppressed axial coordination of phosphate anions with the

NiIII center and increased oxidation potentials can promote

catalytic performance (Wang et al., 2017; Hessels et al., 2020).

The steric hindrance can also be built up between

photosensitizers (PS) and catalysts in photocatalytic

systems. In comparison with complex 33, a dramatically

diminished photocatalytic activity of 34 was observed when

a quinoline is involved, indicating a steric hindrance effect

(Figure 10). The steric hindrance inhibits the acceptance of

electrons from PS− and impedes the formation of Co(III)–H, a

pivotal intermediate for H2 evolution, from Co(I) (Guo et al.,

2021). De Groot and Buda (2021) performed constrained ab

initio computational simulations on catalyst-dye

supramolecular complex 35 and proved that efficient high-

performance dye-sensitized photoelectrochemical cells can be

engineered by introducing steric substituents. The properties

of partial complexes with different steric hindrance effect are

summarized in Table 3.

2.4 Anchoring groups

Anchoring groups play an important role in heterogenizing

molecular catalysts. By modifying anchoring groups, molecular

catalysts are able to be stably loaded on semiconductors, which is

beneficial to heterogenation of molecular catalysts. Zhang and Cole

(2015) have conducted an extensive survey of anchoring groups used

in DSSCs. Materna et al. (2017) have also thoroughly reviewed the

anchoring groups for photocatalytic WO on metal oxide surfaces,

including types and synthesis of surface anchors that used in

DSPECs and their incorporations into molecules.

In addition to above mentioned anchoring groups as

summarized by Materna et al. (2017), pyridine-N-oxide and

pyridine was found to be effective anchoring groups as well

(Lu et al., 2013; Mai et al., 2015). Wang et al. (2013) reported that

pyridine-N-oxide can effectively bind on TiO2 surfaces. This

guarantees the injection and adsorption of the dye molecules as

indicated by an excellent IPCE of 95% and the best photon-to-

electron conversion efficiency of 3.72%. Recently, (Zhu et al.,

2020) found that although phosphonic acid leads to well-defined

surfaces in DSPEC (dye-sensitized photoelectrosynthesis cells)

assemblies, the on-surface dimerization leads to a diminished

reactivity toward water oxidation compared to related monomers

in solution. By contrast, the 4,4′-dipyridyl anchoring ligand of

Ru-bda can maintain the monomeric structure of catalyst,

affording stable photoanodes with high photocurrents and

photon-to-current efficiency of 1.5% (Zhu et al., 2020).

3 Backbone-construction strategies
of ligands

In addition to substituent’s modification, changing

backbone such as from [NN] to [NC] is another effective

TABLE 3 (Continued) Properties of metal complexes with different steric hindrance effect.

Complex Substituent E1/2 (V) WS conditions TON TOF (s−1) FE (%) ref

32 R = R’ = H 0.77, 1.40b CPEd 3.6 — 94 (Wang et al., 2017; Hessels et al., 2020)

R = H, R’ = Me 0.87, 1.40b CPEd 13.0 — 97

R = R’ = Me 1.15, 1.38b CPEd 15.2 — 93

aPotential versus SCE.
bPotential versus NHE.
cPotential versus ferrocene.
dCPE: controlled potential electrolysis.
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way of enhancing catalytic performance of metal complexes.

The ligands for molecular complexes can be categorized by

chelating numbers: monodentate, bidentate, tridentate,

tetradentate, and polydentate ligands. In most cases, one

catalyst contains more than one type of ligands, but herein we

focus on structures of ligands and how they affect the overall

performance of WSCs. In this section, we only consider the

parent ligands without extending the discussions to

FIGURE 9
2- endo or 2-exo protonation of pendant amines in complex 28 and important intermediate for hydrogen production, adapt with permission
from Inorg. Chem. 2011, 50, 21, 10908–10918. Copyright 2011 American Chemical Society.

FIGURE 10
Chemical structures of complexes 29–34 and schematic structure of complexes 35, adapt with permission from ChemSusChem 2021, 14,
479–486. Copyright 2020 Published by Wiley-VCHGmbH.

FIGURE 11
Commonly used anchoring groups for molecular water splitting process.
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substituent modification strategies which have been

discussed above. For simplicity consideration, we discuss

tridentate, tetradentate, and polydentate ligands together

in “3.3 Multidentate ligands for WSCs” section. It should

be noted that all the ligands we present below are the

commonly used ligands for mononuclear WSCs and they

are not comprehensive lists.

