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As a consequence of the accelerated climate change, solutions to capture, store
and potentially activate carbon dioxide received increased interest in recent years.
Herein, it is demonstrated, that the neural network potential ANI-2x is able to
describe nanoporous organic materials at approx. density functional theory
accuracy and force field cost, using the example of the recently published
two- and three-dimensional covalent organic frameworks HEX-COF1 and 3D-
HNU5 and their interaction with CO2 guest molecules. Along with the
investigation of the diffusion behaviour, a wide range of properties of interest
is analyzed, such as the structure, pore size distribution and host-guest
distribution functions. The workflow developed herein facilitates the estimation
of the maximum CO2 adsorption capacity and is easily generalizable to other
systems. Additionally, this work illustrates, that minimum distance distribution
functions can be a highly useful tool in understanding the nature of interactions in
host-gas systems at the atomic level.
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1 Introduction

In the past decade the impact of global climate change has become increasingly visible,
thereby evolving this pressing issue from a purely academic discussion towards intensified
activities to implement climate protection involving all levels of society. However, the recent
reports of the Intergovernmental Panel on Climate Change (IPCC) Pörtner et al. (2022) have
concluded, that the effects of global climate change are occurring on shorter time scales than
initially projected Tollefson (2022). While a number of factors contribute to this
development, the increase in greenhouse gas concentrations resulting from different
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human activities represent a key component accelerating global
warming. In particular the increased carbon dioxide (CO2) content
in the atmosphere is proven to be a main contributing factor next to
methane (CH4) emission Lashof and Ahuja (1990) and the
formulation of sustainable strategies to reduce CO2 emission
have become the focus of increasing research activities Boot-
Handford et al. (2014). Among those, capture, fixation and
potential activation of carbon dioxide in suitable absorption
media Elhenawy et al. (2020) such as metal- and covalent
organic frameworks (MOFs, COFs) are largely regarded as one
of the most promising routes Ding et al. (2019); Ozdemir et al.
(2019). This is due to the fact that these highly porous compounds
display very large storage capacities of gaseous guest molecules,
that can be further enhanced via suitable substitutions Yuan et al.
(2021); An et al. (2019). In particular, azine-linked COFs such as
HEX-COF1 Alahakoon et al. (2016) and 3D-HNU-5 Guan et al.
(2019) have been reported to display an exceptionally high affinity
towards carbon dioxide. In fact, the above-mentioned compounds
rank among the best performing storage media for CO2 surpassing
the capacities of natural compounds such as zeolites. Geng et al.
(2020).

Owing to the fact that these supramolecular compounds
oftentimes have complex unit cells, the theoretical treatment of
these systems is typically associated with a large computational
demand, especially when applying quantum chemical levels of
theory such as density functional theory (DFT) Sholl and Steckel
(2009); Koch and Holthausen (2002). The latter is especially true
when aiming at the diffusive properties of guest molecules inside
supramolecular structures. In this case comparably long molecular
dynamics simulations are required, so that the associated diffusion
coefficient can be evaluated in the long-time limit. While classical
molecular mechanical (MM) potentials provide a low-cost alternative
to quantum mechanical (QM) calculations, the inherent
consideration of complex interactions such as many-body and
polarization effects makes QM approaches the preferred level of
theory to study the associated host-guest interactions.

With the increasing success of machine-learning approaches,
effectively influencing every discipline of modern sciences, neural
network potential (NNP) models Kocer et al. (2022); Behler (2011)
emerged as a further alternative to the established MM and QM
methods Kulichenko et al. (2021). In particular, the ANI (Accurate
NeurAl networK engINe for Molecular Energies, ANAKIN-ME)
NNP Smith et al. (2017), focused on the treatment of organic
molecular systems, displays a number of promising features
that can be exploited to study the properties of gaseous guest
molecules in COF systems. Initially designed for the treatment
of molecules composed of C, H, N and O atoms based on an
extensive database of molecular structures treated at density
functional theory (DFT) level, the ANI NNP is capable of
replicating the structural description of the DFT training set at a
computational cost comparable to simple molecular force fields.
Smith et al. (2017) Moreover, it was shown that this approach
provides an accurate description of molecules being significantly
larger than those included in the training set, which could be further
improved in the second iteration, i.e., the ANI-2 NNP Devereux
et al. (2020).

While the treatment of condensed solid-state structures is
typically more challenging than calculations of isolated molecules

in vacuum or implicit solvation, the large porosity of COF structures
can be expected to mimic a vacuum environment to a great extent.
Provided, that the chosen NNP is sufficiently accurate to model the
solid-state system, a versatile simulation approach to investigate the
storage and diffusion properties of gas@COF systems could be
formulated.

