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The ultimatemicroscope, directed at a cell, would reveal the dynamics of all the cell’s
components with atomic resolution. In contrast to their real-world counterparts,
computational microscopes are currently on the brink of meeting this challenge. In
this perspective, we showhow an integrative approach can be employed tomodel an
entire cell, the minimal cell, JCVI-syn3A, at full complexity. This step opens the way
to interrogate the cell’s spatio-temporal evolution with molecular dynamics
simulations, an approach that can be extended to other cell types in the near future.
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Introduction

Biomolecular functions emerge from the molecular interactions taking place in cellular
environments. Understanding each component’s role in driving cell function poses an immense
challenge. For a long time, experimental techniques have been our main window into the
cellular environment. By resolving biomolecular structures and probing the dynamics of
biomolecular processes, both in vivo and in vitro, researchers have developed a global
understanding of how a cell functions.

A limitation of these experimental techniques is the spatio-temporal resolution that they
can probe, particularly within the complex and crowded environment of the cell. Molecular
dynamics (MD) simulations provide a suitable alternative approach, covering the relevant
length and timescales at molecular resolution, albeit over short periods of a cell cycle. Over the
past decades, MD has matured into a powerful tool that functions as a computational
microscope (Lee et al., 2009; Dror et al., 2012). With the advances in available computer
power, including the transition from using central processing units (CPUs) to graphical
processing units (GPUs), the complexity and the spatio-temporal scales of MD simulations
have increased remarkably. State-of-the-art simulations, containing hundreds of millions of
atoms, include dynamic models of a photosynthetic chromatophore vesicle (Singharoy et al.,
2019), the nuclear core complex (Mosalaganti et al., 2022), the membranes of a mitochondrion
(Pezeshkian et al., 2020), the bacterial cytoplasm (Yu et al., 2016), and a virus particle embedded
in a nanoscale aerosol droplet (Dommer et al., 2022). The natural next step is, arguably, the scale
of entire cells (Bhat and Balaji, 2020; Khalid and Rouse, 2020; Luthey-Schulten et al., 2022;
Thornburg et al., 2022).

Creating a whole-cell model has long been a major goal in computational modeling. A
computational cell will help us to resolve a more integral picture of how biomolecular
interactions drive cell function since biomolecular processes operate on a hierarchy of
interconnected scales. Thus, resolving the full cell function requires a holistic approach.
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The current state-of-the-art uses static representations of
heterogeneous cell-scale structures such as cellPACK (Johnson
et al., 2015; Maritan et al., 2022), genome-scale well-stirred
reaction models for metabolism (Karr et al., 2012; Macklin et al.,
2014; Karr et al., 2015; Breuer et al., 2019; Macklin et al., 2020), or
mesoscale kinetic models that attempt to include both structural and
chemical states of the cell such as Lattice Microbes (Roberts et al.,
2013). These computational techniques, despite granting impressive
insights into the complexity of cellular processes, are limited by the
spatial resolution they can achieve.

Constructing whole-cell models requires the integration of a large
amount of experimental data, i.e., relies on an integrative modeling
approach (Bonvin, 2021; Luthey-Schulten, 2021; Gupta et al., 2022).
Obtaining such data with high spatial and dynamic detail, particularly
in living cells, is very challenging, but exciting progress is being made
in elucidating the architecture and stoichiometry of cellular
components at unprecedented resolutions (Reading et al., 2017;
Ando et al., 2018; Cheng, 2018; Chorev et al., 2018; Christie et al.,
2020; Lorent et al., 2020; Narasimhan et al., 2020; Wietrzynski et al.,
2020; Štefl et al., 2020), setting the stage for spatially detailed
simulations of whole cells. To showcase this possibility, we
consider one of the simplest cells known to date: the minimal cell
created by the J. Craig Venter Institute (Hutchison et al., 2016), a
stripped-down version of aMycoplasma bacterium. The current strain,
named JCVI-syn3A (Syn3A), contains only 493 genes and is still able
to replicate independently (Breuer et al., 2019). This cell is particularly
amenable to detailed computational modeling because it is of relatively
small size (measuring 400 nm in diameter), and its precise
composition has largely been resolved (Breuer et al., 2019).

