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According to Hund’s multiplicity rule, the energy of the lowest excited triplet

state (T1) is always lower than that of the lowest excited singlet state (S1) in

organic molecules, resulting in a positive singlet-triplet energy gap (ΔEST).
Therefore, the up-converted reverse intersystem crossing (RISC) from T1 to

S1 is an endothermic process, which may lead to the quenching of long-lived

triplet excitons in electroluminescence, and subsequently the reduction of

device efficiency. Interestingly, organic molecules with inverted singlet-

triplet (INVEST) gaps in violation of Hund’s multiplicity rule have recently

come into the limelight. The unique feature has attracted extensive attention

in the fields of organic optoelectronics and photocatalysis over the past few

years. For an INVESTmolecule possessing a higher T1 with respect to S1, namely

a negative ΔEST, the down-converted RISC from T1 to S1 does not require

thermal activation, which is possibly conducive to solving the problems of fast

efficiency roll-off and short lifetime of organic light-emitting devices. By virtue

of this property, INVESTmolecules are recently regarded as a new generation of

organic light-emitting materials. In this review, we briefly summarized the

significant progress of INVEST molecules in both theoretical calculations and

experimental studies, and put forward suggestions and expectations for future

research.
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Introduction

Organic light-emitting diodes (OLEDs) based on organic molecules have shown great

prospects in the fields of solid-illuminations and displays by virtue of a number of advantages,

such as autoluminescence, flexibility, high color purity and low power consumption (Hong

et al., 2021). Over the past few decades, several luminescencemechanisms have been proposed,

including fluorescence (Friend et al., 1999; Huang et al., 2012), phosphorescence (Bernhard

et al., 2002; Minaev et al., 2014; Zhou et al., 2014), thermally activated delayed fluorescence

(TADF) (Endo et al., 2011; Uoyama et al., 2012; Zhang et al., 2012; Li et al., 2013; Peng et al.,

2020; Hung et al., 2022; Lv et al., 2022) and hyperfluorescence (Nakanotani et al., 2014; Chan

et al., 2021). Fluorescent materials are commonly derived from pure organic molecules with

stable luminescence properties and rapid radiative decay from the lowest excited singlet states
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(S1) to the singlet ground state (S0) (Figure 1A). According to spin

statistics, the ratio of singlet and triplet excitons is about 1:3 under

electrical excitation (Rothberg and Lovinger, 1996). Therefore, the

maximum internal quantum efficiency (IQE) of a fluorescent OLED

is only 25%, and consequently the external quantum efficiency

(EQE) is limited to about 5%. In turn, the IQEs of phosphorescent

OLEDs can theoretically reach 100% by capturing both singlet and

triplet excitons as a consequence of strong spin-orbit coupling

(SOC) effect induced by heavy atoms (Figure 1B) (Bernhard

et al., 2002; Chi and Chou, 2010; Zhou et al., 2014; Mao et al.,

2021). Nonetheless, the utilization of precious metals brings

problems of high cost and environmental pollution. In this

regard, researchers have to turn attention back to pure organic

molecules, and extensive efforts harvesting triplets have been carried

out. Among them, TADF has received tremendous attention since

Endo et al. applied a pure organicmolecule with the TADF character

into an OLED (Endo et al., 2011). For a TADF molecule, a small

energy difference (ΔEST) between S1 and the lowest triplet excited

state (T1) is required, which converts triplet excitons into singlet

excitons through reverse intersystem crossing (RISC) (Figure 1C).

Therefore, the IQEs of TADF emitters can also reach 100%.

Meanwhile, ΔEST is proportional to the exchange integral

between the spatial wave functions of the highest occupied

molecular orbital (HOMO) and the lowest unoccupied molecular

orbital (LUMO) (Endo et al., 2011; Yang et al., 2017). In this regard,

separated Frontier orbital distributions are of significant importance

during the molecular design of TADF materials (Fan et al., 2016).

Over the past decade, TADF molecules have been widely

studied in light of the merits of high efficiency as well as low cost,

and a number of TADF emitters have been developed (Jeon et al.,

2019; Li et al., 2021c). Up to now, there are several pathways to

realize TADF, such as traditional single molecule-based TADF

(Uoyama et al., 2012; Zhang et al., 2012; Li et al., 2021d),

exciplex-based TADF (Goushi et al., 2012; Li et al., 2014a; Oh

et al., 2015; Li et al., 2021a; Li et al., 2021b; Xue and Xie, 2021; Li

et al., 2022c; Gu et al., 2022), aggregation-induced emission

(AIE)-based TADF (Zhao et al., 2018; Liu et al., 2020),

excited-state intramolecular proton transfer (ESIPT)-based

TADF (Mamada et al., 2017; Long et al., 2020) and multiple

resonance-based TADF (MR-TADF) (Lee et al., 2020; Stavrou

et al., 2021; Wu et al., 2021; Yang et al., 2022; Zou et al., 2022).

