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In Yb-Er co-doped upconversion (UC) nanomaterials, upconversion luminescence
(UCL) can be modulated to generate multiband UCL emissions by changing the
concentration of activator Er3+. Nonetheless, the effect of the Er3+ concentrations on
the kinetics of these emissions is still unknown. We here study the single β-NaYF4:
Yb3+/Er3+ microcrystal (MC) doped with different Er3+ concentrations by nanosecond
time-resolved spectroscopy. Interestingly, different Er3+ doping concentrations
exhibit different UCL emission bands and UCL response rates. At low Er3+ doping
concentrations (1 mol%), multiband emission in β-NaYF4:Yb

3+/Er3+ (20/1 mol%) MCs
could not be observed and the response rate of UCL was slow (5–10 μs) in β-NaYF4:
Yb3+/Er3+. Increasing the Er3+ doping concentration to 10 mol% can shorten the
distance between Yb3+ ions and Er3+ ions, which promotes the energy transfer
between them. β-NaYF4:Yb

3+/Er3+ (20/10 mol%) can achieve obvious multiband
UCL and a quick response rate (0.3 µs). However, a further increase in the Er
doping concentration (80 mol%) makes MCs limited by the CR process and
cannot achieve the four-photon UC process (4F5/2 → 2K13/2 and 2H9/2 → 2D5/2).
Therefore, the result shows that changing the Er3+ doping concentration could
control the energy flow between the different energy levels in Er3+, which could
affect the response time and UCL emission of the Yb/Er doped rare earth materials.
Our work can facilitate the development of fast-response optoelectronics, optical-
sensing, and display industries.
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1 Introduction

Lanthanide-doped nanomaterials have been widely studied in optics and biology due to
luminescence multi-modulation at the micro-nano scale. Lanthanide-based upconversion (UC)
microcrystals (MCs) transform infrared photons with low energy into high-energy photons
(ultraviolet or visible), and have thus been increasingly used in laser (Chen et al., 2016),
photovoltaics (Liang et al., 2013), storage (Zheng et al., 2018), and anticounterfeiting (Li et al.,
2022). β-NaYF4 is the most efficient UC material lattice because of low phonon energy. Co-
doping typical sensitizer Yb3+ and activator Er3+ in NaYF4 achieves multi-photons UC and
exhibits multiband emission under saturated excitation (Yuan et al., 2018; Frenzel et al., 2021);
this has potential application in super-resolution (Liu et al., 2017), optical multiplexing (Lu
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et al., 2013), and display (Zhang et al., 2015; Gao et al., 2020). Recent
studies have demonstrated that the luminescence properties of
upconversion nanoparticles (UCNPs) can be effectively enhanced
(Han et al., 2014) or modulated by changing the structure (Wang
et al., 2014), doping concentration (Wen et al., 2018), and surface
modification (Zhou B et al., 2020), thus extending the application of
UCNPs. In particular, the increasing study of highly doped Er3+ ions
has shown that a high degree of energymigration between them occurs
to suppress the effect of concentration quenching upon surface coating
(Chen et al., 2017). The self-sensitization of Er ions has also been
reported to directly achieve the modulation of energy transfer within
UCNPs (Zhou J et al., 2020). These suggest that highly doped UCNPs
are important for luminescence modulation.

High irradiation power density conditions allow the highly doped β-
NaYF4:Yb

3+/Er3+MCs to exhibit stronger emissions. Huang et al. achieved
nearly white luminescence in a single β-NaYbF4: Er

3+ (2 mol%) MC; they
studied the effect of Yb3+ ion doping concentration on UC kinetics
(Huang et al., 2022b). For the UC system, the Yb3+ ion is the
absorption antenna of the photon, and the Er3+ ion is the
luminescence center of the MCs. The doping concentration of the Er3+

ion will directly affect the luminescence characteristics of the MCs.
However, the effect of Er3+ concentration on UC kinetics still seems
unknown. Moreover, an advanced setup is needed to better understand
the kinetics of β-NaYF4:Yb

3+/Er3+ systems with different Er3+ doping
concentrations at nanosecond timescale. Optical trapping time-resolved
photoluminescence spectroscopy (OT-TRPLS) combines a nanosecond
pulsed laser (976 nm), an optical tweezer (with 1342 nm laser), and an
advanced time-resolved photoluminescence device (Huang et al., 2022a).
It has the ability tomeasure the nanosecond timescale transient spectra by
trapping a single MC to deter the effect resulting from theMCmovement
and its interactions with other surrounding MCs.

