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Ternary I-III-VI quantum dots (TQDs) are semiconductor nanomaterials that have
been gradually incorporated in the fabrication of light-emitting diodes (LEDs) over
the last 10 years due to their physicochemical and photoluminescence properties,
such as adequate quantum yield values, tunable wavelength emission, and easy
synthesis strategies, but mainly because of their low toxicity that allows them to be
excellent candidates to compete with conventional Cd-Pb-based QDs. This
review addresses the different strategies to obtain TQDs and how synthesis
conditions influence their physicochemical properties, followed by the LEDs
parameters achieved using TQDs. The second part of the review summarizes
how TQDs are integrated into LEDs and white light-emitting diodes (WLEDs).
Furthermore, an insight into the state-of-the-art LEDs development using TQDs,
including its advantages and disadvantages and the challenges to overcome, is
presented at the end of the review.
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Introduction

For several years, lighting has constituted 19% of global electrical energy consumption;
consequently, the use of light-emitting diodes (LEDs) is considered useful for energy savings
as a result of properties such as their long lifespan and high luminous efficiency (Chen T.
et al., 2019). Therefore, they have been progressively replacing traditional lighting and are
now well established in the luminosity market (Taki and Strassburg, 2020). General
applications of LEDs involve white light-emitting diodes (WLEDs), indicator lights for
electronic circuits (Bui and Hauser, 2015), and fluorescence sensing, among others
(Mukunda et al., 2022).

On the other hand, the existence of colloidal nanocrystals of semiconductor materials
known as quantum dots (QDs) has facilitated their integration into LEDs fabrication due to
their notable photoluminescence quantum yield, photochemical stability, wide absorption,
and narrow emission spectra (Liu and Su, 2014; Cao and An, 2015; Zhang et al., 2015; Su
et al., 2020; Muñoz et al., 2021; Chen et al., 2022).

The contribution of QDs based on Cd-Pb for the preparation of high-performance LEDs
has been remarkable. However, the inherent toxicity of these elements causes negative effects
in human health and the environment, restricting their commercialization (Tsolekile et al.,
2017; Li et al., 2018; Kim et al., 2020). As a potential alternative, the use of ternary I-III-VI
quantum dots (TQDs) has gained growing interest because of their lower toxicity, easy
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processing, lower cost, and tunable photoluminescence emission. In
addition, compared to their binary analogues, TQDs have a higher
degree of compositional flexibility and size control. For example,
CuInS2, CuGaS2, and AgInS2 nanomaterials have been recently
applied to the construction of LEDs (Mei et al., 2018; Wang
et al., 2019; Su et al., 2020; Oluwafemi et al., 2021; May et al.,
2022; Wei et al., 2022). This review describes the synthesis,
physicochemical properties, and application of TQDs for LEDs
production and includes a perspective of LEDs development
using TQDs.

Methods for the synthesis of TQDs

The methods for TQDs synthesis can be classified according to
the solvent used in the reaction. In this sense, several organic- and
aqueous-based strategies have been developed to obtain TQDs with
specific physicochemical properties depending on their final
application.

TQDs synthesis requires at least three main components: the ion
precursors that form the nanostructure, the stabilizing agent, and
the solvent. In TQDs synthesis, two cations (one from group I such
as Cu+, Ag+, or Au+ and one from group III such as In3+, Ga3+, or
Al3+) are needed, together with one anion from group VI (S2- or Se2-)
(Tsolekile et al., 2017). The nature of the ion precursors depends on
the solvent used, and the ions source can be organic (acetates or
diethyldithiocarbamate) or inorganic (nitrates or chlorides) salts
(Huang et al., 2020; Su et al., 2020; Ming et al., 2021). The second
component is the stabilizing agent, also called the ligand, which is an
organic molecule that allows to obtain TQDs dispersed in the solvent
by bonding to the cations on the TQDs surface and establishing an
equilibrium between the chain and the solvent. Organic synthesis of
TQDs employs surfactants as ligands with one polar head and one or
several hydrophobic carbon chains. The main ligands used in TQDs
synthesis are 1-dodecanthiol, trioctylphosphine oxide, oleylamine,
and octadecylamine for organic synthesis and thiol-containing
ligands (such as l-cysteine or 3-mercaptopropionic acid) for
aqueous synthesis (Hu et al., 2018; Jain et al., 2020).

In addition to TQDs, other structures have been developed to
enhance the physicochemical properties of the nanoparticle,
namely, core/shell and core/shell/shell TQDs. Shell structures
are commonly composed of ZnS or ZnSe deposited over the
core structure, and a third cation (Zn2+) and an excess of S2- or
Se2- are used in the synthesis to obtain the shell structure (Tsolekile
et al., 2020). To ensure the synthesis of a core/shell structure, the
precursor of the Zn2+ ion is added after complete formation of the
core to avoid the synthesis of quaternary compounds. As in core
obtention, Zn2+ cation precursors can be inorganic coordination
precursors in organic solvents for organic synthesis or a salt
(nitrate or chloride) for aqueous synthesis (Miropoltsev et al.,
2020).

As previously mentioned, the composition and synthesis
conditions of TQDs will depend on their final application, and
for LEDs fabrication, the most common compounds are AgInS2 and
CuInS2. In this review, the different strategies for the synthesis of
AgInS2, CuInS2, and other TQDs are presented and discussed. The
classification of the synthesis strategies is based on the solvent nature
(organic or aqueous).

Organic synthesis

Organic synthesis allows to obtain high-quality TQDs. The
processes generally involve high temperatures (≥100°C), the use
of inorganic coordination precursors (acetates and oleates), and
hydrophobic ligands dissolved in organic solvents. Furthermore,
inert atmospheres are often required due to the susceptibility of
reagents to air oxygen (May et al., 2022). The main approaches
include solvothermal, hot injection, heating-up, and thermal
decomposition methods.