Particularly, MR-TADF molecules have been considered as the

most promising TADF materials on account of the attainment of

both high efficiencies and high color purity. Nevertheless, the

molecular design of MR-TADF is still rather limited in view of

that almost all the MR-TADF molecules are B-, N-, S-, O-,

carbonyl-, and/or sulfuryl-containing heterocyclic derivatives

(Hatakeyama et al., 2016; Liang et al., 2018; Li et al., 2019;

Yuan et al., 2019; Hall et al., 2020; Xu et al., 2021a; Huang

et al., 2021; Meng et al., 2022). Additionally, for all the TADF

FIGURE 1
Luminescence mechanisms of organic light-emitting materials. (A) Fluorescence. (B) Phosphorescence. (C) Thermally activated delayed
fluorescence (TADF). (D) Hyperfluorescence. (E) INVEST by strong light-matter coupling. (F) Inherent INVEST. Fluo., fluorescence; Phos.,
phosphorescence; DF, delayed fluorescence; ISC, intersystem crossing; RISC, reverse intersystem crossing; FRET, Förster resonance energy transfer;
UP, upper polaritons; DS, dark singlet states; LP, lower polaritons; NR, nonradiative decay. kT→DS and kT→LP: RISC rate constants from T1 to DS
and from T1 to LP, respectively.
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molecules, there is always a problem that the RISC process is

fairly slow, resulting in serious annihilation of triplet excitons

and concomitantly serious efficiency roll-off at high current

densities (Yersin et al., 2019; Hong et al., 2022).

Hyperfluorescence combines advantages of both

fluorescence and TADF, in which fluorescent and TADF

materials are introduced as emitters and host materials,

respectively (Nakanotani et al., 2014). Under electrical

excitation, almost all the singlet and triplet excitons are

initially harvested by TADF molecules, and then triplet

excitons can efficiently up-convert to be singlet excitons

(Figure 1D). Subsequently, the energy can be transferred from

S1 of TADF molecules to S1 of fluorescent molecules through

Förster resonance energy transfer (FRET), and finally highly

efficient fluorescence could be achieved (Chan et al., 2021).

Notably, efficiency roll-off at high current densities could

possibly occur in terms of a slow RISC in TADF molecules

(Jakoby et al., 2019). Moreover, some other mechanisms, such as

triplet-triplet annihilation (TTA) (Fukagawa et al., 2012; Jankus

et al., 2013), pure organic room-temperature phosphorescence

(RTP) (Zhou et al., 2018; Wen et al., 2021; Liu et al., 2022),

utilization of higher excited states (Sato et al., 2015; Xu et al.,

2021b), direct singlet harvesting (Yersin et al., 2019), doublet

energy transfer with organic radicals (Li et al., 2022a) and radical-

based emitters (Ai et al., 2018; Abdurahman et al., 2020; Cui et al.,

2020), are proposed in recent years. However, current research

suggests that these mechanisms have not yet shown a subversive

improvement effect.

Recently, a mechanism of inverted singlet-triplet (INVEST)

in violation of Hund’s multiplicity rule attracted much attention

(Kollmar and Staemmler, 1978; Koseki et al., 1985; Segal et al.,

2007; Difley et al., 2008; Sato et al., 2015; Ehrmaier et al., 2019;

Gan et al., 2019; Mei et al., 2021; Pollice et al., 2021; Li et al.,

2022b). For an INVEST molecule possessing a negative ΔEST, the
intrinsic photophysics of RISC are thereby completely

overturned from an endothermic process to an exothermic

one. Therefore, the RISC process of INVEST molecules are

mostly likely superior to the corresponding TADF molecules.

Consequently, INVEST emitters can theoretically outperform all

previous generations in terms of considerably lower triplet

exciton populations, and potential applications in OLEDs,

organic lasers and photocatalysis could be imagined (Hwang

and Schlenker, 2021; Pollice et al., 2021). At present, there are

mainly two INVEST mechanisms, INVEST by strong light-

matter coupling and inherent INVEST.