Here we present our ongoing effort to simulate Syn3A using the
Martini coarse-grained (CG) force field (Marrink et al., 2022). The
Martini force field employs a four-to-one mapping scheme, where up
to four heavy atoms and associated hydrogens are represented by one
CG bead. This reduction in the number of particles in the system,
together with a smoothening of the potential energy surface, speeds up
the simulations by about three orders of magnitude, enabling
simulations of systems that approach the size of entire cells. In the
case of Syn3A, about 550 million CG particles are required,
corresponding to more than six billion atoms.

In the remainder of this work, we first describe the set of tools
needed to construct a system as complex as an entire cell at theMartini
level (the Martini “ecosystem”), including a description of the stepwise
procedure to construct a starting model for Syn3A, from building the
chromosome and modeling the cytoplasm to the addition of the cell
envelope. We end with the prospects of actually simulating this model
and discuss the potential future avenues of simulating entire cells. The
integrative modeling workflow is schematically depicted in Figure 1.

Building cells with the Martini ecosystem

Modeling cellular environments using a coarse-grained approach
requires the use of a force field that incorporates enough detail to
represent all biomolecules and their interactions explicitly. In this
regard, the Martini force field is an excellent candidate, as
demonstrated by the wide range of application studies using
Martini over the past 2 decades (Marrink et al., 2022).
Additionally, parameters for a large variety of biomolecules are
already available, including proteins (de Jong et al., 2013), lipids

(Wassenaar et al., 2015), polynucleotides (Uusitalo et al., 2015;
Uusitalo et al., 2017), carbohydrates (López et al., 2009; Grünewald
and Punt, 2022) and metabolites (Sousa et al., 2021; Alessandri et al.,
2022). A curated collection of all parameters is available from the
Martini Database (Hilpert et al., 2022).

Accompanying the Martini force field is a collection of tools that
compose the software side of the Martini ecosystem (Figure 1). The
primary goal of this software suite is to facilitate the construction of
topologies and initial coordinates for running CG Martini MD
simulations. The Martini ecosystem is currently being extended
around a central framework, named Vermouth. Making use of a
graph-based description of molecules, Vermouth implements a
unified handling of processes frequently used in Martini, such as
topology and coordinate generation or resolution transformation, as a
lightweight python library (Kroon et al., 2022).

Proteins comprise the bulk of a cell’s organic material, composing
approximately 40% of the total intracellular volume (Ellis andMinton,
2003). The number of unique proteins expressed by the cell, i.e., the
proteome, can range from a few hundred to several thousand.
Consequently, describing realistic cellular environments requires
generating topology files for proteins of varying shapes and sizes as
well as packing these into a highly crowded solution. Martinize2,
which is built on top of Vermouth, is designed for high-throughput
generation of Martini topologies and coordinates for proteins from
atomistic protein structures. The workflow used in Martinize2
additionally performs quality checks on the atomistic protein
structures and alerts to potential problems making it ideal for such
a high-complexity use case (Kroon et al., 2022). To generate dense
protein solutions on a cellular scale as required for whole-cell
modeling, a new software tool, called Bentopy, is currently under
development. It uses an efficient collision detection scheme (Howard
et al., 2016) to generate random packings of proteins and protein
complexes within volumetric constraints. Furthermore, functional
annotations of proteins can be integrated into the algorithm,
biasing their spatial distribution in the cytosol based on their
known biochemical function.

Constructing coordinates and input files for chromosomal DNA
presents another challenge for modeling of a whole cell. Even for a
comparatively small genome as that of JCVI-syn3A, approaches that
rely on reading input coordinates and forward mapping such as used
in Martinize2, become too inefficient due to the sheer size of the
molecule. Instead the Polyply software, which was originally developed
to efficiently setup general polymeric systems, can be used (Grünewald
et al., 2022). Within Polyply, a multiresolution graph-based approach
is used to efficiently generate polymer topologies, in particular for
DNA, only from the sequence. In addition to topologies, system
coordinates can be generated using a specialized biased random
walk protocol. This tool of the Martini ecosystem has successfully
been applied to model dense polymer melts and simple ssDNA viral
chromosomes. At the moment, the package is being extended to
handle double-stranded nucleic acids, and generate more complex
DNA structures such as bacterial chromosomes.