In this work the ANI-2 NNP has been combined with a suitable
molecular dynamics (MD) framework to enable the treatment of HEX-
COF1 Alahakoon et al. (2016) and 3D-HNU-5 Guan et al. (2019), two
COF systems that share the same linking unit shown in Figure 1A. HEX-
COF1 has a 2-dimensional structure, forming layers that stack on top of
each other, 3D-HNU5 on the other hand is a 3-dimensional COF in
which the linkers are oriented in a tetrahedral geometry, forming a 2-fold
interpenetrated diamond topology Figure 1B–E. These COF systems
have been shown to possess distinctly dissimilar CO2 adsorption
capacities in experiments Alahakoon et al. (2016); Guan et al. (2019).
This difference in the absorption properties between these highly similar
COF systems (i.e., identical linking units) was one of the reasons to select
these particular systems for the current study. This enables the
investigation of the different CO2 storage characteristics based on an
identical structural motif in a 2D- and 3D-COF environment. Prior to
loading the COFs with increasing amounts of CO2molecules at different
state points, the performance of the ANI-2NNP in the description of the
pristine solids has been critically assessed.

FIGURE 1
(A) Azine linking unit comprising both HEX-COF1 and 3D-HNU5
as well as the numbering scheme used to identify unique hydrogen
atoms (vide infra), (B–E) Depiction of the unit cells of 3D-HNU5 and
HEX-COF1 employed in theMD simulations in top view (B, C) and
side view (D, E), respectively.
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2 Methodology

2.1 The ANI-2x neural network potential

Artificial neural network (ANN) approaches are generally
regarded as universal function approximators. Hornik et al.
(1989) Their utilization within the field of chemistry, comprises
inter alia the training of a neural network model to reproduce
reference energies from either experiment or more commonly
quantum chemical calculations. While the construction of such a
neural network potential (NNP) is oftentimes computationally very
demanding, especially if the generation of ab initio or DFT reference
data is taken into account, the prediction of properties from a built
model is similar to the cost of classic MM force-fields. Smith et al.
(2017) This approach of reproducing reference data is also
conceptually reminiscent of classic force fields, albeit with the
important distinction, that it has been more fruitful to create
accurate general purpose ML potentials, that are trained on a
large set of chemically diverse structures. This enhanced
transferability is in parts due to the adoption of a so-called
atomistic perspective, Schütt et al. (2019) which assumes, that
extensive properties (e.g., energy) can be expressed as the sum
of single atom contributions. To create suitable inputs for
the NNP, the Cartesian coordinates are mapped to atomic
environment vectors (AEV) which reflect the local atomic
environment in a unique and roto-translationally invariant
way. Behler (2011) Consequently, ANNs are superior in
extrapolating to yet unseen data, especially to larger systems,
than they were trained on. This opens the possibility to create
universal NNPs, that yield chemically accurate predictions over
a wide range of chemical space and do not need to be
reparametrized for narrow groups of molecules, as is often the
case with classical force fields.

One of the most successful freely available, open-source NNPs to
date is ANI (ANAKIN-ME, Accurate NeurAl networK engINe for
Molecular Energies), which was initially trained on molecules
containing the elements C, H, N and O Smith et al. (2017) but
was later extended to include S as well as the halogens F and Cl in the
second generation ANI-2x. Devereux et al. (2020).

2.2 Setup of the simulation cells

For 3D-HNU5, the unit cell information reported by Guan and
coworkers Guan et al. (2019) was employed as a starting point, to
generate an orthorhomibic 2 × 2 × 2 supercell, with optimized cell
parameters a = b = 31.62Å, c = 36.94Å. The latter correspond to a unit
cell with dimensions a = b = 15.81Å, c = 18.47Å, which compares
favorably to the experimental values of a = b = 15.143488Å, c =
19.967805Å.

In case of HEX-COF1, the source publication Alahakoon et al.
(2016) did not include any structural data, but information about the
associated lattice parameters. Based on this information, the unit cell
could be constructed from scratch using GaussView 6.0.16
Dennington et al. (2019) to replicate the provided structural
depictions Alahakoon et al. (2016). Next, a 2 × 2 × 6 supercell
containing 8 channels with the optimized cell parameters being
a = 34.12Å, b = 29.80Å, c = 31.64Å was generated.

2.3 Preliminary assessment of the host-gas
interaction

To gauge the general ability of ANI-2x to adequately reflect the
molecular species and their governing interactions, a series of
preliminary calculations was performed. In particular, the
interaction energy between both 3D-HNU5 (unit cell) and HEX-
COF1(1 × 1 × 3 supercell) and a single CO2 molecule was calculated
with a wide array of computational methods in addition to ANI-2x.
The list includes also increasingly successful density functional tight
binding (DFTB) approaches in addition to different density
functionals, most of which are many orders of magnitude more
expensive than the ANI-2x framework. With each of the methods,
the structure of the pristine COF, a single CO2 molecule, and the
CO2@COF system was optimized and the interaction energy
calculated according to Eq. (1).

Eint � ECOF+CO2 − ECOF − ECO2 (1)
Further it was ensured, that the system size is adequate to avoid

artificial CO2—CO2 interactions across the periodic boundary (see
Section 1.2, Supporting Information).