Solvothermal method

The solvothermal method refers to a synthetic strategy where the
temperature of the reaction takes place above the boiling point of the
solvent by increasing pressure in the reaction system. This method
has some advantages when it is used for TQDs synthesis. By using an
autoclave, the heat convection is more homogeneous, leading to a
narrow size distribution of TQDs (Kashyap et al., 2021).
Furthermore, a higher pressure promotes the crystallization
process, which, combined with the relatively mild reaction
conditions, allows to control the morphological parameters
(shape and size) and avoids defects on the TQDs surface. In
TQDs synthesis, octadecane is commonly used as a solvent, and
ligands such as trioctylphosphine oxide, oleylamine,
octadecylamine, ethylenediamine oleic acid, and 1-dodecanethiol
are employed (Jain et al., 2020).

Chuang et al. (Chuang et al., 2014) reported the synthesis of
CuInS2 with the structure of chalcopyrite at different [Cu]/[In]
molar ratios by a solvothermal route, heating a solution (cuprous
iodide and indium acetate dissolved in 1-dodecanethiol) using a
Teflon-lined autoclave at 180 °C for 5 h and 30 min CuInS2 was
coated with a ZnS shell by adding a shell stock solution (zinc stearate
dissolved in a mixture of 1-dodecanethiol and octadecene) and
heating at 200°C for 14 h. Synthesized CuInS2/ZnS presented
high luminescence and a tunable emission wavelength from
550 to 616 nm by controlling the molar ratio of [Cu]/[In].
CuInS2/ZnS with a molar ratio of 1/2 of [Cu]/[In] presented a
photoluminescence quantum yield (QY) of 81%. Orange- and red-
emitting CuInS2/ZnS TQDs were used in the fabrication of WLEDs
that exhibited high color rendering index values ~90 and luminous
efficacies of 36.7 Im W−1.

Li et al. (Li et al., 2020) prepared CuInS2/ZnS TQDs by the
solvothermal method. The CuInS2 TQDs were synthesized using a
Teflon-lined autoclave where a solution (cuprous iodide and indium
acetate dissolved in 1-dodecanethiol) was heated at 180 °C for 6 h.
After that, CuInS2 the TQDs were combined with a shell stock
solution (zinc acetate dissolved in a mixture of 1-dodecanethiol,
octadecene, and oleic acid) and heated at 200 °C for 14 h. ZnS shell
formation on the CuInS2 TQDs allowed a QY increase up to 85%.
The CuInS2 TQDs with [Cu]/[In] molar ratio of 1/2 were used to
study the effect of the nucleation temperature (180°C), obtaining a
core with good dispersion and an average size distribution of
2.89 nm. By controlling the [Cu]/[In] molar ratios and nucleation
temperature, the CuInS2 TQDs exhibited a tunable emission
wavelength from 651 to 775 nm. Synthesized CuInS2/ZnS TQDs
with (Ba, Sr)2SiO4:Eu

2+ phosphor as color converters, in
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combination with a blue GaN chip, were used to produce WLEDs
that showed high color rendering index values (~90) and a
correlated color temperature of 4360 K.

Hot-injection method

The hot-injection method is based on the addition of the
cationic precursors in one step into an organic solvent at a high
temperature (≥190°C). Usually, the process takes place in a reactor
under a flow of nitrogen or argon to avoid the interference of oxygen
species. The quick addition of precursors and the use of high
temperatures promotes a burst nucleation and, afterwards, the
growing of the particle, leading to the formation of homogeneous
nanocrystals. Therefore, the broad or narrow distribution of
nanoparticle size is dependent of a slow or fast injection of the
precursors (de Mello Donegá et al., 2005; Ghorpade et al., 2014;
Kulpa-Greszta et al., 2021).

Hu et al. (Hu et al., 2019) synthesized the CuGaS2/ZnS TQDs
with relatively uniform sizes that exhibited a tunable emission
wavelength from 520 to 619 nm by controlling the [Cu]/[Ga]
molar ratios via the hot-injection method, where 1-dodecanethiol
was used as a solvent, sulfur precursor, and ligand. The CuGaS2/ZnS
TQDs were prepared with a shell stock solution (anhydrous zinc
acetate and 1-octadecene were dissolved in a mixture of oleic acid
and 1-dodecanethiol), which was injected into the reaction crude
(cuprous iodide and gallium acetylacetonate dissolved in 1-
dodecanethiol) at 250°C for 60 min. The CuGaS2/ZnS TQDs
presented a full width at a half maximum of near 75 nm. A
WLED was fabricated using yellow CuGaS2 TQDs by depositing
the nanoparticles on a blue InGaN chip, exhibiting a luminous
efficacy of 11.9 Im W−1.

Deng et al. (Deng et al., 2020) synthesized efficient green light
emission CuInS2/ZnS TQDs by a hot-injection method at low
temperature (130 °C) combined with a covering strategy of
multilayer ZnS. Instead of the conventional dodecanethiol, they
used S powder dissolved in oleylamine as the sulfur source for the
covering process. The obtained CuInS2/ZnS showed amaximumQY
~ 85%, a wavelength close to 530 nm, and they were employed in the
fabrication of LEDs that exhibited an excellent external quantum
efficiency (EQE) of 1.44%.

Wei et al. (Wei et al., 2020) obtained AgInS2/ZnS TQDs that
exhibited a tunable emission wavelength and high QYs values (72%).
The AgInS2 TQDs were synthesized by a hot-injection strategy and
coated with a ZnS layer. The AgInS2/ZnS TQDs showed an average
diameter of 2.5 nm with a homogeneous size distribution, generally
with an orthorhombic chalcopyrite-type structure or tetragonal
phases, which were related to the synthesis temperature. The
AgInS2/ZnS TQDs were used in the preparation of LEDs that
showed a highest EQE of 1.25%.