In this paper, we investigate the effect of Er3+ concentration on the
multiband emissions in the β-NaYF4:Yb

3+/Er3+ MCs which are optically
trapped by our OT-TRPLS platform. The kinetics were quantificationally
resolved on the basis of the time-resolved spectra. Interestingly, under the
20mol% condition of Yb3+ doping concentration, different Er3+ doping
concentrations modulated MCs to exhibit different kinetic processes and
response rates of upconversion luminescence (UCL). NaYF4:Yb

3+/Er3+ (20/
10mol%) populated the characteristic 2P9/2 energy level of Er3+ ion (the
energy level corresponding to a four-photon absorption) as fast as ~0.1 μs
after the excitation. In contrast, β-NaYF4:Yb

3+/Er3+ (20/1mol%) needed a
timescale of 5–10m after the excitation. However, further increasing the
doping Er3+ concentration in β-NaYF4:Yb

3+/Er3+ MCs, MCs cannot achieve
the four-photonUCprocess. The time-evolution spectra ofNaYF4:Er 10 and
80mol% MCs show that single doping Er3+ ions cannot significantly
improve the response rate of the UCL due to the smaller absorption
cross section of Er3+ near 976 nm. The result indicates that increasing the
doping concentration of Er3+ in β-NaYF4:Yb

3+/Er3+ shortens the distance
between Yb3+ and Er3+, thus changing the rate at which Yb ions transfer
energy to Er ions. In addition, the cross-relaxation (CR) of highly doping Er
ions will make the MCs unable to achieve the four-photon UC process.

2 Experimental

2.1 Materials

Yb3+, Er3+, and Y3+ were provided by ytterbium (III) chloride
(YbCl3·6H2O, 99.99%), erbium (III) chloride (ErCl3·6H2O, 99.99%),

and yttrium (III) chloride (YCl3·6H2O, 99.99%) from Aladdin
Industrial Corporation. Sodium fluoride (NaF), Na2-ethylenedia-
metracetic acid (EDTA-2Na), and other chemical reagents were
purchased from Sinopharm Chemical Reagent Co., Ltd.

2.2 Preparation of β-NaYF4:Yb
3+/Er3+ MCs

NaYF4:Yb
3+/Er3+ MCs were prepared by the hydrothermal

method. To ensure a total rare-earth-ion content of exactly
1 mmol, YbCl3·6H2O, ErCl3·6H2O, and YCl3·6H2O of different
qualities from the specific doping ratio were dissolved in the
deionized water (22 mL). Thereafter, ultrasonic stirring occurred
until the solution became transparent; 1 mmol EDTA-2Na was
then added and stirred into the mixed solution (30 min). Then,
10 mmol NaF was added and stirred for another 30 min until the
solution became colloidal. Subsequently, the mixtures were transferred
to a hydrothermal reactor for 24 h annealing at 160°C and then cooled.
The final product was thrice washed with ethanol and deionized water.

2.3 Sample characterization

NaYF4:Yb
3+/Er3+MCs of the β crystalline phase were characterized

by scanning electron microscopy (SEM). The hexagonal MCs were
about 2 μm in length (Figures 1A–E). An X-ray diffractometer with Cu
K radiation was employed at 40 kV and 200 mA (Rigaku) to record the
X-ray diffraction (XRD) patterns of the MCs. The XRD data in the 2θ
range from 10° to 70° were collected at a 10° min−1 scanning rate. Based
on the Joint Committee on Powder Diffraction Standards (JCPDS), it
was demonstrated that the prepared NaYF4 MCs are β-phase
crystalline (Figure 1F).