Lastly, modeling lipid membranes has historically been a leading
application of the Martini force field (Marrink et al., 2019). Simulating
arbitrarily complex membranes of various sizes, geometries, and
lateral heterogeneities is facilitated by TS2CG (Pezeshkian et al.,
2020). This tool implements a backmapping algorithm that
converts triangulated surfaces into CG membrane models. As a
result of the method’s high level of control, the curvature-
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dependent lipid concentrations in both membrane leaflets can be
precisely determined by the user. In addition, proteins can be inserted
into the membrane together with their characteristic lipid shells

[i.e., lipid fingerprints (Corradi et al., 2018)], setting the stage for
building cell envelopes.

In the following subsections, we describe the application of the
aforementioned tools to construct a proof of principle whole-cell
simulation of Syn3A, illustrating how the current Martini
ecosystem enables users to study multi-component systems at the
mesoscale.

Chromosome building

The minimal genome of JCVI-syn3A contains 493 genes and is
encoded in a single circular chromosome of 543 kilobase pairs (kbps).
Since the chromosome is contained inside the cell’s cytosol, the
structural organization is heavily influenced by the crowded
intracellular environment. Due to the size and near-uniform
distribution of ribosomes present in the cytosol, the excluded
volume interactions of these protein-RNA complexes are known to
have a significant influence on the nucleoid organization (Mondal
et al., 2011).

The nucleoid structure of Syn3A was previously modeled by
Gilbert et al. (2021) based on the ribosome distribution and cell
boundary determined by cryo-electron tomography. A Monte Carlo
(MC) method grew the chromosome, modeled by a self-avoiding
polygon, on a lattice inside the cell boundary. Each MC step ensured
that no model constraints were violated, resulting in a circular genome
without steric clashes with the ribosomes or cell membrane. The
algorithm was validated by comparing the chromosome conformation
capture (3C) maps of ensembles of simulated nucleoid configurations
with experimental 3C maps. 3C maps show spatial correlations
between chromosomal regions, which are spatially close but can be
distant in the nucleotide sequence. Based on the features in the 3C
maps, we infer that the chromosome is organized more like a fractal
globule with little persistent supercoiling.

Whilst the previous chromosomemodeling approach with a lattice
polymer was tailored to be highly compatible with the whole-cell
simulations using Lattice Microbes, we have subsequently developed a
new method to generate circular chromosomes organized as fractal
globules in a continuum polymer model with 10 bp monomers. The
generated chromosome model is relaxed using Brownian dynamics
and an energy function for modeling dsDNA as a twistable worm-like
chain from (Brackley et al., 2014). In order to connect the
chromosome model to a Martini-level representation, the model is
transformed to a one-bead-per-base-pair resolution by spline
interpolation. Rotation minimizing frames are then constructed
along the chromosomal contour, providing a consistent reference
to which the Martini DNA model can be backmapped (Wang
et al., 2008). After adding an equilibrium twist along the frame’s
tangent vector, Martini base pair templates matching the 543 kbp
genome sequence are positioned along the chromosome following the
local contour reference frame. By performing a short energy
minimization the system is relaxed, resulting in a stable
chromosome structure. The subsequent model consists of 543 kbps,
which at a Martini resolution is equivalent to seven million beads. By
implementing this backmapping procedure in Polyply, we are able to
efficiently generate the coordinates for the chromosome in a force field
agnostic manner. The overall chromosome building takes a matter of
minutes, opening up the possibility of studying larger protein-DNA
complexes like chromatin fibers and Escherichia coli chromosomes.

FIGURE 1
Integrativemodeling workflow for building in silicowhole-cell models.
The initial step consists of collecting experimental data to inform the in silico
modeling. Data from CryoET images [Image from EMD-23661 by Lam and
Villa ref. (Gilbert et al., 2021)], Cryo-EM protein structures and -Omics
experiments are incorporated into our cell models. The second stage in the
workflow concernsmesoscalemodeling. Here a kineticmodel of the whole
JCVI-syn3A [Image ref. (Thornburg et al., 2022) is used to gain quantitative
insights into cellular processes and composition. As part of the final step,
Martini models of the cellular components are generated using tools in the
Martini ecosystem: Polyply, Martinize2, and TS2CG (Image ref. (Pezeshkian
et al., 2020)]. Lastly, Bentopy facilitates the assembly of the individual
molecular components in their appropriate abundances into the final
molecular-resolution whole-cell model.
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The required topology files were generated from the sequence using
the default Polyply methods.