2.4 Simulation protocol

All conducted simulations were performed using the velocity-Verlet
algorithm Leach (2001); Jensen (2017) to integrate the equations of
motion in conjunction with the neural network potential (NNP) ANI-
2x employed to execute the energy and force calculations, while
applying periodic boundary conditions in all three spatial
dimensions. In all simulations, bonds containing hydrogen atoms
were constrained to the ensemble average determined from initial
simulation trajectories using the SHAKE/RATTLE Ryckaert et al.
(1977); Andersen (1983) algorithms. This enables an increase of the
simulation time step to Δt = 2.0 fs. The ensemble averages for each of
the two systems were determined based on a 50ps sampling run under
NPT conditions, at 298.15K and 1.013 bar. In both systems aromatic
and olefinic C-H were set to a different target distance. The resulting
average bond lengths along with their respective standard deviation1 are
listed in Table 1.

For thermostatization the Berendsen weak-coupling thermostat
Berendsen et al. (1984) with a relaxation time τ = 0.1 ps was
employed. For pressure control, a Monte-Carlo (MC) based
manostat Åqvist et al. (2004) was employed, where every 50 fs (=

TABLE 1 Ensemble average bond distances used to constrain bonds containing
aromatic and olefinic hydrogen atoms for both 3D-HNU5 and HEX-COF1.

C-Hole/Å C-Har/Å

3D-HNU5 1.100 162 9 (10) 1.090 149(3)

HEX-COF1 1.103 027 7(8) 1.090 839(4)

1 The number of significant figures was chosen in accordance with the
obtained standard deviation.
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25 MD steps) a trial Monte-Carlo volume change is performed. The
maximum trial step size |ΔVmax|

V is initializedwith 1e-4 and adjusted every
10 MC steps based on a target acceptance ratio set to 30%. Further,NPT
simulations of both systems were calculated XY-isotropically, i.e., the
simulation cell lengths along the X- and Y-axis were only permitted to
vary collectively, but independently of the cell length in Z-direction.

A sampling frequency of 25 MD steps (50 fs) was used for all
sampling runs. For 3D-HNU5 Guan et al. (2019) and HEX-COF1
Alahakoon et al. (2016), the empty system was first equilibrated
under NVT conditions at 298.15 K for 100 ps and subsequently
under NPT conditions at 298.15 K and 1.013 bar for 500 ps, using a
time step of 0.5 fs.

To investigate the carbon dioxide adsorption capabilities of both
3D-HNU5 and HEX-COF1, CO2 molecules were incrementally
introduced into the pre-equilibrated host structure. Each of the
generated systems with distinct composition (cf. Table 2) was
studied at a wide range of temperatures, i.e. 223.15–348.15 K in
25 K increments, in the case of HEX-COF1 also 198.15 K was
included (see Supplementary Table S1, Supporting Information).

For 3D-HNU5, each combination of composition and temperature
was first equilibrated at the target temperature for 0.5 ns, followed by
1ns equilibration under a constant pressure of 1.013 bar. Finally, 3.5 ns
sampling runs under NPT conditions were conducted.

For HEX-COF1 a different scheme was adopted, as under NPT
conditions for temperatures T > 298.15 K the individual layers of the
COF tend to move relative to each other within the XY-plane leading
to a misalignment of the different layers. This is in line with the
conjecture, that the missing face-to-face π stacking interaction of the
phenyl groups in HEX-COF1 could result in reduced interlayer
adhesion Alahakoon et al. (2016). To avoid this undesired

behaviour, for each individual composition, the system was
equilibrated for 100 ps under NVT conditions at 298.15 K,
followed by 400 ps under NPT conditions at 1.013 bar.
Subsequently, the system was heated to the different target
temperatures and left to equilibrate for 0.5 ns under NVT
conditions. Finally, 3.5 ns sampling runs under NVT conditions
were conducted.

2.5 MDDF analysis

To achieve a better understanding of the interactions between
the guest molecules and the host structure, minimum distance
distribution functions Martínez and Shimizu (2017) (MDDFs)
were calculated. MDDFs are a novel analysis method, similar to
radial distribution functions (RDFs). In contrast to the latter,
MDDFs do not describe the relative distribution between pre-
selected atoms of two predefined molecular species, but rather the
relative distribution of minimum distances between any atom of
the considered molecular species. As suchMDDFs more intuitively
reflect actual molecular interactions between complex molecular
species. In addition, these distribution functions can be naturally
decomposed into contributions of individual atoms of either of the
two molecular species, which permits a more detailed view on the
atoms involved in interactions. To successfully apply the MDDF
formalism, initially developed for solvent-solute systems
containing complex solutes, such as biomolecules, to the solid-
gaseous systems investigated in the paper at hand, the following
approach is pursued: i) the COF is used as though it was the
solvent; ii) the solute molecules’ role is taken by gas (CO2)
molecules.