Inverted singlet-triplet by strong
light-matter coupling

INVEST by strong light-matter coupling is to build an

optical microcavity to convert singlet excitons into two types

of polaritons, namely lower polaritons (LPs) and upper

polaritons (UPs). Meanwhile, an INVEST structure with a

lower LP state relative to T1 can be realized by adjusting the

microcavity structure (Figure 1E) (Eizner et al., 2019).

Herein, polaritons are light-matter eigenstates forming

when singlet electronic transitions are strongly coupled

with the vacuum electromagnetic field in an optical cavity

(Hopfield, 1958). In recent years, organic polaritons have

been widely investigated in the areas of nonlinear

interactions (Daskalakis et al., 2014), optoelectronic

devices (Tischler et al., 2005; Ballarini et al., 2013; Sanvitto

and Kena-Cohen, 2016; Eizner et al., 2018; Stranius et al.,

2018) as well as chemical reactions (Feist et al., 2018; Ribeiro

et al., 2018). Meanwhile, strong light-matter coupling has

been regarded as an important tool to tailor molecular

photophysical and photochemical properties without

modifying chemical structures (Lidzey et al., 1998; Hertzog

et al., 2019). As shown in Figure 1E, under optical excitation,

the generation of delayed fluorescence for a TADF molecule

in a polariton setup involves intersystem crossing (ISC) from

the dark singlet state (DS) to T1, followed by two RISC

processes from T1 to DS and from T1 to LP with rate

constants of kT→DS and kT→LP, respectively. In this

situation, it is anticipated that the down-converted RISC

process from T1 to LP could be dominant and conductive

to the reduction of efficient roll-off if the kT→LP can be much

larger than kT→DS by modifying the microcavity structure.

In 2019, Eizner et al. demonstrated an inversion of the

singlet LP and T1 based on a TADF molecule, 1,3,5-tris(4-

(diphenylamino)phenyl)-2,4,6-tricyanobenzene (3DPA3CN)

(Figure 2), and measured the RISC rate constant in strongly

coupled organic microcavities (Eizner et al., 2019).

Unexpectedly, the RISC rate constants were almost

invariable regardless of the large energy level shifts under

strong light-matter coupling. In 2021, Yu et al. (2021)

demonstrated a barrier-free RISC from a molecular centered

triplet state to a hybrid polaritonic state based on another

TADF molecule, 9-([1,1′-biphenyl]-3-yl)-N,N,5,11-
tetraphenyl-5,9-dihydro-5,9-diaza-13b-boranaphtho[3,2,1-de]

anthracen-3-amine (DABNA-2) (Figure 2), in light of a good

compromise on ΔEST and coupling strength (Yu et al., 2021).

Interestingly, the connection between the uncoupled T1 and

the polaritonic state was shown to depend on molecular

constitution of the polaritons. As the photonic nature of LP

increased, a gradual disconnection from T1 happened. By

choosing an intermediate state, a system with both an

energetic driving force and enough molecular constitution

of the LP was achieved to maintain a barrier-free RISC

directly from T1 to LP. Accordingly, strong light-matter

coupling offers a new strategy to overcome the limit of

Hund’s rule and to facilitate the harvest of triplet

excitons. From these results, it is anticipated that more

efforts on INVEST by strong light-matter coupling will be

extensively explored.
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FIGURE 2
Chemical structures of INVESTmolecules. The blue color represents INVESTmolecules by strong light-matter coupling, while the black and red
colors represent inherent INVEST molecules investigated by theoretical calculations and experimental verifications, respectively.
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Inherent inverted singlet-triplet

In addition to INVEST by strong light-matter coupling,

inherent INVEST is another important strategy to realize

singlet-triplet inversion and has drawn growing interest in the

fields of organic optoelectronics and photochemistry (Ehrmaier

et al., 2019; Miyajima et al., 2021; Pollice et al., 2021). Contrary to

the vast majority of known organic molecules, inherent INVEST

molecules possess an inherent property of singlet-triplet

inversion without any assistance of the environment. Thus,

energy transition from T1 to S1 is a spontaneous down-

conversion process, replacing the up-conversion in TADF

emitters (Figure 1F) (Pollice et al., 2021). Therefore, inherent

INVEST are most likely to have better performance and

applications with respect to INVEST by strong light-matter

coupling.

Up to now, a series of inherent INVEST molecules have been

theoretically or experimentally investigated, and the related

chemical structures mentioned below are depicted in Figure 2.