Li et al. (Li et al., 2023) prepared InP/ZnS QDs and AgInS2/ZnS
TQDs by a one-pot hot-injection method. The AgInS2/ZnS TQDs
were synthesized at different stoichiometric ratios of [Ag]/[In].
These TQDs exhibited wavelengths from 515 to 804 nm, large
stocks shift (>100 nm), and QYs >60%. In turn, the synthesized
InP/ZnS QDs presented a narrow PL peak width (40 nm),
QYs >70%, and a widely tunable green emission wavelength.
Finally, the combination of green-emitting InP/ZnS QDs with the

AgInS2/ZnS TQDs (560–690 nm) and a blue GaN chip allowed the
fabrication of warm WLEDs of high color quality, with luminous
efficacy up to 75.2 lm W− 1 and a correlated color temperature of
3114K.

Heating-up or non-injection method

Although the hot-injection method is a common synthetic
strategy, it has some disadvantages when up-scaling the volume
of the system is required. The main problems are the broad size
distribution of nanoparticles (10–30 nm), low reproducibility
(differences in morphology, element ratio, etc.), and the reaction
cooling time. The heating-up method (also known as the non-
injection method) is an alternative to the hot-injection method. The
methodology is based on the addition of the precursors to a solvent
at room temperature and a gradual heating up to obtain the
monomers, the formation of the nuclei, and the obtention of the
nanocrystal (Van Embden et al., 2015).

Park et al. (Park et al., 2015) synthesized different structures of
CuInS2 TQDs (core, core/shell, and core/shell/shell) for the
development of yellow, green, and WLEDs. The CuInS2 core
TQDs were synthesized by mixing Cu- and In-oleate precursors
with dodecanethiol as a sulfur source in 1-octadecene and heating
the solution to 100°C for degassing and to 230°C for 30 min for core
formation. The synthesis of the CuInS2/ZnS core/shell TQDs used
the CuInS2 core TQDs synthesized in the first step, and to obtain the
core/shell structure, a mixture of Zn-oleate precursor and
dodecanethiol in octadecene was added, followed by heating to
250 °C for 7 h. The CuInS2/ZnS/ZnS core/shell/shell TQDs were
obtained by using the synthesized CuInS2/ZnS TQDs and repeating
the second step conditions. An increment in the particle size was
observed in every stage of the synthesis, with a particle size of the
core of 2.5 nm, a core/shell of 3.5 nm, and a core/shell/shell of
4.3 nm. A hypsochromic shift from the CuInS2 TQDs (670 nm, red
emission) to CuInS2/ZnS TQDs (576 nm, yellow emission) and
CuInS2/ZnS/ZnS TQDs (559 nm, yellow–green emission) was
observed. Quantum efficiency of the TQDs increased from 31.7%
for the core to 80.0% for the core/shell/shell structures. The CuInS2/
ZnS/ZnS TQDs structures were used in a WLED, obtaining a
luminous efficacy of 80.3 lm W−1.

Thermal decomposition method

Generally, nanoparticle synthesis by thermal decomposition
consists of the thermal degradation of organosulfur precursors in
organic solvents in the presence of surfactants for stability of the
nanoparticle. The common precursor used for AgInS2 is
AgIn(S2CN(C2H5)2)4. However, the toxicity of
diethyldithiocarbamate has limited its use in nanoparticle
synthesis for LED applications (Maji, 2022).

Chung et al. (Chung et al., 2014) synthesized Zn-doped AgInS2
TQDs with spherical shape and size <7 nm by thermal
decomposition. The authors replaced the diethyldithiocarbamate-
based precursor for silver nitrate, indium acetate, and 1-
dodecanethiol. The precursors were dissolved in a mixture of 1-
octadecene, trioctylphosphine, and oleic acid, which were used as
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surfactants and heated to 100°C, followed by the addition of sulfur
powder and zinc stearate for the obtention of the shell at 130°C. The
authors described the phases corresponding to an orthorhombic
structure for the AgInS2 TQDs, and after the incorporation of Zn
ions, a cubic structure was observed, thus suggesting that a phase
transition took place. The Zn-doped AgInS2 TQDs exhibited an
improvement in the QYs in the range from 3% to 15% and emission
wavelengths in the range from 644 to 539 nm. A WLED was
fabricated by combining a 380 nm UV LED, Zn-doped AgInS2
TQDs (618 nm) and carbon dots, obtaining a color rendering
index of 96.2 (see Figure 1; Table 1).

Aqueous synthesis

The synthesis of TQDs in water has the advantage of being
more environmentally friendly compared to synthesis in

organic solvents. Along with the solvent used, reagents
(precursors and ligands) present lower toxicity, and the
synthesis protocols are easier to apply. Normally, aqueous
synthesis uses inorganic metal precursors and thiourea or
sodium sulfide as the sulfur source due to their high
solubility in water. Additionally, some strategies do not
require the use of an inert atmosphere (Jain et al., 2020).
The main strategies for TQDs aqueous synthesis include
hydrothermal and microwave-assisted methods.

Hydrothermal method

Typically, hydrothermal methods used for the synthesis of
nanoparticles consist of heating an aqueous mixture of
precursors in a sealed container to a temperature higher than the
water boiling point (Hu and Zhu, 2015; Huang et al., 2019).

FIGURE 1
Organic synthesis of ternary quantum dots by diverse methods: solvothermal, hot injection, heating up, and thermal decomposition.
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TABLE 1 Overview of organic and aqueous synthesis of TQDs, their properties, and LEDs parameters.

Particle
(core/shell)

Synthesis method Physicochemical properties Device fabrication and optoelectronic
characteristics

References

CuInS2/ZnS Organic synthesis/
Solvothermal

*Tunable emission wavelength from 550 to
616 nm by adjusting the [Cu]/[In] molar ratios

Orange- and red-emitting CuInS2/ZnS TQDs were
used in the fabrication of WLEDs

Chuang et al.
(2014)

*Molar ratio of 1/2 of [Cu]/[In] presented
QY 81%.