2.6 Pore size distribution

To gain further insights into the properties of the host material,
the associated pore size distributions (PSDs) for HEX-COF1 and
3D-HNU5 were calculated using two different geometric methods.
First, a Monte-Carlo type insertion method based on the work by
Gelb and Gubbins (1998) as implemented in the software PoreBlazer
Sarkisov et al. (2020) was applied. In addition, an approach based on
Voronoi-Tesselation as provided by the Zeo++Willems et al. (2012);
Pinheiro et al. (2013) package was employed.

2.7 Diffusion analysis

As outlined above, the diffusion coefficient D of CO2 in
accordance with the Einstein relation given in Eq. (2) was
determined from the simulation trajectories, with d being the
dimensionality of the system, r0 and rt correspond to the
positions of the centre of mass of a CO2 molecule at the time
origin and time t, respectively.

D � 1
2d

lim
t→∞

〈‖rt − r0‖2〉
t

(2)

For the calculation of these auto-correlation functions the full
3.5 ns trajectory of a given composition at a given temperature was

TABLE 2 Simulated compositions of the gas@host systems considered in case
of 3D-HNU5 and HEX-COF1.

n (CO2)total n (CO2)/pore w% CO2

3D-HNU5 1 - 0.6

2 - 1.3

4 - 2.6

8 - 5.2

16 - 10.4

24 - 15.6

32 - 20.7

64 - 41.5

128 - 82.9

HEX-COF1 8 1 2.1

16 2 4.2

32 4 8.5

64 8 17.0

80 10 21.2

96 12 25.5

128 16 34.0
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analyzed with a large running correlation length of 75 ps and a
window gap of 50 fs. Further, for the three-dimensional 3D-HNU5
system the total diffusivity was determined, whereas for the layered
two-dimensional HEX-COF1 only the diffusion along the columnar
pore, i.e., in z-direction, was analyzed, as the spatial confinement
renders diffusion in the xy-plane insignificant. To ensure that the
data used for the determination of the self-diffusivity corresponds to
motion in the diffusive regime, the linear regression was fitted only
to the last 100 data points (5 ps) of a correlation interval. For each
composition, the resulting diffusion coefficients were then used to
calculate the average activation energy of diffusion according to

ln D( ) � −Ea

R

1
T
+ ln D0( ) (3)

with R, Ea and D0 being the molar gas constant, the associated
average activation energy, and the pre-exponential factor,
respectively. Finally, for both COF systems, the calculated
activation energies were analyzed, as a function of composition.

3 Results and discussion

3.1 Space group of HEX-COF1

The publication introducing the HEX-COF1 Alahakoon et al.
(2016) system reports, based on their results, that its structure
belongs to the space group P6/m. In this structural model the
linking phenyl groups are aligned perfectly perpendicular to the
central benzene moiety. The validity of this structure seems
questionable, considering the fact, that the biphenyl molecule
representing the simplest system containing two linked benzene
rings, is known to be tilted. Almenningen et al. (1985); Grein (2002)
For further investigation, two conformers of hexaphenylbenzene
were used as a model system, with the orientation of the attached
phenyl groups relative to the central benzene ring being perfectly
perpendicular and slightly tilted, respectively. Both structures were
subject to geometry optimization, followed by the calculation of the
vibrational frequencies using the B3LYP/6-31++G (d,p) level of
theory (cf. Supplementary Figure S1, Supporting Information). The
optimized structure with a 90° dihedral, mirroring HEX-COF1 in the
P6/m space group, showed two imaginary vibrational frequencies,
confirming the structure to be a (second-order) saddle point on the
energy landscape rather than a minimum. The structure considering
tilted phenyl groups, corresponding to HEX-COF1 in the P6 space
group, converged to an average dihedral angle between the aromatic
rings amounting to approx. 68.3° and showed no imaginary
vibrational frequencies, confirming it to be an energetic
minimum. Consequently, this finding suggests, that HEX-COF1
is also likely to exist in the lower symmetry P6 space group.

3.2 Preliminary assessment of the host-gas
interaction

As mentioned above, the interaction energy between both
HEX-COF1 and 3D-HNU5, and a single CO2 molecule was
determined with an array of established DFT and DFTB
methods, in order to warrant the suitability of applying the

NNP ANI-2x to these systems prior to the execution of the MD
simulations. The resulting data (see Figure 2) suggests, that for 3D-
HNU5 the NNP results are well within the margin of uncertainty,
observed for established computational methods, even more so
considering the unprecedented computational efficiency. On the
other hand, in case of HEX-COF1 ANI-2x finds a too low
interaction energy. In contrast to ANI-2x, all reference methods
predict a more favourable guest-host interaction in HEX-COF1
than in 3D-HNU5. Also, the standard deviation of the interaction
energies produced by all reference methods (excluding B3LYP/D3)
is approx. 3 times larger for HEX-COF1 than for 3D-HNU5. This
suggests, that in the CO2@HEX-COF1 system a certain type of
interaction is present, that the used reference methods incorporate
to a varying degree, leading to a larger spread of the calculated
interaction energies. Considering that the interaction site in HEX-
COF1 and 3D-HNU5 contains the same azine-based linker units,
the fact that ANI-2x displays the smallest deviation of 5.7 kJ ·mol-1

appears quite promising nonetheless.