3.1 Monodentate ligands for WSCs

A monodentate ligand has only one atom that coordinates

with a metal center. Some usual atoms are nitrogen (N), carbon

(C), halogen (Cl, Br, I), oxygen (O), sulphury (S) and

phosphorus (P).

3.1.1 [N] ligand
Pyridine, a [N] type monodentate ligand, is one of the earliest

developed monodentate chelating ligands where a ruthenium

WOC was developed and is still widely used today (Carlin,

1961; Gersten et al., 1982). It can form coordinating bond with

many transitionmetals such as Ru (Daniel et al., 2018; Kamdar and

Grotjahn, 2019), Co, (Khademi et al., 2022; Navarro et al., 2022),

Ni (Wang et al., 2019), andCu (Lee et al., 2020), etc. And be used to

prepare WSCs. Pal (2018) has well explained the coordinating

mechanisms and emphasized its broad application in the fifth

chapter of book “Pyridine”. Recently, pyridine was noticed again

by Li et al. (2021), Zhu et al. (2022) as additives retarding the back-

electron transfer or electron transfer between TiO2 photoanode

and the oxidized dye in solar water oxidation, or between an

organic light absorber and a molecular WOC on a photoanode.

FIGURE 12
[N] and [C] ligands examples in this review.

FIGURE 13
Complexes with halogen ions and aqua as monodentate ligands and their water oxidation. Data from ref (Kaveevivitchai et al., 2012).
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Based on the coordinating mechanisms of pyridine, Duan

et al. (2009) reported the first case of Ru-bda WO catalyst. DFT

prediction implied that complex with higher HOMO energy has

higher durability, i.e., stability and lifetime (Duan et al., 2012a).

When change the pyridine ligand to phthalazine (pzt) ligands, an

extraordinary TON of 55400 and high TOF of 286 s−1 were

obtained. On the basis of computational analysis, a series of

[N] ligands (Figure 12) with two benzene methine groups are

occupied by “N” in ring, such as pyrimidine (pmd), pyrazine

(prz), pyridazine (pdz), cinnoline, and phthalazine (ptz). This

family of monodentate ligands shed light on the development of

other types of WSCs.

Similar to pyridine-based [N] ligands in terms of metal-

coordination properties and adjustable structures, a more

electron-donating ligand, imidazole drew much attention.

Imidazole has also been applied in preparing Ru-bda catalysts.

The imidazole ligand can in situ form an active complex with the

RuII center under the catalytic conditions (Wang et al., 2012). The

key factor of catalytic performance in this case is that bulky

ligand changes coupling between terminal oxygen atoms, and

electronic properties.

3.1.2 [C] ligand
In addition to [N] ligand, [C] ligand is another usual type of

monodentate ligands such as carbene. Hetterscheid and Reek,

2011 studied [IrCp*(Me2NHC)(OH)2] (Me2NHC =

N-dimethylimidazolin-2-ylidene) complex with a large TON

of 2000. DFT calculations show that the oxidant potential of

this WOC can heavily influence its catalytic water oxidation via

various competing channels (Diaz-Morales et al., 2014; Venturini

et al., 2014). Iglesias and Oro (2018) reviewed iridium–NHC

catalysts, and more carbene-containing complexes will be

discussed in detail in the following sections.

3.1.3 Other types of ligands
Other monodentate ligands such as halogen ions (F, Cl, Br, I)

and aqua (OH2) were also extensively explored. When

comparing the performance of complexes with different

halogen ligands, two factors are usually considered: 1) steric

effect coming from the different size of halogen atoms (I > Br >
Cl), 2) the O–H···halogen hydrogen bond intensity that may

affect the water/proton exchange rate (Brammer et al., 2001).

Besides these two factors, however, (Kaveevivitchai et al., 2012)

proposed the third possibility: halogen atoms difference may

change the water splitting pathway even if the complexes have the

same chemical structure but different halogen atoms. Cyclic

voltammetric data of Ru catalysts 29 d and 31 show that the

aqua complexes are more difficult to oxidize than the analogous

halide complexes. The WO data show that the aqua complexes

performed better than the chloride and bromide complexes

because the later ones require initial exchange of water for the

Cl or Br ligand to produce the active intermediate species (Tseng

et al., 2008; Masaoka and Sakai, 2009). However, the iodo-

complexe presents unusual behavior where it catalyze

considerably accelerate production of oxygen than the aqua-

complex, as shown in Figures 13A,B. The unusually high initial

rate for I-containing complex indicates the seven-coordinate

rather than the six-coordinate intermediate pathway (Tseng

et al., 2008).