2.4 Photoluminescence measurements

We used OT-TRPLS to measure the time evolution spectra. As
previously mentioned, optical tweezers (OT) ensured the stability
and isolation of the sample as well as avoiding any undesired
interaction by the sample with its surroundings. The 1342 nm
excitation laser works as OT for the low absorption coefficients
of both Er3+ and Yb3+ ions at this wavelength. The optical trapping
process was observed using a color-complementary metal oxide
semiconductor (CMOS). The peak excitation power density was
~0.32 GW cm−2, and the pulse width of the laser was 15 ns. The
time evolution spectra were captured using an ICCD camera. A
976 nm ns-pulsed laser source was utilized in OT-TRPLS under the
control of digital delay generator (DDG) at a repetition rate of
37 Hz (see Figure 2).

3 Results and discussion

We captured the time evolution spectra of optically trapped
NaYF4:Yb

3+/Er3+ MCs after the 976 nm ns-pulsed laser excitation
(see Figure 3). Our results indicate that NaYF4:Yb

3+/Er3+ MCs
show sequent UCL emissions at different wavelengths and that
different Er3+ doping concentrations can modulate UCL emissions.
The main emissions are 522 nm, 542 nm, 410 nm, 558 nm, and
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654 nm for NaYF4:Yb
3+/Er3+ (20/1 mol%) MCs within 1 μs after

excitation (see Figure 3A). In the timescale from 5 to 10 µs, NaYF4:
Yb3+/Er3+ (20/1 mol%)MCs show weak 402 nm and 470 nm emissions
(see Figure 3A). Increasing the Er3+ doping concentration to 10 mol%,
NaYF4:Yb

3+/Er3+ (20/10 mol%) MCs show multiband UCL emissions
within 0.3 µs, such as 522 nm, 542 nm, 410 nm, 558 nm, 654 nm,

505 nm, 384 nm, 496 nm, 430 nm, 482 nm, 617 nm, 654 nm, 456 nm,
443 nm, 575 nm, 585 nm, and 640 nm. However, when the
concentration of Er3+ ions is increased to 80 mol%, NaYF4:Yb

3+/
Er3+ (20/80 mol%) MCs only show partly multiband UCL
emissions. The concentration of doping Er3+ could effectively
change the UCL emission under 976 nm ns-pulsed excitation.

FIGURE 1
(A–E) SEM micrographs of β-NaYF4:Yb/Er MCs. (F) XRD patterns of the measured β-NaYF4:Yb

3+/Er3+ MCs compared to the standard JCPDS file no.16-
0334.

FIGURE 2
Setups for UCL detection with the self-built OT-TRPLS device. M1, planar reflective silver mirror; M2, polarization beam-combining mirror (for a 976 nm
laser); M3, beam-combining mirror (for a 976 nm laser and 1342 nm laser); M4, dichroic mirror for short-wave pass and the cutoff wavelength is 900 nm; M5,
50:50 beam-splitter. Objective 1 is an oil lens (1.3 NA, 100x). Objective 2 has 10 × magnification with .25 NA for lighting focusing. All lasers were coaxial.
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Next, we focused on the major UCL peaks; previous studies
(Cheng et al., 2002; Sardar et al., 2003; Wegh et al., 2003; Chen
et al., 2007; O’Shea et al., 2007; Yuan et al., 2018; Frenzel et al., 2021)

indicate energy levels of Er3+ ions and their corresponding emission
wavelengths (Figure 4. Pathway A (4I15/2 → 4I11/2 → 4F7/2 → 2H11/2

→4S3/2 → 2G7/2 → 4G11/2 → 2H9/2 → 4F5/2 → 2K13/2) and pathway B

FIGURE 3
NaYF4:Yb

3+/Er3+ evolution spectrum of Yb3+/Er3+(20/xmol%) under 976 nm pulse excitation. (A, B) x= 1, (C) x = 10, and (D) x = 80. The 976 nm ns-pulsed
excitation starts from the 0 moment.