3.3 Structural deformation in 3D-HNU5

In case of 3D-HNU5 a distinct structural deformation upon
exposition to external stimuli is observerd, in particular adsorption
and temperature. This kind of behaviour has been reported for
microporous materials with flexible molecular composition Gor
et al. (2017), especially certain MOFs including MIL-53 Li et al.
(2011); Coudert et al. (2013); Bakhshian and Sahimi (2018) and
MIL-88 Coudert et al. (2013); Bakhshian and Sahimi (2018). To that
effect, the structure of 3D-HNU5 is both highly flexible and very
much dependent on i) the concentration of CO2 molecules present
and ii) the applied simulation temperature. That is, for CO2

concentrations approaching and exceeding the experimentally
determined maximum uptake capacity, the structure of the COF
tends to be well-formed and highly symmetric with little variation in
the pore diameter, while for lower concentrations of CO2 molecules,
the framework exhibits a deformation, in which always two linkers
congregate, and the two adjacent, formerly equally sized pores, form

FIGURE 2
Interaction energies of 3D-HNU5 (unit cell) and HEX-COF1 (1 ×
1 × 3 supercell) with a single CO2 molecule.

Frontiers in Chemistry frontiersin.org05

Kriesche et al. 10.3389/fchem.2023.1100210

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1100210


a smaller and a larger pore. For the CO2 concentrations, that mark
the border between the symmetric and the deformed structural
motif (i.e. 10.4, 15.6, 20.7 w%) the extent, to which the deformation
is present, correlates with the applied simulation temperature, with
lower temperatures favouring the symmetric and higher
temperatures the deformed structure (see Figure 3).

3.4 MDDF analysis

Various publications investigating CO2 adsorption in covalent
Guan et al. (2019); Alahakoon et al. (2016); Pyles et al. (2016); Zhao
et al. (2013); Huang et al. (2015) and metal organic frameworks
Masoomi et al. (2014) suggest, that Lewis-basic hetero atoms in
general and diazine linkers as found in HEX-COF1 and 3D-HNU5
in particular, along with a small pore diameter, increase the affinity and
specificity for CO2 adsorption. To obtain further information on the
host-gas interaction, the distribution of CO2 molecules inside each of
the systems at hand was investigated by calculating the associated
minimum distance distribution functions. By utilizing the
decomposability of MDDFs into their atomic contributions, the
involvement of the individual atoms of COF and CO2 in the guest-
host interaction was investigated at multiple temperatures and CO2

concentration. The resulting MDDFs for 3D-HNU5 and HEX-COF1
are depicted in Figure 4, 5, respectively. Concerning the atoms of the
COFs, the contributions of the N and C atoms are negligible for all
investigated temperatures and CO2 concentration, for 3D-HNU5
almost vanishing, while the contributions of the hydrogens
predominate. With regard to the individual atoms of the CO2

molecules, the contributions of the oxygen atoms account for the
bigger part of the intermolecular interaction. The contributions of
the carbon atoms are generally very small except for 3D-HNU5 at
273.15 K and low CO2 concentration, where the carbon atoms of CO2

account for a non-negligible, albeit overall minor contribution. In
summary, the calculated minimum distances show, that for both
systems the main guest-host interactions are found between
hydrogen atoms of the COF structure and oxygen atoms of the
individual CO2 molecules.

As this finding is in stark contrast to the above-mentioned
sentiment that interactions with the azine groups are prevalent, a
more detailed analysis was performed. Specifically, the hydrogen
contribution to the MDDF was further split into groups of
equivalent hydrogens, yielding a contribution for every
topologically unique hydrogen of the azine linker. Figure 1A
illustrates the numbering scheme used within this article to
identify topologically unique hydrogens of the azine linker.

The resulting contributions to the total MDDF of the individual
H atoms are shown in contour plots in Figure 6. For HEX-COF1 this
approach identified, that the most significant contributions stem
from the olefinic hydrogens next to the azine group (H5 and H6 in
Figure 1A). Consequently, this finding does not contradict the initial
assumption, that the azine group plays an important part in the
intermolecular interaction. Rather this result fortifies the
assumption, as it stands to reason, that the introduced effect of
the azine group is not mediated via direct interaction but rather
indirectly via polarization of the associated methine groups.