⁃ Luminous efficacies: 36.7 Im W−1

⁃ Color rendering index: ~90

CuInS2/ZnS Organic synthesis/
Solvothermal

*Emission bands were tuned from 651 to 775 nm
by controlling the [Cu]/[In] molar ratios

* CuInS2/ZnS TQDs with (Ba, Sr)2SiO4:Eu
2+ phosphor

and a blue GaN chip were used for fabricated WLEDs
Li et al. (2020)

*After shell formation on CuInS2 TQDs allowed
QY increase to 85%

⁃ Color rendering index value: ~90

⁃ Correlated color temperature: 4360 K

CuGaS2/ZnS Organic synthesis/Hot-
injection

*Emission bands were tuned from 520 to 619 nm
by controlling the [Cu]/[Ga] molar ratio

A WLED was fabricated using yellow CuGaS2 TQDs
dropped on blue InGaN chip

Hu et al. (2019)

*Narrow full-width at half maximum wavelength
of ~75 nm

⁃ Luminous efficacy: 11.9 Im W−1

CuInS2/ZnS Organic synthesis/Hot-
injection

*A maximum QY ~ 85% and wavelength close to
530 nm

CuInS2/ZnS TQDs were used in the fabrication of
LEDs

Deng et al.
(2020)

⁃ EQE of 1.44%

AgInS2/ZnS Organic synthesis/Hot-
injection

* QYs ~72% AgInS2/ZnS TQDs were used in the preparation of
LEDs

Wei et al. (2020)

*Average diameter ~2.5 nm ⁃ EQE of 1.25%

AgInS2/ZnS Organic synthesis/Hot-
injection

*Exhibited wavelengths from 515 to 804 nm Combination of green-emitting InP/ZnS with AgInS2/
ZnS TQDs (560–690 nm) and a blue GaN chip were
used to fabricate warm WLEDs

Li et al. (2023)

*Large Stokes shift (>100 nm) Luminous efficacy: 75.2 Im W−1

*QYs >60% Correlated color temperature: 3114 K

CuInS2/ZnS/ZnS Organic synthesis/
Heating up or non-

injection

* Particle size of 4.3 nm CuInS2/ZnS/ZnS TQDs were used for a WLED Park et al.
(2015)

*A peak wavelength of 559 nm, yellow–green
emission

⁃ Luminous efficiencies: 80.3 Im W−1

*Quantum efficiency of the TQDs increased from
31.7% for core to 80.0% for core/shell/shell
structures

Zn-doped
AgInS2

Organic synthesis/
Thermal decomposition

* Size <7 nm WLED was fabricated by combining a 380 nm UV
LED, Zn-doped AgInS2 TQDs (618 nm), and carbon
dots

Chung et al.
(2014)

*An improvement in the QYs from 3% to 15% ⁃ Color rendering index: 96.2

*Emission wavelength from 644 to 539 nm

AgInS2/ZnS Aqueous synthesis/
Hydrothermal

*An improvement in QYs from 21.6% to 45% The obtained AgInS2/ZnS TQDs were combined with
Lu3Al5O12:Ce

3+ and used in the fabrication of aWLED
Chen T. et al.

(2019)

⁃ Luminous efficiency: 77.98 Im W−1

⁃ Color rendering index: 85

⁃ Correlated color temperature: 6215 K

MPA-capped
CuInS2/ZnS

Aqueous synthesis/
Hydrothermal

*Spherical shape — Jain et al. (2022)

*QYs values from 6.95% to 17.19%

(Continued on following page)

Frontiers in Chemistry frontiersin.org05

Islas-Rodriguez et al. 10.3389/fchem.2023.1106778

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1106778


Chen et al. (Chen W. et al., 2019) synthesized highly fluorescent
AgInS2/ZnS TQDs by a hydrothermal method using AgNO3 and
In(NO3)3 as cation precursors, Na2S as the sulfur source, and
sodium citrate and glutathione as ligands. The precursor mixture
was heated in an autoclave at 110°C for 7 h to obtain the core. The
shell was obtained by the addition of Zn(OAc)2 as the Zn

2+ precursor
and placing the reaction in an autoclave at 90°C for 5 h. The resulting
core/shell TQDs showed an improvement in the QYs value from
21.6% to 45%. The obtained AgInS2/ZnS TQDs were combined with
Lu3Al5O12:Ce

3+ and used in the fabrication of a WLED, which
exhibited good properties: a luminous efficiency of 77.98 Im W−1,
correlated color temperature of 6215 K, and color rendering index
of 85.

Jain et al. (Jain et al., 2022) synthesized aqueous
mercaptopropionic acid (MPA)-capped CuInS2/ZnS TQDs through
the hydrothermal method. To obtain the core structure, an aqueous
solution of CuCl2, InCl3, thiourea, andMPAwas prepared at pH 11.3.
This solution was heated in an autoclave at 150 °C for 21 h and then
cooled to room temperature. The ZnS shell was grown on the core
structure by the addition of Zn(OAc)2 as the Zn

2+ precursor and Na2S
as the sulfur source. The obtained CuInS2/ZnS TQDs presented a
spherical shape and reached QYs values from 6.95% to 17.19%.

Microwave-assisted aqueous method

This technique is based on focused irradiation to generate
intense heating over polar substances, and several microwave
strategies allow to reduce the reaction time for TQDs synthesis
(≤20 min) compared to the organic and hydrothermal methods
(Janis et al., 2019). Generally, microwave-assisted methods are
highly reproducible in the production of QDs with a narrow size
distribution. In a typical synthesis assisted by microwaves, the
reaction temperature is close to the water boiling point
(90°C–110 °C). As in the hydrothermal methods, the metallic
inorganic precursors are mixed with a stabilizing agent in water,
in a controlled pH (usually basic), and subsequently a chalcogenide
salt is added (Muñoz et al., 2021).