Cytosol modeling

In order to model the cytosol, it is essential to have a complete
picture of the bacterial proteome, including both protein structures
and proteomics counts. The genome reduction leading to Syn3A
limits the number of different proteins that have to be taken into
account by only retaining 452 protein-coding genes. This minimal
genome has been extensively characterized, and only 91 genes
remain without an annotated function. A recent study by
Bianchi et al. (2022) uses computational analyses to further
elucidate the function of uncharacterized genes and work
toward complete functional characterization of the proteome. By
gaining a better understanding of the function of encoded proteins,
we will be able to inform the spatial distribution of proteins in our
whole-cell model.

From the 452 different proteins expressed by Syn3A, 281 are
characterized as cytosolic proteins, 63 as trans-membrane proteins,
42 as peripheral membrane proteins, and the remaining 66 still have
an unknown localization. As part of the computational gene
characterization workflow, Bianchi et al. modeled the protein
structures of the entire proteome using AlphaFold2 (Jumper et al.,
2021).Martinize2 successfully converted all but one of the predicted
protein structures (451) to a corresponding Martini model. Using
Bentopy, the cytosolic protein models are packed into the
intracellular volume alongside the chromosome and ribosomes.
The number of copies of each protein is based on available
proteomics data (Breuer et al., 2019; Thornburg et al., 2022); in
total, around 60,000 proteins were distributed within a spherical
volume with a diameter of 400 nm. Concerning the ribosomes, we
used bacterial homologs that we had already generated previously
(Uusitalo et al., 2017), placing 503 ribosomes in random orientations
near the positions originally determined from the cryo-electron
tomography map (Gilbert et al., 2021). Single-stranded RNA
fragments were not included at this stage.

The next major component of the cytosol are the small molecules
that, together with enzymatic proteins, participate in the metabolic
pathways. In the current model, we include only the metabolites for
which Martini topologies were already available, primarily amino
acids and nucleotide cofactors (Sousa et al., 2021), and which are
present at high concentrations inside Syn3A. The metabolite models
were automatically generated from the topology files using Polyply.
Based on available metabolomic data (Thornburg et al., 2022),
1.7 million metabolites are distributed within the cytosol,
approximately 55% of the metabolite count for the complete
metabolome.

Constructing the envelope

Modeling the cell envelope of the Syn3A is a straightforward
procedure since it is solely composed of a singular cytoplasmic
membrane. Furthermore, experimental measurements indicate the
absence of a cell capsule, drastically reducing the complexity of the
cell boundary. The lipid membrane is constructed using TS2CG with
a uniform lipid mixture across both membrane leaflets. It should be

noted that since the minimal cell acquires membrane components
through lipid synthesis from fatty acids and direct incorporation of
lipids from its environment, the lipid composition of the cellular
membrane heavily depends on the growth medium. We base our
model on the lipidomics data presented by (Thornburg et al., 2022),
indicating the presence of five main lipid types: cholesterol (59%),
sphingomyelin (18%), cardiolipin (17%), phosphatidylcholines
(4%), and phosphatidylglycerol (2%). In the absence of more
detailed lipidomics data, all lipids are modeled with fully
saturated palmitoyl tails. The total lipid count amounted to
1.3 million lipids.

Additionally, we randomly inserted membrane proteins into the
cell membrane using TS2CG. From the available proteomics data, the
number and types of membrane proteins are determined. While
AlphaFold2 structure predictions can be used directly to model
monomeric membrane proteins, experimental crystal structures are
still required for the protein transport complexes. Martinize2 is again
used to generate the Martini models for the membrane proteins. For
simplicity, we selected five abundant protein complexes and
distributed these uniformly over the membrane. In total,
2,200 protein complexes were embedded in the cell envelope,
corresponding with the expected number of membrane proteins
present on the surface of Syn3A.