In case of 3D-HNU5, the calculated MDDFs also show, that the
contributions of the nitrogen atoms are insignificant, and the
hydrogen atoms are responsible for the major part of the
interactions between guest molecules and host system (see
Figure 4). Closer inspection of the contributions of the individual
involved hydrogen atoms reveals, that in contrast to HEX-COF1 a
larger number of distinct hydrogen atoms contributes to the total
MDDF. While hydrogens 5 and 6 still show a dominant contribution,
they can not be identified as the mainmodality of interaction between
CO2 and the 3D-HNU5 material. In contrast, the dominating
contribution originates from hydrogens 2 and 9, which can still be
considered in vicinity of the azine group. In any case it seems plausible
that these hydrogen atoms are still electronically under strong
influence of the azine group, especially considering the conjugated
nature of the entire linking unit.

Certainly, these different hydrogen contributions observed in case
of HEX-COF1 and 3D-HNU5 involved in the interactions with CO2

guest molecules seems surprising, considering that they are composed
of identical linkermoieties. However, the observed deviationmay be the
result of their differences in structure and flexibility. In the three-
dimensional 3D-HNU5, the linkers connect a single carbon atom
forming the central unit and as such the linkers are arranged in a
tetrahedral geometry with two linkers enclosing an angle of approx.
109.5°. This comparably large angle renders all linker hydrogen atoms
well accessible. In contrast, in the planar HEX-COF1 the azine linkers
connect benzene central moieties, with two linkers spanning an angle of
60° rendering the terminal hydrogen atoms (H1, H3, H8 and H10 in
Figure 1A) significantly less exposed.

Although the polar azine groups seem to influence the CO2

adsorption in both systems, the experimentally determined
maximum CO2 uptake capacities diverge. Consequently, it stands

FIGURE 3
Comparison of 3D-HNU5 structures in two-fold interpenetrated
diamond topology loaded with 10.4 w% CO2, (A) at 77.15 K, (B) at
273.15 K. Each bond represents an entire azine linking unit, that
connects two central carbon atoms.
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to reason, that there are more factors to be considered, one of which
certainly is the pore size. To this effect, the publication introducing
HEX-COF1 Alahakoon et al. (2016) suggests, that the reported,
excellent CO2 adsorption capacity of 20.0 w%may, in addition to the
favourable effect of the azine groups, be further enhanced by the
small pore diameter of 1.1 nm. However, for 3D-HNU5, which
contains the same azine linkers and is reported to have a similarly
small pore diameter of 1.0 nm, the experimentally reported CO2

adsorption capacity of 12.3 w% is significantly decreased Alahakoon
et al. (2016); Guan et al. (2019), i.e., although both presented COFs
display both features, the adsorption capacities diverge significantly.
One possible explanation could be the fact that both measurements

are conducted by two distinct research groups, which might reduce
the ultimate comparability of the data sets. In addition, further
governing influences such as the difference between the respective
2D and 3D frameworks can be expected to further influence the
binding properties, e.g., the spatial proximity of azine units in HEX-
COF1 display cooperative effects in CO2 binding compared to the
isolated azine units in 3D-HNU5.

Considering, that the experimentally determined pore size
distributions of both COF systems result from N2 adsorption
isotherms at 77.15 K and the determination of the adsorption
capacity was carried out at 273.15 K, in the following the
temperature dependence of the pore size in both systems is investigated.

FIGURE 4
MDDFs obtained for 3D-HNU5 at various conditions, (A, B) 273.15 K and high CO2 concentrations (16 CO2), (C, D) 273.15 K and low CO2

concentrations (4 CO2), (E, F) 223.15 K and high CO2 concentrations (16 CO2), split into contributions of (A, C, E) COF atoms, and (B, D, F) CO2 atoms.
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3.5 Pore size distribution

To further examine the quality of the simulation results
and especially how well they correspond to experimental data,
the associated pore size distributions (PSDs) were calculated
using two different geometric methods. To generate a
representative distribution, 100 geometries equally spaced in time
were drawn from a 1.0 ns equilibrated simulation at the target
temperature and the associated PSDs averaged. Figure 7 depicts a
comparison of the PSDs for both investigated systems calculated via
both geometrical methods at 77.15 K and 273.15 K with the

experimental reference data at 77.15 K. The experimental PSDs
are only presented up to a pore size of 20 Å, because peaks larger
than that do necessarily arise frommesoscopic effects that can not be
represented in modestly sized unit cells.