Ji et al. (Ji et al., 2016) synthesized CuInS2/ZnS TQDs embedded
in solid polyvinylpyrrolidone (PVP) in an aqueous phase at 95°C for

20 min through assisted microwave synthesis in order to improve
their thermostability and the photostability and intensity of the
photoluminescence. The authors reported CuInS2 and CuInS2/ZnS
TQDs with spherical shape, uniform morphology, and average
diameters of 3.2 and 4.8 nm, respectively. The obtained CuInS2/
ZnS TQDs exhibited a maximum QYs of 43% and a tunable
emission wavelength at a wide range from 543 to 700 nm by
controlling the [Cu]/[In] molar ratios. The CuInS2/ZnS TQDs
embedded in solid PVP were used as nanocomposite emitters of
green and red and converters of colors by the combination with a
blue LED chip.

Su et al. (Su et al., 2020) described the preparation of AgInS2/
ZnS TQDs in an aqueous phase by microwave-assisted synthesis in
two steps, one for core obtention (95 °C, 1 h) and the other for shell
synthesis (95 °C, 10 min). Subsequently, the TQDs were embedded
on polyacrylamide hydrogels and combined with blue InGaN chips
to fabricate warm WLEDs. The obtained TQDs showed an average
size of 3.07 nm and a shift in the emission wavelength from 540 to
622 nm by adjusting the molar ratio of [Ag]/[In] from 0.05 to 0.5,
reaching a maximum QYs of 58.27% when a molar ratio of 0.1 was
used. The synthesized AgInS2/ZnS TQDs were used for WLEDs
fabrication, showing a high color rendering index of 87.5 and a
correlative color temperature of 3669 K, hence indicating that they
are competitive materials for color conversion in warmWLEDs (see
Figure 2; Table 1).

Physicochemical properties of TQDs
and LEDs parameters

The study of the physical and chemical properties of TQDs is
relevant in LEDs fabrication, because they influence the
characteristics and performance of the final product. In LEDs,
TQDs have several useful properties such as i) tunable capacity
of absorption and emission length by controlling the size, shape,
structure, and precursors stoichiometric ratios; ii) QY that is coupled
to the EQE of the LEDs; iii) good photostability (Zhong et al., 2011;
Bai et al., 2016); iv) large stokes shifts; v) long photoluminescence
lifetime; and vi) low toxicity. Therefore, efforts have been made to
generate new LEDs with proper characteristics (adequate emitting

TABLE 1 (Continued) Overview of organic and aqueous synthesis of TQDs, their properties, and LEDs parameters.

Particle
(core/shell)

Synthesis method Physicochemical properties Device fabrication and optoelectronic
characteristics

References

CuInS2/ZnS Aqueous synthesis/
Microwave assisted

*Average diameter of 4.8 nm CuInS2/ZnS/PVP were used as nanocomposite
emitters of green and red and converters of colors by
combination of a blue LED chip

Ji et al. (2016)

*The molar ratio of Cu/In in optimal conditions
reached a maximum QYs of 43%

*Tunable emission wavelength from 543 to
700 nm by controlling the [Cu]/[In] molar ratios

AgInS2/ZnS Aqueous synthesis/
Microwave assisted

*Average size 3.07 nm AgInS2/ZnS TQDs were used in the preparation of
warm WLEDs

Su et al. (2020)

*A shift in the emission wavelength from 540 to
622 nm by adjusting molar ratio of [Ag]/[In]

⁃ Color rendering index: 87.5

*Reached a maximum QY of 58.27% ⁃ Correlative color temperature: 3669 K
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color, EQE, long lifetime, color purity, etc.) based on TQDs (Mei
et al., 2018; Bang et al., 2021).

TQDs physicochemical properties

An advantage of TQDs in LEDs fabrication is that they can be
tuned in any color of the spectra, and therefore different LEDs can be
designed using the samematerial. The TQDs emission wavelength is
related to the band gap of the nanomaterial, and this property
(commonly found in conductor and semiconductor materials such
as TQDs and QDs) is defined as the energy range between the
valence band and the conduction band; it is different in bulk and
nanoparticle materials. For instance, AgInS2 and CuInS2 exhibit a
band gap of 1.87 and 1.27 eV, respectively, but when the materials
present nanometric scales, the band gap value differs (from 1.6 to
1.9 for CuInS2 and from 2.3 to 3.1 for AgInS2) (Raevskaya et al.,
2017; Xia et al., 2018).

Usually, at the nanometric scale of TQDs, the band gap energy
increases when the electron–hole pair is more confined. Therefore, a
decrease in the TQDs size will result in nanoparticles that emit near
the ultraviolet spectra, and an increase in the TQDs size will produce
nanoparticles that emit near the infrared spectra (Singh et al., 2021).

Xia et al. (Xia et al., 2018) synthesized CuInS2 with different sizes
from 2.1 to 6.1 nm, obtaining different emission colors from the
same material (violet and red, respectively). The band gap changed
from 1.9 to 1.6 eV when the nanoparticles size increased. Mir et al.
(Mir et al., 2018) observed the same phenomenon in AgInS2 TQDs,
obtaining nanoparticles with tunable band gap from 3.1 to 2.3 eV
with different sizes and emission spectra. Thus, the color emitted by
the LED will correspond to the band gap energy of the
semiconductor integrated in it (Singh et al., 2021).