FIGURE 4
Transition mechanism of NaYF4:Yb

3+/Er3+ (20/x mol%) with different Er3+ doping concentrations under 976 nm pulse excitation. The 976 nm ns-pulsed
excitation starts from the 0moment. Green part is the populating process. Red part is the radiative transition process at x= 1. Blue part is the radiative transition
process at x = 10. Purple part is the radiative transition process at x = 80.
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FIGURE 5
NaYF4:Er

3+ evolution spectrum under 976 nm pulse excitation: (A) Er 10 mol% and (B) Er 80 mol%. (C) Schematic representation of the transition kinetics
in NaYF4:Yb

3+/Er3+ (00/x mol%) with different Er3+ doping concentrations under 976 nm pulse excitation. Green part is the populating process. Red part is the
radiative transition process at x= 10. Blue part is the radiative transition process at x= 80. Purple part is the CR process. The 976 nmns-pulsed excitation starts
from the 0 moment.

FIGURE 6
Schematic diagram of the influence of Er3+ doping concentration on the UCL emission of NaYF4:Yb

3+/Er3+ MCs under the excitation of 976 nm laser.
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(4I15/2 → 4I11/2 → 4I13/2 → 4F9/2 → 2H9/2 → 2D5/2) are two main
channels where energy levels are populated to achieve UCL emission.
(Anderson et al., 2014; Jung et al., 2015; Yuan et al., 2018; Frenzel et al.,
2021).

For NaYF4:Yb
3+/Er3+ (20/1 mol%), the UCL at 542 nm (4S3/2→4I15/2)

and 522 nm (2H11/2→4I15/2) emits within 0.2 μs of the 976 nm ns-pulsed
excitation. The aforementioned emissions originated from 4I15/2 → 4I11/2
→ 4F7/2 → 2H11/2 →4S3/2 of pathway A. In the timescale from 0.2 μs to
0.4 μs after excitation, the emergence of 505 nm (4G11/2 → 4I13/2) and
384 nm (4G11/2 → 4I15/2) demonstrates that 4G11/2 has accumulated
electron population by 4I15/2 → 4I11/2 → 4F7/2 → 2H11/2 →4S3/2 → 2G7/

2 → 4G11/2 from pathway A. Then, in the timescale from 0.4 μs to 0.7 μs
after excitation, the emergence of 410 nm (2H9/2 → 4I15/2) and 558 nm
(2H9/2 → 4I13/2) demonstrates that 2H9/2 has accumulated an electron
population by 4G11/2 → 2H9/2. Although the 2H9/2 energy level could be
populated by 4I15/2 → 4I11/2 → 4I13/2 → 4F9/2 → 2H9/2 of pathway B, no
obvious electron population accumulated at the 4F9/2 energy level. The
654 nm (4F9/2→ 4I15/2) is not observed at this time. In the timescale from
0.7 μs to 1 μs after excitation, the emergency of 654 nm emission indicates
that an 4F9/2 energy level has accumulated an electron population.
However, in the timescale from 5 μs to 10 μs after excitation, the
emergence of 402 nm (2P3/2 → 4I13/2) and 470 nm (2P3/2 → 4I11/2)
emissions demonstrates the occurrence of the four-photon process
from pathway A (4I15/2 → 4I11/2 → 4F7/2 → 2H11/2 →4S3/2 → 2G7/2 →
4G11/2→ 2H9/2→ 4F5/2→ 2K13/2). The four-photon process from pathway
B is not observed by UCL, such as 430 nm (4G7/2 → 4I11/2). It can be
concluded through data and analysis that pathway A is more effective
than B in NaYF4:Yb