It can be noted that for 3D-HNU5 at 77.15 K the agreement
between the experimental and calculated PSD is remarkably good,
pointing towards an average pore radius of approx. 10 Å. At 273 K the
maximum in the calculated PSD is shifted to approx. 16 Å which
reflects the temperature dependent structural deformation mentioned
earlier (cf. Section 3.3). Consequently, this finding suggests, that the
experimental PSD may not reflect the properties of the material under

FIGURE 5
MDDFs obtained for HEX-COF1 at various conditions, (A, B) 273.15 K and high CO2 concentrations (8 CO2/pore), (C, D) 273.15 K and low CO2

concentrations (2 CO2/pore), (E, F) 223.15 K and high CO2 concentrations (8 CO2/pore), split into contributions of (A,C,E) COF atoms, and (B, D, F) CO2

atoms.
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the conditions the adsorption experiments were carried out being
273.15 K. Furthermore, this challenges any rationalizations of the
experimentally observed adsorption behaviour based on the PSD
measurements. The fact, that the experimental PSD shows a second
peak at approx. 6 Å with no calculated complement may be due to
experimental ormethodological shortcomings or inherent limitations of
the MD framework. In this context, the second peak visible in the
experimental PSD might stem from an irregular mesoscopic structure,
i.e., parts exist e.g., in a 3-fold interpenetrated or non-interpenetrated
diamond topology, instead of the prevalent 2-fold interpenetrated one.
Unfortunately, these effects can not be represented in modestly sized
simulation cells.

Furthermore, for the estimation of the PSD from the measured
adsorption isotherms non-local DFT (NLDFT)was used in conjunction
with a kernel based on the infinite slit-pore model geometry. To this
effect, the bipartite nature of the experimental PSD of 3D-HNU5 may
be an artifact from the NLDFT based estimation, which have been
reported in the range < 1 nm and have been attributed inter alia to the
homogeneous surface model used Cornette et al. (2020). As shown by
Kupgan et al. Kupgan et al. (2017), even for computationally simulated
adsorption isotherms, consequently excluding experimental factors,
pore size distributions based on the slit-pore model show alarming
deviations from the associated geometrical PSDs for a wide range of
microporous chemical systems, questioning the application of the
former without careful validation.

For HEX-COF1, the calculated PSDs at 77.15 K and 273.15 K are
almost indistinguishable and show a single maximum at approx.
7 Å, whereas in the experimentally determined PSD approx. 11 Å
can be identified as most prevalent pore size. Both software
packages, PoreBlazer and Zeo++, conceptually determine the
maximum pore size by calculating the largest sphere, that a given
pore can accommodate. Thus, it seems plausible that for pore
geometries with triangular cross-section, as present in HEX-
COF1, the obtained value of approx. 7 Å is slightly lower
compared to a rough estimate based on the side length of the
cross-sectional triangle2, corrected for van-der-Waals radii,
amounting to approx. 12 Å. Further, the experimental PSD for
HEX-COF1 was estimated from the adsorption isotherms via the
infinite slit-pore model, and unfortunately it remains unclear how
reliably the latter can be applied to this uncommon pore shape.
Further, in the experimental adsorption measurements for both
HEX-COF1 and 3D-HNU5, N2 at 77 K was used as probing gas,
which is known to exhibit specific interactions with polar functional
groups in the sorbent due to its quadrupole moment. Consequently,
IUPAC recommends Ar at 87 K for the characterization of

FIGURE 6
Contour plots of H-contributions to the total MDDF at 273.15 K, (A)HEX-COF1 with 8 CO2/pore, (B)HEX-COF1 with 2 CO2/pore, (C) 3D-HNU5 with
16 CO2, (D) 3D-HNU5 with 4 CO2 (see Figure 1A for labelling of the azine linker hydrogens).

2 The diameter of a circle inscribed in a triangle is d � 2 ·
�����������
(s−a)(s−b)(s−c)

s

√
,

where s � a+b+c
2 . Thus for a = b = c = 12: d = 6.93.
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micropores in sorbents that contain polar surface moieties
Thommes et al. (2015), e.g., MOFs as well as certain COF systems.

Upon comparison of the calculated PSDs, the temperature
dependent deformation of 3D-HNU5 is clearly visible, while in
the rigid HEX-COF1 structure the temperature has little influence
on the calculated pore size. Further, it is immediately obvious, that
the individual PSDs calculated from frames of the simulation
trajectory show hardly any variation in the case of HEX-COF1.
For 3D-HNU5, however, the averaged PSDs have a large standard
deviation, which again highlights the pronounced structural
flexibility in this case compared to the rigid HEX-COF1.

3.6 Diffusion analysis

The diffusion coefficients of the guest molecules have been
determined from the simulation trajectory via the Einstein-
Smoluchowski relation considering both variations in
concentration and temperature. The respective Arrhenius plots
for HEX-COF1 and 3D-HNU5 are depicted in Figure 8A, C.

Generally, both Arrhenius plots show the expected behaviour of
an exponential decrease of the diffusion coefficients relative to the

inverse temperature. Moreover, a decrease of the diffusivity upon
increasing concentration of guest molecules is observed. In general,
the fact that the Arrhenius plots for 3D-HNU5 are less smooth is
likely related to the circumstance, that the NPT ensemble was
sampled as opposed to the NVT ensemble in the case of HEX-
COF1. Further, for 3D-HNU5 two outliers are observed for 8 CO2

molecules at 273.15 K and 16 CO2 molecules at 323.15 K. However,
also by drastically increasing the equilibration time, these data
points did not change significantly. Additionally, the sampling
quality is inherently worse for lower numbers of present guest
molecules as expected and consequently the data for 1, 2, and
4 CO2 molecules is not clearly separated.