A second optical property of TQDs is QY. This is an essential
spectroscopic parameter of fluorescent materials, which measures
the ratio between photons emitted and photons absorbed. QY is
related to the structure and stability of the nanocrystal and can be
controlled in the synthesis protocol, specifically on the surface
structure (Sadeghi et al., 2018; Fries and Reineke, 2019).
Different strategies have been described to enhance the TQDs
QY, but for LED applications the most useful is the addition of a
shell to the TQDs core. In TQDs synthesis, it is common that not all
cations react with the chalcogenide, and in nanoparticle obtention,
the species relocate on the surface. These species, also called traps, do
not allow a proper recombination process, reducing the QY (Zhang
et al., 2021). By passivating the TQDs surface, the QY improves for
TQDs, and the shell used is ZnS. The ZnS shell is able to enhance the

FIGURE 2
Aqueous synthesis of ternary quantum dots by hydrothermal and microwave-assisted methods.
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QY of CuInS2 from 3.2% to 81%, according to Chuang et al. (Chuang
et al., 2014). Wei et al. (Wei et al., 2020) described an increase in the
QY of AgInS2 from 57% to 72% by adding a ZnS shell.

Table 1 depicts QY values of different TQDs, and it is well-
known that QY values are higher when an organic solvent is used.
This happens because the organic synthesis occurs at higher
temperature, promoting the formation of more homogeneous
nanocrystals with fewer surface defects. On the other hand, in
aqueous synthesis more traps are located on the surface, allowing
non-emitting transitions and decreasing the fluorescence of the
materials (Pu et al., 2018).

Concentration of precursors is another factor to be considered in
the synthesis of TQDs. According to different authors, the Ag/In and
Cu/In ratios have a bathochromic effect when the group I cations are
in a 1/1 stoichiometry. For instance, Huong et al. synthesized AgInS2
TQDs using a molar ratio of Ag/In from 1/10 to 1/1, showing a
change in the emission from 590 nm at 1/10 ratio to 640 nm at 1/
2 ratio and 745 nm at 1/1 ratio (Huong et al., 2022).

The same spectroscopic behavior was described by Wei et al. in
AgInS2 TQDs synthesized by the hot-injection method. The Ag/In
ratios were evaluated from 1/5 to 1/1, showing a bathochromic effect
when the Ag+ and the In3+ concentrations were equal. The TQDs
were shown to exhibit a maximum in fluorescence at 603 nm in a 1/
5 ratio, 700 nm in a 1/3 ratio, and 868 nm in a 1/1 ratio (Wei et al.,
2020). Band gap and emission maximum wavelength values were
attributed to the interaction between the 3p orbital from sulfur and
4d orbital from silver; therefore, in a lower Ag+ concentration the
interaction is lowered, and more energy is required to excite the
electron to the conduction band obtaining the emission at lower
wavelengths (Song et al., 2016). The CuInS2 TQDs show the same
Cu/In ratio pattern. Li et al. synthesized CuInS2 TQDs from 1/3 to 1/
0.5 Cu/In ratios, and the emission maximum changed from 638 to
714 nm (Li et al., 2020).

Other physicochemical properties can directly affect the
performance of LED and WLED based on TQDs properties, and
for a proper selection of semiconductors the Stokes shift and the
lifetime of the fluorescence are parameters to be considered. The
Stokes shift is defined as the difference in energy (in meV) between
the maximum absorption wavelength and the maximumwavelength
of the fluorescence emission. TQDs present a large Stokes shift,
which improves the efficiency of QLED and WLED (Chan et al.,
2021). CuInS2 exhibits a Stokes shift in the range from 200 to
500 meV and AgInS2 in the range from 300 to 1,000 meV, which are
greater than the ones presented by some organic molecules used on
OLED (Baimuratov et al., 2019).

Photoluminescence lifetime in semiconductors refers to the time
that the electron remains in the conduction band before it returns to
the valence band. Several organic compounds exhibit lifetimes of
10 nanoseconds, and carbon dots have lifetimes ≤20 ns, while TQDs
display values of at least 100 ns (Hutton et al., 2017; Liu et al., 2020).
The CuInS2 photoluminescence lifetime is in the range from 100 to
300 ns, and AgInS2 shows a photoluminescence lifetime in the range
from 110 to 450 ns. High fluorescence lifetimes decrease the
photobleaching of materials, thus allowing to achieve greater
device lifetimes. These high values in the Stokes shift and
photoluminescence lifetime make TQD an excellent option to use
in the design of LED and WLED (Soares et al., 2020; Adeleye et al.,
2021).

The success of QDs in LEDs devices is due to their high QY,
stability, and relatively easy synthetic procedures. However, they
generally include Cd-Pb precursors in the QDs (such as CdSe, CdS,
CdTe, PbSe, and PbS) that have a negative impact on the
environment (Kurshanov et al., 2018). The Environmental
Protection Agency classifies cadmium in the group B I (probably
carcinogenic to humans) and has established maximum
contaminant levels in drinking water (5 μg L-1) (Agency for Toxic
Substances and Disease Registry, 2010). Lead is classified in group B
II (probably carcinogenic to humans) (U.S. Environmental
Protection Agency, 2013), and the maximum level for bottled
water is 5 μg L-1 (U.S. Food and Drug Administration, 2009). In
this regard, TQDs are free of toxic elements, and this attractive
feature, together with their broadly tunable optical properties, make
them very suitable materials for implementation in LEDs (Chen
et al., 2018).

LEDs parameters

According to their use, LEDs performance can be measured in
electrical (external quantum efficiency) and optical (luminous
efficacy, color rendering index, etc.) parameters, which are
dependent on TQDs properties and LEDs configuration.

LEDs are devices that are able to emit light by converting the
electric energy in an electroluminescence process. EQE is a ratio of
the number of emitted photons and the electrons applied through
the LED, and in this sense, a higher %EQE value means a more
efficient LED (Roedel, 2001; Plis et al., 2011).

One of the main optical LEDs parameters is the luminous
efficiency, which is defined by the relation between the luminous
flux and the power. This relation determines how well a light source
produces visible light (Xu and Chen, 2019). In WLEDs, in addition
to the luminous efficiency, it is necessary to know the quality of
white light, which is measured by the color rendering index (CRI)
and color appearance, defined by the proper correlated color
temperature (CCT), and expressed in degrees Kelvin (Xu, 2019;
Kalani and Kalani, 2021).