In 2019, Ehrmaier et al. (2019) investigated the excited singlet

and triplet states of a set of heptazine derivatives (Hz, TAHz,

TClHz, TCNHz, melem dimer, melem trimer and melem

tetramer, Figure 2), by correlated ADC(2), CC2, EOM-CCSD,

and CASPT2 calculations. Remarkably, all the heptazine

derivatives displayed negative ΔEST from −0.30 to −0.20 eV

with the ADC(2) method, indicating that the singlet-triplet

inversion characteristics of heptazine derivatives were

extremely robust, being affected neither by substitutions nor

by oligomerization. Almost at the same time, de Silva

theoretically studied the excited-state energy inversion of S1
and T1 based on a N-containing heterocycle, cyclazine

(Figure 2), from the perspective of electronic structure theory

(de Silva, 2019). Through systematic calculations and analyses

with different excited-state electronic structure methods, it was

found that electron correlation in the form of double excitations

would lead to the reduction of ΔEST and the emergence of

negative ΔEST. The result indicates that popular electronic

structure methods without the consideration of doubly excited

configurations cannot accurately describe excited states of

inherent INVEST molecules.

Notably, both abovementioned heptazine derivatives and

cyclazine possess relatively small oscillator strengths, which

are not qualified as emitters for highly efficient OLEDs. In

2021, Sanz-Rodrigo et al. (2021) calculated a set of N- and/or

B-substituted triangle-shaped molecules by using popular time-

dependent density functional theory (TD-DFT) and more

sophisticated ab initio methods with correlation effects.

Excitingly, molecules 2T-a, 2T-b, 3T-a, 3T-b, 4T-c, 4T-d, 4T-

e, 4T-f, 4T-i and 4T-j (Figure 2) possess inherent INVEST

characteristics and most of them showing nonvanishing

oscillator strengths with highly correlated SA-CASSCF, SC-

NEVPT2 and SCS-CC2 calculations (Sanz-Rodrigo et al.,

2021). Sobolewski and Domcke investigated the electronic

excitation energies of two previousy reported heptazine

derivatives (HAP-3MF and HAP-3TPA) (Li et al., 2013; Li

et al., 2014b) with the ADC(2) method, and HAP-3MF with a

negative ΔEST of −0.24 eV was robustly verified (Sobolewski and

Domcke, 2021). Dinkelbach et al. (2021) carried out a

comprehensive theoretical study on the photophysics of Hz

and HAP-3MF. Remarkably, they found that the ultimate

luminescence efficiencies of these two inherent INVEST

compounds were determined by not merely ISC/RISC

processes but also the internal conversion from S1 to S0.

Ricci et al. (2021) assessed the excited-state energy order of a

set of N- or B-doped π-conjugated heterocycles by linear-

response TD-DFT and correlated ab initio methods. Among

these molecules, negative ΔEST could be realized for molecules

2T-N, 2T-4N, 2T-7N, 2T-N/COOH and 2T-7B (Figure 2) by

CIS(D), SCS-CC2, SCS-ADC(2) or SC-NEVPT2 methods.

Noteworthily, they found that negative ΔEST should be

ascribed to an intricate interplay between the singlet-triplet

exchange interaction, the influence of doubly-excited

configurations, and the impact of dynamic correlation effects.

The result is of significant importance for further molecular

design of inherent INVEST molecules. Pollice et al. (2021) put

forward that ideal emitters potentially surpassing TADF

materials should have both negative ΔEST and substantial

fluorescence rates. Based on computational studies on a series

of N-substituted phenalene derivatives, molecules possessing

both negative singlet-triplet gaps and considerable

fluorescence rates, namely 3–6 and 18–22 (Figure 2), were

obtained, suggesting that inherent INVEST molecules are

more common than hypothesized previously and have the

potential to become the next generation organic light-emitting

materials. Pios et al. (2021) designed and characterized a number

of triangular boron carbon nitrides (2.1–2.8 and 3.1–3.2,

Figure 2) conceptually derived from cyclazine and heptazine

by employing high-level ab initio electronic structure theory. As

expected, these compounds showed robust inherent INVEST

characteristics, exhibiting great potential as chromophores for

organic optoelectronics.

In 2022, Li and coworkers theoretically investigated the

response of INVEST behavior of cyclazine to a static electric-

field as well as an unchirped and chirped laser pulse by using

next-generation quantum theory of atoms in molecules (NG-

QTAIM), demonstrating that NG-QTAIM is a useful tool for

understanding the response to laser irradiation (Li et al., 2022d).