Solvating and simulating the cell

Having modeled all the cell components, the final step in
constructing a starting structure for subsequent simulation is
defining the periodic simulation box and solvating the system.
Considering the whole-cell model’s spherical shape, a logical
choice for the periodic box is a rhombic dodecahedron. To
solvate, a periodic water box is tiled across the cell model,
removing the water beads that overlap with the model using a
collision detection scheme. The system is neutralized by placing
counter ions near the highly charged components in the cytosol,
i.e., the chromosome and ribosomes; the overall negative charge is
substantial, amounting to 3.2 million elementary charges. As part of
the solvation procedure, we also replace an appropriate number of
water beads with ion beads to establish an ion concentration of
135 mMNaCl across our system, mimicking the experimental buffer.
Thus, we ended up with a system containing 447 million water beads
(208 million inside, 239 outside of the cell), 8.5 million sodium, and
5.3 million chloride ions. Note that Martini CG water beads
represent four real water molecules. The total bead count,
including all biomolecules, adds up to 561 million beads. A
snapshot of the full system is shown in Figure 2.

Having constructed a starting model for Syn3A, the current
challenge is to perform an actual MD simulation. At the time being,
this proved to be non-trivial. Gromacs (Abraham et al., 2015), the
main MD engine to run Martini-based simulations, is having
difficulties handling systems comprising hundreds of millions of
particles, in particular featuring large molecules such as the
genome spread over multiple domains. The Gromacs developer
team is aware of this problem and is dedicated to solving it. Possible
other software engines to consider are ddcMD (Zhang et al., 2020)
and openMM (Eastman et al., 2017), both of which are supporting
Martini and offer simulation speeds comparable to those of
Gromacs.
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Discussion

In the wake of a continuous rise in computing power, MD
simulations have transitioned from studying idealized
representations of biomolecular systems to modeling their full
complexity. The culmination of this development would be
simulations at the level of entire cells. As a proof of principle that
we are ready to meet this challenge, we presented a model of the
complete minimal cell JCVI-syn3A, constructed using the Martini
ecosystem. The final simulation box comprises more than 560 million
CG beads, representing over six billion atoms in the cell (Figure 2).

Before looking at the broader prospects of this endeavor, it is
important to discuss a number of limitations of our approach. The
current model uses the Martini 2 version of the force field since
Martini models for nucleic acids, and other essential cellular
components are still under development for the latest Martini 3
release. However, the methods described in this paper can be
straightforwardly transferred to the latest version of Martini when
validated models become available. With over 800 different bead types
and a recalibrated interaction matrix, Martini 3 offers an improved
framework for CG MD simulations (Souza et al., 2021). Nevertheless,
inherent limitations of Martini, such as an inability to sample protein
secondary conformational changes, remain. We do not anticipate that
such changes are of primary importance in determining the cellular
organization, but details of protein-protein and protein-lipid
interactions might be affected. This problem could perhaps be
resolved by using Go potentials (Poma et al., 2017; Souza et al.,
2019), which are already integrated into Martinize2 and Bentopy.

Even though our in silico cell contains more than 500 unique CG
molecules and thereby presumably qualifies as the most complex

system simulated to date, it simplifies the composition of various
cellular components of Syn3A. Firstly, limited by the availability of
Martini models for the metabolites, only a small subset is currently
included in the cytosol. Future iterations of our whole-cell model will
include Martini models for the complete metabolome, which
comprises about 188 different compounds, and are expected to
benefit from the ongoing development of dedicated automatic
topology builders (Bereau and Kremer, 2015; Potter et al., 2021).
Secondly, since AlphaFold2 was used to predict the protein structures
of the whole proteome, only monomeric structures were initially
available. Essential multimeric proteins like the ribosomes and
membrane-embedded transport complexes are either left out or
represented by homologous proteins with available experimental
crystal structures. In the future, improved protein structure
prediction algorithms will be used that also facilitate the modeling
of multimeric protein structures. In addition, ongoing progress in the
experimental characterization of the Syn3A proteome and lipidome, as
well as the characterization of the spatial distributions of membrane
proteins, will help further increase our model’s realism. A “living” list
of the complete composition of our in silico cell can be found in our
GitHub repository (marrink-lab, 2022).