3+/Er3+ (20/1 mol%).
For NaYF4:Yb

3+/Er3+ (20/10 mol%), the UCL at 542 nm (4S3/
2→4I15/2), 522 nm (2H11/2→4I15/2), 496 nm (4F7/2 → 4I15/2), 505 nm
(4G11/2→ 4I13/2), and 384 nm (4G11/2→ 4I15/2) emits within 0.1 μs after
976 nm ns-pulsed excitation, which originated from pathway A. In the
timescale from 0.1 μs to 0.2 μs after excitation, the emergence of
410 nm (2H9/2 → 4I15/2) 558 nm (2H9/2 → 4I13/2), 402 nm (2P3/2 →
4I13/2), 470 nm (2P3/2 → 4I11/2) 654 nm (4F9/2 → 4I15/2), and 430 nm
(4G7/2 → 4I11/2) demonstrates that 4F9/2,

4G11/2,
2H9/2,

2P3/2, and
4G7/2

energy levels have accumulated electron population by four-photon
pathway A and four-photon pathway B. Moreover, 482 nm (2K15/2 →
4I13/2), 575 nm (2G7/2 → 4I11/2), 585 nm (4G9/2 → 4I11/2), 456 nm (4F5/2
→ 4I15/2), and 443 nm (4F3/2 → 4I15/2) emissions indicate that the 2K15/

2,
2G7/2,

4G9/2,
4F3/2, and 4F5/2 levels can accumulate electron

populations. Compared with NaYF4:Yb
3+/Er3+ (20/1 mol%) MCs,

NaYF4:Yb
3+/Er3+ (20/10 mol%) exhibited more UCL emissions and

a faster response rate of UCL. This indicates that increasing the Er3+

ion-doping concentration can effectively enhance the UC process of
NaYF4:Yb

3+/Er3+ MCs in specific concentration ranges of Er3+.
Further increasing the doping concentration of Er3+, for NaYF4:

Yb3+/Er3+ (20/80 mol%), the UCL at 542 nm (4S3/2→4I15/2), 522 nm
(2H11/2→4I15/2), 496 nm (4F7/2 → 4I15/2), 505 nm (4G11/2 → 4I13/2), and
384 nm (4G11/2 → 4I15/2) emits within .1 μs after 976 nm ns-pulsed
excitation, which originated from pathway A. However, in the
timescale from .1 μs to .2 μs after excitation, only 410 nm (2H9/2 →
4I15/2), 558 nm (2H9/2 → 4I13/2), 654 nm (4F9/2 → 4I15/2), 456 nm (4F5/2
→ 4I15/2), and 443 nm (4F3/2 → 4I15/2) emissions could be observed,
demonstrating that 2H9/2,

4F9/2,
4F5/2, and

4F3/2 energy levels have
accumulated electron populations. The UCL emissions from four-
photon pathways are not observed. This indicates that further
increasing the Er3+ doping concentration can increase the response
rate of the UCL, but the kinds of emissions are reduced and the UCL

emissions from the four-photon UC process could not emit. For
NaYF4:Yb/Er (20/X mol%) MCs, 80 mol% Er doping concentration
takes 0.2 μs to achieve the A-1, A-2, A-3, B-1, B-2, and B-3 ET
processes, while 1 mol% Er doping concentration takes 1 μs. This
indicates that for NaYF4:Yb/Er (20/80 mol%) MCs, the two- and
three-photon UCLs maintain a high response rate even if all Y3+ is
replaced with Er3+. However, for high Er3+ ion doping concentration
(80 mol%), the CR processes of Er3+ prevents the energy levels of the
four-photon process from accumulating effective populations, thus
preventing the emission of typical four-photon UCLs such as 402 and
430 nm.