3.2 Bidentate ligands for WSCs

In the second class of ligands, there are two coordinating

atoms in each ligand. Three types of ligands are discussed

according to their coordinating atoms: [NN] ligands,

C-containing ligands, and O-containing ligands.

3.2.1 [NN] ligand
[NN] ligand is the most studied type of chelating ligands

and hundreds of derivatives have been developed so far. It is

difficult to get an absolute conclusion of which ligand is better

than the other since the catalytic performance is usually

mechanism-dependent, and the same factor may have

different effects but there are some general rules that can

be followed, such as changing the steric geometry, electronic

density around metal center, pKa, its ability of accepting/

donating protons or transferring electrons, or building up

PCET pathway, etc.

2,2′-bipyrimidine (bpm) and 2,2′-bipyrazine (bpz) are

stronger π-acceptors and less electron-donating groups with

respect to 2,2′-bipyridine (bpy), hence usually result in higher

oxidation potentials but lower TON values. For example, Eo

(RuIII/II) of [Ru(tpy)(bpm)(OH2)]
2+ and [Ru(tpy)(bpz)(OH2)]

2+

catalysts are increased relative to that of [Ru(tpy)(bpy)(OH2)]
2+

by metal-ligand back-bonding to bpm or bpz in Ru(II). However,

rate constants for the rate limiting step of catalysts with bpm or

bpz is larger than that with bpy, demonstrating that a less energy

is required for the O-O bond formation for WOCs with bpm or

bpz (Concepcion et al., 2008; Concepcion et al., 2009b;

Concepcion et al., 2010). Similar observations were also

reported for the family of [Cp*Ir(NN)Cl] catalysts (36) where

Cp* is pentamethylcyclopentadienyl and [M(NNN)(NN)(OH2)]
2+

catalysts (37) where M is Ir, Ru, or Os (Mcdaniel et al., 2008;

Concepcion et al., 2009b; Blakemore et al., 2010). DFT calculation

indicates that more nitrogen atoms in ligand result in less electron

density at the reactant Ru-O bond, further explicating the slightly

smaller TOF of catalyst with bpy than that with bpm or bpz (Jarvis

et al., 2013). Moreover, the nitrogen atoms in the chelating ligands

can also change the pKa and proton-electron transfer pathway of

catalytic reactions. The potential-pH diagram for bpm complex

and its comparison with bpy complex revealed that PCET avoiding

charge buildup leads to the thermodynamical instability of Ru(III)

and leads to its poor TON performance (Concepcion et al., 2009a).
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Inspired by the high performance of Mn-ligating

His332 of PS II, where deprotonation process improves the

catalytic activity, imidazole-containing ligands such as 2,2′-
diimidazole (H2bim), 2-(2′-pyridyl)-imidazole (pimH), and

2-(2′-pyridyl)-benzoimidazole (pybim) were designed. An

imidazole ring can not only provide more nitrogen atoms

to tune electron density at metal center but also serve as a

proton donor to tune proton-electron transfer pathways. In

addition, the deprotonation of imidazole moiety on ligand

could lower catalytic onset potential. Stott et al. (2017) studied

Cu-based catalysts Cu(NN)(OH2)2 with introducing an

imidazole ring into the bpy ligand. The experimental

results showed that deprotonation of an ionizable imidazole

ring can lower the metal reduction potentials and catalytic

FIGURE 14
Selected [NN], [CN], and [CC] ligands and exampled water splitting catalysts discussed in this review. Coordinating atoms are labeled in blue.

FIGURE 15
Proposed mechanism of binding water molecule for (A) (Cp*)Ir (ppy)Cl]+ (Blakemore et al., 2010), and (B) [(Cp*)Ir (bpy)Cl]+ (Bucci et al., 2016).
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overpotentials of catalysts. Similarly, Okamura et al. (2012)

modified [Ru(tpy)(bpy)(OH2)]
2+ by replacing bpy with

H2bim, a lower water oxidation potential was observed

compare to analogous Ru WOCs due to the high donor

power and multi-electron storage ability.