Another issue is the fine-tuning of the amount of interior solvent
(both water and ions), together with the lipid balance between the
inner and outer leaflet. Previous works on large-scale membrane-
enveloped systems (Pezeshkian et al., 2021; Vermaas et al., 2022) have
shown that finding this balance is a non-trivial task. Unbalanced
systems might experience strong osmotic pressures and membrane
(curvature) stress, causing unwanted shape deformations all the way to
membrane rupture. As a complicating factor, these effects may only
appear after prolonged simulation times. Clearly, dedicated

FIGURE 2
Whole-cell Martini model of JCVI-syn3A. The four stages of cell building are shown on the side. The final system contains 60,887 soluble proteins (light
blue), 2,200 membrane proteins (blue), 503 ribosomes (orange), a single 500 kbp circular dsDNA (yellow), 1.3 million lipids (green), 1.7 million metabolites
(dark blue), 14million ions (not shown) and 447million water beads (not shown) for a total of 561million beads representingmore than six billion atoms. Image
rendered with Blender (Blender Online Community, 2022).
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computational resources are required for the simulation of whole cells
or cell organelles. The forthcoming generation of supercomputers and
simulation software is becoming increasingly efficient, and billion-
particle simulations have already been achieved (Jung et al., 2019;
Castagna et al., 2020).

An important challenge is reaching timescales long enough to allow
meaningful analysis of such large systems. Assuming dedicated computer
time on current infrastructure, we anticipate that we can reach timescales
of the order of 10–100 µs in the foreseeable future. Although this is
typically considered a long enough simulation time for standard system
sizes (e.g., a single membrane protein), it is clear that on the scale of an
entire cell, we will not be able to equilibrate our system; the generated
ensemble of configurations will remain dependent on our starting state.
Equilibration will only happen locally, and multiple replicas will need to
be generated to obtain statistically relevant data. Note that the 10–100 µs
range offers a nice overlap with state-of-the-art experimental techniques.
For example, advanced MINFLUX microscopy from the Hell lab enables
the tracking of particles as small as 1–2 nm for 100 s of microseconds
(Eilers et al., 2018; Schmidt et al., 2021). Besides, Lattice Microbes
simulations of the Luthey-Schulten group (Roberts et al., 2013) use
time steps of the order of microseconds, which allows for a potential
feedback loop between these computational approaches.

Another major limitation is the fact that real cells operate out-of-
equilibrium, driven by the import and export of nutrients and an intricate
metabolic network of chemical reactions. In our approach, which is based
on classicalMD,we do not take this into account.We are therefore limited
to studying non-reactive processes, i.e., those arising from the physical
interactions among the constituents. The current composition of our cell
is based on average concentrations of proteins and metabolites and thus
reflects a steady-state. Coupling our classic approach with approaches
taking into account reactivity, such as the aforementioned Lattice
Microbes simulations or other metabolic network models (see below),
in principle, could capture the non-equilibrium aspect of real cells.

Keeping these limitations in mind, simulations of the minimal cell
with a molecular resolution will make it possible to study a wide range of
new aspects. Modelling cellular processes and chemical transformations
involves a hierarchy of interconnected scales that cannot be separated
without causing artefacts. Behaviour emerging from the interaction of
millions of different compounds is easily missed when systems are
simplified. One might question to what extent one part of the cell
affects another, given the limited timescales likely to be reached. If the
various cellular subsystems act independently, one might better simulate
those in isolation. To find out, one needs to simulate the complete system
in addition to the smaller-scale subsystems. Our whole-cell simulation is
only a first step, which will benefit from imminent improvements in high-
performance computing to extend these simulations to longer timescales,
up to the point where all parts of the cell may influence each other.
Currently, the internal organization of the cytosol of Syn3A is primarily a
black box. Our model will allow us to observe how proteins inside the
cytosol interact with macromolecular structures such as ribosomes and
chromosomes. Viewing the cytosol from this perspective, we can observe
emerging heterogeneities and viscosity gradients, following in the
footsteps of other realistic models of the cytoplasm of various cell
types (McGuffee and Elcock, 2010; Yu et al., 2016; Oliveira Bortot
et al., 2020). We can expect arising interaction patterns between
proteins and metabolites, and probe the possible appearance of
biomolecular condensates (Guilhas et al., 2020; Rhine et al., 2020).