In the case of HEX-COF1, the activation energies for 1 and
3 CO2 molecules per pore are too large compared to the remaining
data points. The fact that these data points are the only ones
corresponding to systems with an odd number of guest
molecules per pore suggests the presence of a particular type of
interaction in the guest-host system, that is favourable only for an
odd number of CO2 molecules. The activation energies EA
determined for both examined systems as a function of CO2

content (Figures 8B, D) show a sharp initial increase up to
certain loading followed by a gradual decrease.

FIGURE 7
Comparison of the PSDs determined via the respective pore volume gradient as a function of pore radius, calculated with (A, C) Zeo++ and (B, D)
PoreBlazer at 77.15 K and 273.15 K with the PSD determined from adsorption experiments at 77.15 K for (A, B) 3D-HNU5 and (C, D)HEX-COF1. The figure
shows the calculated average μ enclosed by the interval μ ± σ, as well as the range of the y values for a given pore size [ymin, ymax] indicated via the color
shading. For HEX-COF1, the PSDs at 273.15 K are shifted up, since the data at both temperatures are almost indistinguishable.
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At low concentrations, each CO2 molecule has a multitude of
vacant binding sites nearby, which can be expected to encourage
diffusion. The initial increase in activation energy of diffusion also
suggests, that the interaction of a single CO2 molecule further
favours the adsorption of additional guest molecules.
Mechanistically, this may be mediated via intramolecular charge
transfer and although the NNP ANI-2x does not explicitly take such
varying partial charges into account, one may assume, that due to
the training to data produced with the DFT functional ωB97X this
effect is implicitly reflected.

As more CO2 molecules are introduced, the number of diffusion
facilitating vacant sites declines which is reflected in an increase of
the activation energy of diffusion. The behaviour of increased
favourability is observed as long as free interaction sites are
available. Adding further CO2 molecules after all interaction sites
are occupied, leaves free CO2 molecules, that diffuse very easily and
compete with bound guest molecules for the available binding
positions, which is clearly reflected by the decrease of the
activation energy of diffusion for larger CO2 concentrations,
resulting in the exhibition of a maximum in Figures 8B, D.

The maxima of the activation energy in Figures 8B, D are
observed at 24 CO2 molecules (15.6 w%) and 10 CO2 molecules
per pore (21.2 w%) for 3D-HNU5 and HEX-COF1, respectively.
Interestingly, this data is in very good agreement with the

empirically determined CO2 uptake capacity of 12.3 w% CO2 and
20.0 w% CO2, obtained from the measured adsorption isotherms at
pressures up to 1.0 bar and 1.0 atm respectively, supporting the
findings of this work.

4. Conclusion

To conclude, this work was able to demonstrate, that the NNP
ANI-2x is suitable to adequately describe macromolecular structures
such as COFs, as well as their interaction with CO2 guest molecules
although these systems were not explicitly considered in the
training. However, noteworthy limitations include the inability to
model macroscopic effects entailed by the simulation on a molecular
scale as well as the difficulties to quantitatively reflect the CO2-COF
interaction energy with ANI-2x, observed in the case of HEX-COF1.
In consideration of the comparison of the PSDs, it remains unclear
whether the observed deviations can be ascribed to limitations in the
experimental or theoretical protocols. Nevertheless, it can be
concluded that the ANI-2x NNP facilitates the calculational
treatment at approx. DFT accuracy and force field cost.
Essentially, the key innovation presented in this study is the
application of a DFT-based neural network approach with a
suitable MD simulation protocol enabling the treatment of a

FIGURE 8
Arrhenius plot of CO2 diffusion in (A) 3D-HNU5 and (B)HEX-COF1. Activation energy of CO2 diffusion in (C) 3D-HNU5 and (D)HEX-COF1. The CO2

count in the legend of (C) and the label on the x-axis of (D) refers to the CO2 content per pore.
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(comparably) large system for very long simulation times providing
access to correlated properties in the long-time limit which in this
case is the diffusion coefficient. In particular, the outstanding
efficiency is illustrated by the extensive overall simulation time
amounting to more than 0.4 µs, which is impossible to achieve
with DFT methods.

Further this project developed a workflow, that facilitates the
estimation of the maximum CO2 adsorption capacity, which
reproduced the experimental results astonishingly well. Also, this
method is easily generalizable to other host systems as well as
different guest molecules and as such can be used to predict
maximum adsorption capacities of a variety of systems and as
such guide further experimental work.

Additionally, this work illustrates, that MDDFs can be a useful
tool in understanding the nature of interactions in host-gas
systems, revealing similarities but also major differences
between HEX-COF1 and 3D-HNU5 in host-CO2 interactions,
the latter of which are likely attributable to the differences in
structure.
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