In addition to changing nitrogen atoms and proton donors,

steric hindrance can also influence the catalytic performance. As

discussed in the preceding text, the steric impact on the activity

and stability of complexes depends on water splitting conditions

and mechanisms hence we can’t conclude its positive or negative

effect. However, the as-needed enhanced steric effect of backbone

can be generally designed either by bond fixation (to hinder

rotation) such as replacing bpy with phen or by increasing the

size of backbone such as modifying an extra benzene ring on

ligand, as shown in Figure 14. For instance, the catalytic activity

of [Ru(tpy)(NN)Cl]2+ decreased with fusing an extra ring onto

the bpy ligand (pyqn) and the activity is fully suppressed when

there are two phenyl rings (bqn) (Tseng et al., 2008; Zeng et al.,

2015).

Besides the commonly used bipyridine type bidentate [NN]

ligands, amine-contained ligands were also developed in recent

years especially in designing earth-abundant transition-metal

complexes for molecular WSCs. Amine-type ligands are

advantageous as 1) their simple characterizing conditions (Lu

et al., 2016), 2) the easy active conformation during OER (Lee

et al., 2020) in comparison with bpy ligands. For example, by

mixing a Cu(II) salt and 1,2-ethylenediamine (en), Lu et al.

(2016) synthesized Cu(en) catalyst with high WO activity over a

wide pH range. WO catalysis occurs in solutions from pH 7 to

10 for [CuII(en)2(OH2)2]
2+ complexes. At higher pH, a

catalytically active layer of CuO/Cu(OH)2 formed on the

electrode surface, producing O2 in a high Faradaic yield and

at an overpotential superior to other Cu-based surface catalysts.

3.2.2 C-containing ligand
Notably, the [NN] ligands generally determine the

electrochemical tunability by virtue of the substituents on

ligands or the intrinsic structure changes. Despite their decent

catalytic activity, however, the complexity of ligands’ designs and

synthesis upgrade the difficulties of obtaining homogeneous

WSCs that are simultaneously simple, robust, and effective. 2-

Phenylpyridine (ppy) ligand (Figure 14), where a nitrogen in bpy

is replaced by carbon, is presented as an efficient ligand forWSCs

owing to the formation of strong carbon-metal bond that

extremely robust under typical conditions. Since it was first

reported by Schmid et al. (1994) in preparing a WO catalyst

[Ir (ppy)2(H2O)2]
+ (40), ppy was proven versatile enough to

generate aquo complexes with various types of cyclometalating

ligands by Mcdaniel et al. (2008). In the following work, Vilella

et al. (2011) reported that [Ir(O)(X)(ppy)2]
n (X = OH2, OH

− or

O2−, depending on the pH) was the active catalytic species and

X = O specie has the most basic internal base, hence

demonstrated the lowest energy barrier for O–O bond formation.

Crabtree et al. reported a series of highly active and robust

cyclopentadiene (Cp*)-containing Ir complexes and compared

their water splitting behaviors (Hull et al., 2009; Blakemore et al.,

2010). Apparently, the robust carbon-metal bond contributes to

an increase of TON for [(Cp*)Ir(ppy)Cl]+ (41), but a slight

decrease of TOF in comparison with [(Cp*)Ir(bpy)Cl]+ (36),

where a [NN] ligand was used. Subsequently, mechanism studies

showed that unlike ppy-contained Cp* iridium complex, where

water molecules directly interacted with the IrV = O and formed

O-O bond, in the bpy analogue, [CeIV(NO3)3(OH)] complex

bridged the IrIV-O• species and a water molecule, as shown in

Figure 15 (Bucci et al., 2016). Furthermore, (Savini et al., 2010)

studied a water soluble complex [(Cp*)Ir(bzpy)Cl]+ (bzpy = 2-

benzoylpyridine) with long-term activity 2 times higher than

[(Cp*)Ir(ppy)Cl]+ by creatively introducing a

–C(O)– bridging between the two aryl rings. Obviously, the

presence of an electron withdrawing group stabilizes the

complex by enhancing the π-back donation from the metal.

However, adding ketone group increased the flexibility of

ligand and made them less robust than their ppy

counterpart (Savini et al., 2011).

Another type of [CN] ligand is N-heterocyclic carbene

(NHC)-pyridine ligands, as shown in Figure 14. Vaquer et al.

(2013) synthesized aqua-Ru complexes with different number

of carbene ligands and revealed a linear relationship between

the number of carbene ligands and Δ E1/2, where Δ E1/2 = E1/2
(RuIV/III) - E1/2 (RuIII/II). The enhanced Δ E1/2 increased the

stability of Ru(III) oxidation state and therefore

electrocatalytic driving force for WO. Vivancos et al.