A simulation at the level of the entire cell allows us to characterize the
extent to which the cell membrane affects (and is affected by) the cellular

interior. If we consider a membrane zone with a thickness of 30 nm
(~20 nm of the membrane together with its embedded proteins, plus
another 10 nm layer underneath), 40% of the total cell volume is part of
this membrane zone. Our simulations will provide detailed insights into
the nature and extent of depletion or crowding layers, and into the level of
heterogeneity inside this membrane zone, providing information on the
extent to which compounds are either enriched or depleted near the cell
surface (Nawrocki et al., 2019). A full-cell membranemodelmight explain
why the minimal cell grows on a diet of both saturated and unsaturated
fatty acids, but not on a diet of just saturated ones as observed in
lipidomics experiments from the Saenz lab (private communication).
A related question is why the cell membrane contains such a high
percentage of cholesterol (20%–60% dependent on growth medium);
this is uncommon for bacterial membranes although generally
Mycoplasma do contain some cholesterol for membrane stability.

Of special interest is the potential existence of dynamic highways,
i.e., regions in the cell with greater mobility of the constituents, whichmay
arise from crowding effects or liquid-liquid phase separation phenomena,
or may be induced by proximity of the cell membrane. Such dynamic
highways could be important in regulating transport in an otherwise
glassy state of the cytoplasm. For regions of the cell showing particularly
interesting behaviour, smaller systems can be extracted with the advanced
TS2CG tool and simulated for extended timescales to increase the
statistical relevance. Besides passively studying the cellular
environment, holistic cell modeling poses the ideal computational
sandbox in which we can introduce new components to the cellular
environment. For instance, elucidating the non-specific interactions
between the cytosol and drug candidates and showing how drug-
receptor interactions affect the entire cell instead of just the receptor site.

Using a multiscale modeling approach, we could potentially
explore cell dynamics at various stages in its life cycle. Compared
to MD simulations, other low-resolution modeling approaches can
more broadly explore timescales of several orders of magnitude longer.
Integrating other computational models will make it possible to sprout
MD simulations in interesting regimes observed with the lower-
resolution models. The primary computational method we will
focus on integrating into our framework is the whole-cell fully
dynamical kinetic model developed by the Luthey-Schulten lab,
which accounts for the metabolic pathways governing the cellular
processes (Thornburg et al., 2022). By transferring structural
information from the kinetic model into our high-resolution
model, it will be possible to paint a more detailed picture of the
cell’s internal organization and dynamics at specific points of the cell’s
life cycle, including during cell fission.

Since most of the tools in the Martini ecosystem are force field
agnostic, the workflow can also be applied to generate all-atom whole-
cell models. Given the substantial increase in associated computational
costs, it might be a wiser approach to only sample smaller subsystems
at the all-atom level. These could be straightforwardly obtained from
backmapping representative regions taken from the whole-cell CG
model. A number of such backmapping tools, optimized for Martini,
already exist (Louison et al., 2021; Vickery and Stansfeld, 2021; López
et al., 2022).

A final challenge lies in the analysis and interpretation of the
complex high-dimensional massive data that will be generated.
Clearly, it will be impossible to perform a comprehensive analysis
on a whole-cell trajectory, and one needs to focus on specific research
questions. However, the trajectories can nowadays be easily shared
with the broader community via dedicated open-access repositories
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such as Zenodo (https://zenodo.org/), allowing others to perform
whatever additional analysis they fancy. One can also envision the
usage of data reduction schemes to efficiently analyse the whole-cell
simulation. One possibility is storing only centers-of-mass movement
of the non-aqueous components, which would facilitate the analysis of
diffusional behavior, for instance. Another approach would be using a
voxel-based method (Bruininks et al., 2021) to dynamically segment
the whole-cell model into similarity regions, e.g., membrane periphery
or chromosomal region. The system segmentation would allow for
efficient quantitative comparison of the cytosolic properties within
and between distinct regions of the cell. Furthermore, machine-
learning can be invoked to extract interaction patterns and other
emergent behavior that might be missed by standard analysis tools
(Noé et al., 2020; Wang et al., 2020; Kaptan and Vattulainen, 2022).
We foresee that our data sets will generate novel ways of dealing with
this unprecedented level of complexity.

In conclusion, we presented a roadmap toward whole-cell MD
simulations, illustrated with the construction of the first MD model of
an entire cell using our Martini ecosystem. The model represents a
next level realized with the computational microscope, providing a
complete picture of the cell and making it possible to relate molecular
structures and interactions to cellular function directly. In the long
term, our computational framework will enable us to study a wide
variety of mesoscopic systems, possibly informing the design of fully
synthetic cells (Olivi et al., 2021) and modeling cells with more
complex internal structures.
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