Design of light-emitting diodes using
ternary quantum dots

The capacity of tuning the emission wavelength of QDs by
adjusting the nanoparticle size allows to obtain LEDs in the range
from UV to IR, and for binary materials based on Cd (II) (such as
CdTe, CdS, and CdSe), the optical properties have been widely
explored. Nevertheless, there is a need to substitute these materials
due to their high toxicity, and their ternary analogues such as
AgInS2, CuInS2, and CuInSe2 represent a valid alternative
(Oluwafemi et al., 2021).

The general structure of an LED requires the conjunction of
three semiconductor-based layers that are called the n-type, p-type,
and the mid-layer, also called the active region. The n-type layer has
an excess of electrons, and it is connected to the negative terminal of
the LED, whereas the p-type layer has a deficiency in electrons and is
hole-containing, being connected to the positive terminal of the LED
(Figure 3A). When a current is applied, the electrons in the n-type
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layer and the holes from the p-type layer migrate towards the active
region, where a recombination process occurs, resulting in light
emission (electroluminescence). In semiconductors, the light
emitted depends on the band gap of the material, and for TQDs,
the band gap is determined by the particle size (Yuan et al., 2021). To
fabricate LEDs, the layers can be arranged in either of two principals
set-ups. In the first set-up, it is possible to use the same
semiconductor material and incorporate impurities (ions) in one
layer to obtain the electron-rich and hole-rich layers (p-n
homojunction). A second approach is called the p-n
heterojunction, where the fabrication of the QLED requires the
use of two different semiconductors, one for the p-type layer and one
for the n-type layer. Modern configurations include different layers
such as the hole-injection layer, hole-transport layer, electron-
transport layer, electron-injection layer, and emission layer (Bose
et al., 2014). For LEDs using TQDs, the layers correspond to a
heterojunction.

The performance of QLED is affected by the film thickness and
uniformity of the mid-layer. There are different methodologies to
obtain an adequate film between the carrier layers of the QLED, such
as transfer printing, inkjet printing, mist deposition, and the
Langmuir–Blodgett technique, but the main strategy used for
TQDs is spin coating (Zhang et al., 2018).

The spin-coating method consists of diluting TQDs in a solvent,
and this solution is dispersed on the surface of the layer where TQDs
will be deposited. Subsequently, the wafer is rotated using centrifugal
force until the solvent is evaporated and the film is deposited (Zhao
et al., 2021). The layer thickness of the obtained TQDs is in the
nanometric or micrometric scale, although a lower thickness
increases the efficiency and brightness of the LED. The layer
thickness is determined by the viscosity of the solution, rotation
speed, surface tension, and concentration of the TQDs (Shmshad
et al., 2019).

Most of the articles cited in this review describe spin coating
as the strategy used for deposition of TQDs. However, this step
has not been fully exploited, and only a few systems are
completely described. Motomura et al. (Motomura et al.,
2020) used the spin coating method with a solution of
AgInS2/GaS2 TQDs (3 mg mL-1, dissolved in chloroform) over
the electron injection layer of ZnO nanoparticles, resulting in the
formation of multilayer TQDs with 15 nm thickness and %EQE
of 0.54% when combined with tris(2,4,6-trimethyl-3-(pyridin-3-
yl)phenyl)borane.

Binary semiconductor nanoparticles such as CdSe/CdS have also
been evaluated in spin-coated strategies. Sayevich et al. (Sayevich
et al., 2021) employed a procedure where 10 mg mL-1 of QDs were
dispersed in octane as a solvent, after which the nanoparticles were
spin-coated over PEDOT:PSS at 2000 rpm for 30 s and the system
was heated to 80°C for 10 min, resulting in the formation of a mid-
layer with 25 nm thickness. The %EQE of the resulting device
was 0.43%.

Although film deposition is a crucial step in QLED design and
performance, this has not been fully studied, in terms of rotation
speed, concentration of TQDs, thickness, and obtained %EQE.
Strategies such as electrohydrodynamic jet spraying and inkjet
printing have been shown to be adequate strategies for layer
formation in binary QDs for QLED. Nevertheless, the behavior
of TQDs might be different; therefore, further research is required in
this area (Xiong et al., 2019).

Deng et al. (Deng et al., 2020), fabricated a mid-layer using spin
coating to deposit CuInS2/ZnS and disperse it in n-octane at a
concentration of 20 mg mL-1, at 3,000 rpm, and 70°C for 40 s.

Different configurations of LEDs are described in the literature,
and TQDs are used as a mid-layer or mid-layer additive (Figure 3B).
Lv et al. (Lv and Liang, 2017) designed an LED by using (poly(3,4-
ethylenedioxythiophene) poly styrenesulfonate (PEDOT:PSS) as the
hole-transport layer, 2,2′,2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-
benzimidazole) as the electron-transport layer connected to a LiF/Al
cathode, and a layer of AgInS2 TQDs for the active region. The
AgInS2 TQDs used in the LED presented a diameter of 4.8 nm and a
maximum of fluorescence at 730 nm, thus producing a red light-
emitting diode.

Wei et al. (Wei et al., 2020) developed an LED using AgInS2/ZnS
core/shell TQDs. For the construction of the LED, indium–tin oxide
was used as a glass substrate, where a layer of PEDOT:PSS was
deposited as the hole-transfer layer, followed by a layer of Poly
[bis(4-phenyl) (4-butylphenyl)amine] as a second hole-transfer
layer. The active region was obtained by depositing AgInS2/ZnS
over the hole-transfer layer surface. The electron-transfer layer was
composed of ZnO:Mg particles, and an aluminum film was used as a
cathode. AgInS2/ZnS QDs exhibited an average diameter size of
4.9 nm and a maximum emission at 666 nm, with a full width at half
maximum of 122 nm. The obtained LED exhibited an external
quantum efficiency of 1.25%.