To further study the influence of Er3+ on the kinetics of multiband
UCL, we measured and analyzed the time evolution spectra of NaYF4:
Er3+ MCs with different Er3+ doping concentrations (Figures 5A, B.
According to the result of the evolution spectrum, both NaYF4:Er

3+

(10 mol%) and NaYF4:Er
3+ (80 mol%) can achieve the UC process by

Er3+ ion self-sensitization. Nonetheless, without Yb3+ ion sensitization,
the UCL of NaYF4:Er

3+ MCs was weakened and the UCL response rate
slowed. According to the time evolution spectrum and a previous
report on Er3+ self-sensitization (Lu et al., 2014), the schematics of the
transition kinetics are presented in Figure 5C. NaYF4:Er

3+ (10 mol%)
cannot emit UCL from a four-photon ET process. Moreover, the UCL
response rate is relatively slow, and it takes 4 μs to perform three-
photon pathways A and B. Increasing Er3+ doping concentration in
NaYF4, NaYF4:Er

3+ (80 mol%) could absorb more photons by the self-
sensitization of Er3+ ions. However, NaYF4:Er

3+ (80 mol%) cannot
emit UCL by a four-photon UC process. In addition, the UCL
response rate in NaYF4:Er

3+ (80 mol%) is at the timescale of ~1 μs
for achieving three-photon pathways A and B. In contrast, for NaYF4:
Yb3+/Er3+ (20/80 mol%) and NaYF4:Yb

3+/Er3+ (20/10 mol%), the UCL
response rates are at the timescale of ~0.2 μs to achieve three-photon
pathways A and B. This suggests that the self-sensitization of Er3+ is
not the main factor for the changing response rate in NaYF4:Yb

3+/Er3+.
More interestingly, in studying the influence of the Er3+ doping

concentration on the distribution of doped ions in NaYF4:Yb
3+/Er3+

(20/x mol%) MCs (see Figure 6), increasing the Er3+ doping
concentration can significantly shorten the distance between Yb3+

ions and Er3+ ions, which could improve the energy transfer
between them (Dexter, 1953). When Er3+ doping concentration is
low, such as NaYF4:Yb

3+/Er3+ (20/1 mol%), the distance between Yb3+

ions and Er ions is great. Yb3+ ions transfer little energy to Er3+, leading
to a slow UCL response rate of MCs; these can only show part of the
four-photon UC process (A-4). Increasing the concentration of Er3+

doping can shorten the distance between Yb3+ and Er3+ ions such as
NaYF4:Yb

3+/Er3+ (20/10 mol%) MCs, which facilitate the energy
transfer between Yb3+ ions and Er3+ ions. Hence, NaYF4:Yb

3+/Er3+

(20/10 mol%) MCs show obvious multiband UCL and a fast UCL
response rate. When further increasing the Er3+ doping concentration,
such as NaYF4:Yb

3+/Er3+ (20/80 mol%), the complex CR process
reduces the electron population of Er3+, and NaYF4:Yb

3+/Er3+ (20/
80 mol%) cannot achieve a four-photon UC process. However, the
shorter Yb3+–Er3+ distance makes the NaYF4:Yb

3+/Er3+ (20/80 mol%)
UCL response rate faster.

4 Conclusion

In summary, we utilized the OT-TRPLS to trap single β-NaYF4:
Yb3+/Er3+ MC varying Er3+ activator doping concentration and
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measured the time evolution spectrum. The result shows that varying
the Er3+ doping concentration can change the UCL emitting waveband
and response rate, which indicates different UC kinetics. The time-
evolution spectra of β-NaYF4:Yb

3+/Er3+ MCs by single-doped Er show
that the self-sensitization of Er3+ ions is not a major factor in the
change of the UCL kinetics of MCs. The varying Er3+ doping
concentration changes the Yb3+–Er3+ distance, which leads to a
different energy transfer between Er and Yb ions. An appropriate
increase in the Er3+ doping concentration can promote the multiband
emission and UCL response rate under strong ns-pulse excitation,
such as NaYF4:Yb

3+/Er3+ (20/1 mol%) and NaYF4:Yb
3+/Er3+ (20/

10 mol%). However, the CR process inhibits the population of
electrons at the higher energy levels of Er3+ ions, leading to the
inability of the four-photon UC process to be realized in NaYF4:
Yb3+/Er3+ (20/80 mol%) MCs. Our research offers a new
understanding of the influence of Er3+ concentration on UC, which
is promising in fast-response optoelectronics, optical-sensing, and
display industries.
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