(2018) have recently reviewed the N-heterocyclic carbenes

complexes in details in terms of their synthesis, catalysis, and

other applications.

The strong coordination bonds between NHC ligands and

transition metal centers can also significantly increase the

stability of complexes containing [CC] ligands, such as

bmmptraz. The influence of NHC on the catalytic water

splitting activity was obvious. Albrecht et al. compared the

catalytic performance of [(Cp*)Ir (bmmptraz)(MeCN)]2+

containing [CC] ligand (43) and its [CN] type counterpart

FIGURE 16
Selected O-containing ligands discussed in this review.
Coordinating atoms are labeled in blue.
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(41) (Lalrempuia et al., 2010). Both the TON and TOF of 43were

larger than 41. Moreover, by comparing the electrochemical

behavior of [(Cp*)Ir (ppy)Cl]+ (41) and [(Cp*)Ir(PhIm-ph)

Cl]+ (43), Crabtree et al. demonstrated that the NHC ligand

on high-valent iridium has a stabilizing effect (Brewster et al.,

2011).

3.2.3 O-containing ligand
Some unusual bidentate ligands were also developed in

the past decade. An oxidation- and dissociation-resistant

[NO] ligand, pyalkH, has been proved useful in stabilizing

unusually high oxidation states, such as Rh (Sinha et al.,

2015), Ir (Shopov et al., 2015; Shopov et al., 2017), and Mn

FIGURE 17
Some common multidentate ligands. Coordinating atoms are labeled in blue.
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(Michaelos et al., 2016). Fisher et al. (2017) prepared

Cu(pyalk)2 WO electrocatalyst with high activity and

stability. The oxhydryl group in pyalkH provided a

deprotonated site for producing alkoxide form. The

complex showed a decent TOF of 0.7 s−1 under basic

conditions (pH > 10.4). Mechanism studies suggested that

only the cis form of Cu(pyalk)2 could convert H2O to O2.

Based on the same principle, various [OO] ligands were

reported (Figure 16) (Concepcion et al., 2010; Lippert

et al., 2010), as reviewed by Limburg et al. (2012).

3.3 Multidentate ligands for WSCs

Enormous multidentate ligands for WSCs have been reported.

Therefore, many reviews are available in the literature covering

ligands for molecular WSCs, including some focused on WOCs

(Matheu et al., 2019b; Ye et al., 2019), WRCs (Huo et al., 2019),

ruthenium-based catalysts (Yu et al., 2019), nickel-based catalysts

(Wang et al., 2019), etc. The designing methods for these ligands

follow similar rules to bidentate ligands from the strategy point of

view, including steric geometry, electronic consideration, pKa

FIGURE 18
Chemical structures of complexes 44–46 and transition-state structures of O−O bond formation catalyzed with corresponding complexes
following the I2M mechanism, adapt with permission from Inorg. Chem. 2014, 53, 7,130–7,136. Copyright 2014 American Chemical Society.

FIGURE 19
Comparison of catalytic and structural data for Fe WOCs 47 and 48. Data from ref (Panchbhai et al., 2016).

Frontiers in Chemistry frontiersin.org20

Wang and Wang 10.3389/fchem.2022.996383

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.996383


modification, etc. Considering the large number of possibilities of

permutations and combinations for the coordinating atoms, here

we provide a few commonplace remarks and take some common

ligands as examples, shown in Figure 17.

As discussed previously, an extended steric tension in ligand

raises the activation barrier and hinder the reaction. Kang et al.

(2014) compared the I2Mbarriers of complexes 44–46 (Figure 18), a

larger increase of 31.2 kcal/mol was found from 45 to 46 than from

44 to 45 (4.8 kcal/mol). The O−O bond lengths of the three TS

structures and their corresponding Ru−Ru distances prove the side

effect of steric hindrance on theO−Obond formation. Therefore, for

this series of complexes, a bulky ligand with large steric hindrance

can severely discount the catalytic reaction rates.

In addition to replacing coordinating site with bulky ligands,

spatial configuration provides another attractive way of affecting

the reactivity. Panchbhai et al. (2016) compared the catalytic

(TON, TOF) and structural data for different iron-based WOCs

with different geometry (47 and 48, Figure 19). It worth noting

that the solid-state complex with smaller L–Fe–L angle (86°

versus 95°) presented a lower TOF (0.007 versus 0.28) and

TON (8 versus 360), illustrating the satirical interference on

the activity.