Recently, Alipour and Izadkhast comprehensively calculated a

series of inherent INVEST emitters (A-Z, AA-XX and I-IV,

Figure 2) toward the development of modern double-hybrid

density functionals for singlet-triplet inversion (Alipour and

Izadkhast, 2022). They found that particular proportions

among the nonlocal exchange and correlation contributions as

well as the same-spin and opposite-spin parameters included in

the direct and indirect terms are needed to achieve a reliable

accuracy for the singlet-triplet inversion. Sancho-Garcia et al.
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assessed the singlet-triplet inversion feature of a set of

azaphenalene compounds (2T-N, 2T-4N, 2T-7N, 2T-3N, 2T-

4bisN, 2T-5N and 2T-5bisN, Figure 2) by TD-DFT employing a

family of double-hybrid density functionals, and found that

double-hybrid exchange-correlation functionals incorporating

double excitations could be a good alternative to wavefunction

methods (Sancho-Garcia et al., 2022). Subsequently, Sancho-

García and San-Fabián investigated four azaphenalene

derivatives (MAP, 4AP, 5AP and 7AP) to assess if methods

going beyond standard TD-DFT could predict accurate excited-

state energy inversion (Sancho-García and San-Fabián, 2022).

Interestingly, negative ΔEST with high accuracy could be well

realized by employing methods merging wavefunction and

correlation functionals. Moreover, Ghosh and Bhattacharyya

calculated seven azaphenalene derivatives (M-18 to M-21,

Azine, Azine-4N and Azine-7N, Figure 2) by combining DFT

and wave function methods, unveiling that inherent INVEST

gaps could be obtained by using doubles-corrected TD-DFT with

suitable double-hybrid functionals or excited-state DFT (Ghosh

and Bhattacharyya, 2022). Overall, the molecular design of

inherent INVEST emitters should consider both minimal

exchange integrals leading to small singlet-triplet gaps, and

significant double excitation character in electronic transitions

in extended π-conjugated heteroatom-containing molecular

systems. Particularly, current inherent INVEST molecules are

derived from N- and/or B-containing fused heterocycles.

Notably, present research on inherent INVEST is mainly

carried out by theoretical calculations, while experimental

explorations are fairly rare, possibly due to the difficulty in

synthesis of these N- and/or B-containing fused heterocycles.

Excitingly, Miyajima and coworkers experimentally

demonstrated the existence of highly efficient inherent

INVEST emitters for OLEDs (Miyajima et al., 2021). Based on

computational screening on a large quantity of heptazine

derivatives initially by affordable standard linear-response TD-

DFT calculations and then by high-cost correlated wave function

theories including double excitation configurations, a heptazine

derivative, HzTFEX2 (Figure 2) was chosen for experimental

evaluation considering both the possibility to be an efficient blue

inherent INVEST emitter and the synthetic feasibility.

Expectedly, HzTFEX2 showed a negative ΔEST of −11 meV

based on the fit of Arrhenius equation, and meanwhile the

rate inversion of RISC and ISC. Ultimately, an OLED

incorporating HzTFEX2 exhibited a fairly high EQE of 17.0%

with a fast transient electroluminescence decay. Recently, Li et al.

(2022b) experimentally investigated the photophysical properties

of HAP-3MF which was previously theoretically evaluated as the

first inherent INVEST emitter (Sobolewski and Domcke, 2021).

Surprisingly, negative ΔEST of −0.22 eV in toluene and −0.19 eV

in acetonitrile were directly obtained from the fluorescence and

phosphorescence spectra. Moreover, to reveal the extremely weak

delayed emission, a mixed solution system of HAP-3MF:1,3-

di(9H-carbazol-9-yl)benzene (mCP) in toluene at various molar

ratios was subtly designed. As expected, enhanced delayed

emissions were achieved, and the efficient triplet-exciton

harvesting process via a down-converted triplet-to-singlet

channel was elucidated.

Conclusion and outlook

In summary, we have provided an overview of organic

molecules with singlet-triplet inversion characteristics

stemming from strong light-matter coupling and inherent

INVEST. As compared to fluorescence, phosphorescence,

TADF and hyperfluorescence, INVEST molecules possessing

intriguing excited-state features have attracted great attention

especially in the field of organic electroluminescence. Although

numerous research results show that inherent INVESTmolecules

have great potential to become a new generation of high-

performance organic light-emitting materials, there are still

two main problems: 1) Most studies on INVEST molecules

are merely based on theoretical calculations, whilst

experimental results are currently sparse. 2) Present molecular

design of inherent INVEST molecules is relatively limited, in

view of that almost all these molecules are N- and/or

B-containing heterocycles, especially heptazine derivatives. In

this respect, it could be envisioned that more endeavors on

experimental verifications and diverse molecular design will be

carried out, and we believe that organic INVEST molecules will

show bright prospects in organic optoelectronics and

photochemistry in future.
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