Deng et al. (Deng et al., 2020) developed a green light-emitting
diode using indium–tin oxide as a substrate, PEDOT:PSS and

FIGURE 3
Design of LEDs based on TQDs: (A) classical configuration, (B) example of modern configuration, (C) WLEDs.
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Poly(9-vinylcarbazole) as the hole-transfer layer, CuInS2/ZnS
core/shell QDs as the active region, ZnO nanoparticles as the
electron-transfer layer, and Ag film as a cathode. The structure
allowed to reduce the Auger recombination, which is a process
where the excess energy is not converted to photons, but rather the
electrons are transferred to higher energy states (Jung et al., 2021).
The obtained EQE was 1.44%, which is a promising value
according to the author.

Core/shell/shell structures can also be used in LED fabrication. Ye
et al. (Ye et al., 2020) designed an LED based on CuInS2/ZnS/ZnS QDs,
with the structure ITO/PEDOT:PSS/Poly(9,9-dioctylfluorene-alt-N-(4-
sec-butylphenyl)-diphenylamine)/TQDs/PEI (polyethyleneimine)/ZnO/
Ag. The core/shell/shell structure exhibited a highQY (76%), allowing to
obtain an LED with good performance. Moreover, by adding a layer of
PEI, there was an enhancement in the efficiency of the LED compared to
a core/shell structure (EQE 1.56%).

Not only can TQDs be used for monochromatic LEDs, but they
can also be employed as components in the fabrication of
polychromatic LEDs or WLEDs (Figure 3C). Generally, a WLED
is formed by a mixture of different color materials in the mid-layer,
particularly blue, green, and red, where the color blue is an LED chip
from InGaN, the color green is an LED chip from a phosphor
compound, and the color red is an LED chip from TQDs (such as the
materials with primary colors red, yellow, and blue). TQDs are used
as additives in the mid-layer in a prefabricated LED chip (InGaN)
(Liu et al., 2022).

Su et al. (Su et al., 2020) synthesized yellow AgInS2/ZnS QDs
and applied a film over blue InGaN chips to obtain WLEDs. The
authors also used red and green AgInS2/ZNs QDs films over blue
InGaN chips to obtain WLEDs. The produced WLEDs exhibited a
color rendering index of 75.5 and 87.5, respectively, which were
considered promising materials. In another study, Chen et al. (Chen
W. et al., 2019) designed a WLED using a blue InGaN chip, yellow
AgInS2/ZnS QDs, and Lu3Al5O12:Ce3

+ phosphor as source of green
light. The resulting LED exhibited an increment of the CRI of 85.0%
by adding the green light, compared to the QDs/InGaN mid-layer.

Hu et al. (Hu et al., 2022) obtained AgInS2/ZnS TQDs with a
QY of 33.1% by a novel microwave organic synthesis. The
resulting TQDs emitted orange–yellow light under UV light
and were used in the fabrication of WLEDs. AgInS2/ZnS were
mixed with a Y3Al5-xGaxO12:Ce

3+ phosphor compound and
silicon, and the mixture was dispensed over a blue LED
chip. The system was cured at 150°C for 1 h to obtain the
WLED, which showed a luminous efficacy of 58.83 lm/W and
a color rendering index of 87.6.

Different phosphor compounds can be used for WLED
development. Chen et al. (Chen et al., 2023) used the
europium-based phosphor compound (Ba, Sr)Si2O2N2:Eu

2+ in a
mixture with orange AgInS2/ZnS TQDs, which was deposited over
a blue light LED. Silicon was added, and the mixture was cured
under UV light. The TQDs exhibited a %QY of 35.66% and the
resulting WLED presented a color rendering index of 87.7 and a
luminous efficiency of 80.13 lm/W, which was attributed to the
shell of the TQD.

Using the same structure as in the previous article, Dong et al.
(Dong et al., 2019) incorporated red-emitting CuInS2/ZnS (65.07%
QY) in a system in the presence of Y3Al5O12:Ce

3+. These compounds
were mixed with silicone to obtain a film, which was deposited and

cured over an LED blue chip to obtain aWLED. The resulting device
had a corelated color temperature of 3415 K.

Conclusion and perspectives

TQDs are novel nanoparticles with unique physicochemical
properties that are adequate in the design of LEDs. This review is
focused on the synthesis, physicochemical properties, and use of
TQDs in the fabrication of LEDs.

Different strategies have been developed for TQDs synthesis in
organic and aqueous media, allowing to obtain nanoparticles with
promising physicochemical properties. So far, the spectroscopic
parameters of TQDs (such as QY and FWHM) have not reached
the binary QDs values; therefore, further research is needed to
improve them. Non-etheless, these nanomaterials have the
advantage of using precursors with less toxicity compared to Cd-
and Pb-based QDs. Optical properties and LEDs parameters are
influenced by the size, composition, and solvent used in TQDs
synthesis; thus, the critical point to be evaluated is the synthesis
strategy and conditions. For instance, some parameters such as the
QY (and therefore EQE) can be improved by changing the ratio of
the group I and group III concentrations or by coating the core with
a ZnS shell.

For TQD application into LEDs, the required parameters (such
as color and EQE) in the device must be established before
synthesizing the TQDs. The CuInS2 and AgInS2 TQDs are
excellent candidates for efficient LEDs and WLEDs, and different
designs have been proposed using TQDs in the mid-layer with
adequate performance.

The performance of TQDs as light-emitting diodes can be
improved in the future by focusing mainly on increasing the QY
and reducing FWHM in TQDs synthesis, as well as increasing the
EQE in the LEDs design and even exploring other materials, such
as substituting Ag+ for Cu+ or Au+, In3+ for Ga3+ or Al3+, and S2- for
Se2-.
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