Over the past decade, the impact of carboxylates in the ligand

backbone on water splitting performance has been extensively

studied and demonstrated its important role in decreasing the

overpotential and increasing the WO rate. The carboxylate

group(s) in ligand backbone contribute to: 1) the stability

improvement of structure and photophysical properties via the

formation of negatively charged ligands (Kärkäs et al., 2012); 2) the

decreased potentials for the formation of higher valent

intermediates (active species for water splitting) (Laine et al.,

2015); 3) the buildup of PCET or APT pathways that can

dramatically improve WO activity (Shatskiy et al., 2019; Liu

et al., 2020; Das et al., 2021). In their pioneering study, Matheu

et al. (2015) introduced a series of Ru-tda (tda = [2,2′:6′,2″-
terpyridine]-6,6″-dicarboxylate) complex 49 with a large TOF

of 8,000 s−1 at pH 7.0 and 50,000 s−1 at pH 10.0, which is

3–4 orders of magnitude better than Ru-bda at the same pH.

DFT calculationsmanifested the key role of carboxylate as a proton

acceptor in decreasing the activation energies for O–O bond

formation (Matheu et al., 2015; Liu et al., 2020). This impact

was also confirmed by replacing OH substituent with a -COOH

group, when a 20-fold increase in TON of 4,000 was observed for

complex 50 in comparison with complex 51 with TON of 180

(Kärkäs et al., 2012).

On the foundation of carboxylate ligands, Xie et al. (2016)

developed a novel WO complex 53 containing phosphonate

ligands which demonstrated multifunction in WO process: 1)

provide effective pathways for electron donation and charge

compensation; 2) increase the water solubility and stability of

the complexes; 3) lower the redox-potential of high-valent

metal–oxo species by charge compensation and σ-donation
effects; 4) transfer protons in/out of the catalytic site to lower

the activation energy for O-O bond-formation through PCET

pathway. Moreover, these compounds retain the molecular

activity when binding on metal-oxide surfaces, providing a

desirable property for the incorporation of these catalysts in

dye–catalyst assemblies (Xie et al., 2016).

Other attempts to improve the performance of WSCs were

also achieved by changing the number or position of nitrogen

atom in molecular cobalt catalysts, as reported by Kohler et al.

(2021). They prepared five molecular Co(II) tetrapyridyl

FIGURE 20
Chemical structures of (A) complexes containing ligand carboxylates, and (B) various cobalt molecular catalysts with different number and
position of nitrogen in ligands.
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complexes 54–58 with different number and location of pyrazine

functional groups and compared their redox potentials as well as

catalytic activity. Complex 56 presented excellent activity (TOF =

3419 H2/Co/h, TON =1569 H2/Co) compared to complex 54

(TOF = 1017 H2/Co/h, TON =1268 H2/Co) while others showed

inferior activity. It was explained that in the H2 photocatalysis

process, the electron transfer from [Ru(bpy)2(bpy
·−)]+ to Co(II)

promotes activity for catalysts 56, while for 55, 57, and 58, the

protons transfer promotes the overall activity. These results

provided a novel option of facilitating the catalytic activity for

aqueous H2 generation.

4 Conclusion

This review summarizes works on ligand designing

strategies for molecular complexes aimed at achieving

structure-containable molecular complexes for water

splitting. From the perspective of modification position,

two major strategies, substituents modification and

backbone construction, are discussed. Detailed principle of

how ligand modification affect catalytic performance is

emphasized. The discussions are centered on electron

density distribution, proton/electron-acceptance ability,

bond angle, bond length, etc. Based on these consideration,

various efforts including changing electron-donating/

withdrawing ability, introducing intermolecular

interactions, adding steric hindrance, etc. have targeted

development of highly effective and stable WSCs.

Comparing to the backbone construction strategy,

substituents modification are more used in fine-tuning for

the properties and performance of molecular catalysts.

Although some common strategies for tuning properties and

performance of metal complexes are summarized in this review,

as Reek Hessels et al. (2020) concluded that catalysts design rules

are not universal among different transition metals and need

comprehensive considerations of structure changes, mechanisms

differences, and influence trends, etc. Multiple effects can be

integrated in one system, and which one gains more advantages

than the other needs to be analyzed case by case. In addition, the

synthetic feasibility and complexity should also be considered

when designing the metal complexes.
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