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Integrins in the cell surface interact with functional motifs found in the
extracellular matrix (ECM) that queue the cell for biological actions such as
migration, adhesion, or growth. Multiple fibrous proteins such as collagen or
fibronectin compose the ECM. The field of biomechanical engineering often deals
with the design of biomaterials compatible with the ECM that will trigger cellular
response (e.g., in tissue regeneration). However, there are a relative few number of
known integrin binding motifs compared to all the possible peptide epitope
sequences available. Computational tools could help identify novel motifs, but
have been limited by the challenges in modeling the binding to integrin domains.
We revisit a series of traditional and novel computational tools to assess their
performance in identifying novel binding motifs for the I-domain of the α2β1
integrin.
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1 Introduction

The integrin superfamily (Hynes, 1987) encompasses 24 different integrins in humans
responsible for communication and singaling between cells and with the extracellular matrix
(ECM). Structurally, they are αβ heterodimers with two non-covalent subunits (arising from
18 α and 8 β subunits) located on the cell’s membrane (Hynes, 2002; Takada et al., 2007).
Their normal behavior controls cellullar processes such as cell adhesion, migration and
differentiation [(Critchley et al., 1999); (Mizuno et al., 2000); (Mercurio et al., 2001)].
Usually, these integrins recognize specific peptide epitope motifs present in large fibrous
proteins that form the extracellular matrix such as collagen or fibronectins (see Figure 1).
Hence, designing molecules that disrupt or enhance these interactions has long been a
potential therapeutic target. A recent study (Slack et al., 2022) shows over 60 integrin-target
therapies have been recorded (https://www.clinical-trials.gov and https://www.clinical-
trialsregister.eu/ctrsearch/search using the search term “integrin”) targeting diseases like
Multiple Sclerosis (Kawamoto et al., 2012) or Crohn’s disease (Hutchinson, 2007). Most
binding occurs through an “I-like domain” in the β subunit which contains a “metal ion-
dependent adhesion site” (MIDAS). Some peptide epitope binding motifs like RGD
(Arginine-Glycine-Aspartic) are present in many ECM fibers and bind many integrins
(Hatley et al., 2018). However, there is selectivity and specificity among their ligands—and
even for the RGD motif there is an interplay between the conformation it adopts and the
specificity to a particular integrin (Aumailley et al., 1991; Kapp et al., 2017). In the field of
biomaterial engineering, there is growing interest to develop computational pipelines that
can identify functional motifs to incorporate into engineered ECMs that trigger cellular
response (Perez et al., 2021).
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Our existing understanding of integrin-ligand recognition has
mainly been driven from experimental observations including
affinity chromatography Otey et al. (1993), antibodies against cell
epitopes Ley et al. (2016), and the use of NMR experiments Siebert
et al. (2010). Computational tools on the other hand have been
challenged by the complexity of modeling integrin-ECM
interactions as well as the diversity of function/structure
relationships arising from the multidomain architecture that
merit attention such as the origin of selectivity, mechanism for
signal transduction (Kalli et al., 2011), effect of the lipid
environment (Kalli et al., 2017), or interaction between the
different domains and their role in active/inactive conformations
to name a few (Chen et al., 2011). Although the number of
computational studies for integrin systems is limited, there is a
wide range of approaches that have been used including physics
based approaches such as docking (Guzzetti et al., 2017), atomistic
and coarse grained molecular dynamics (MD) (Craig et al., 2004;
Murcia et al., 2008; Choi et al., 2010; Zhu et al., 2010; Wang et al.,
2015; Farina et al., 2016; Fratev and Sirimulla, 2019), QM/MM

approaches (Freindorf et al., 2012), and machine learning (Mehdi
et al., 2013; Prytuliak et al., 2017; Asgari et al., 2019). Typically,
ligand docking calculations are applied to filter ligands with high
affinity, MD approaches are used to either predict free energy
differences with thermodynamic integration (TI) or
conformational changes via enhanced sampling, while ML
approaches have been traditionally used to discover new binding
motifs in protein-peptide complexes such as the well-known RGD,
GPR (the recognition site for αxβ2), or DLLEL (the binding site for
αvβ6) for integrins.

We focus on the I-domain of the α2β1 integrin, which contains a
binding motif and has been shown to retain the binding activity of
the whole integrin in recombinant studies expressing only the I
motif (PDB code 1dzi) (Emsley et al., 2000). The binding domain
undergoes a conformational change between the unbound and
bound forms in which three loops participate in coordinating a
central metal ion, with a glutamic acid from the collagen completing
the coordination of the metal (Emsley et al., 2000). The collagen used
here introduces a six aminoacid peptide motif (GFOGER, where O

FIGURE 1
Sytem of study. Artistic representation of the α2β1 binding collagen. The inset corresponds to the PDB structure 1dzi, focusing on the specific motif
area “GFOGER” on the collagen fiber (orange).
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stands for hydroxyproline), that forms triple helices analogous to
canonical collagen. Even though the three strands are homologous
for triple-helix formation, during binding each strand becomes
distinct, with one containing a critical Glutamic acid residue (E)
for binding (“leading strand”). By comparison, the other two strands
have been previously named “middle” and “trailing” strands)
(Emsley et al., 2000). Given the 206 possible peptide sequences
covering the length of the GFOGERmotif, we expect there are many
other sequences that might bind this integrin. Indeed, amongst
integrins that bind collagen, there are differences amongst canonical
motifs (GxOGER, where x = F, L, M, A) and non-canonical motifs
(Hamaia et al., 2012). Hence we ask the question of whether
computational pipelines can suggest new motifs and if they are
capable of assessing which of those suggested motifs are actually
better binders.

We seek to assess the advantages/disadvantages of using
traditional and novel pipelines combining multiple computational
techniques readily available. We divide the pipelines in three stages:
1) predicting new motifs, 2) predicting their ability to bind, and 3)
predicting their stability. Overall, finding new interacting motifs
against integrins remains challenging regardless of the pipeline used.

2 Computational methods

2.1 Identification of novel motifs

We started from the X-ray crystal structure of the α2 I domain
from α2β1 in complex with collagen [PDBid: 1dzi (Emsley et al.,
2000)] and performed a scan of all possible mutations (for the
20 common amino acids) at each position along the “GFOGER”
motif, collecting the expected free energy changes (ΔΔG) these
programs predict. Integrin complexes were first optimized in the
FoldX suite. Next, a position scan was conducted with the command
“Position Scan” on the GFOGER motif and the output results
showed the difference of binding energy for each mutation per
amino acid on collagen. ΔΔGbind was also calculated using
RosettaDDG predictions, with the backrub trajectory stride set to
35,000 and making three trials for each ΔΔG calculation.

The ProteinMPNN (message passing neural network)
(Dauparas et al., 2022) has recently been developed as a way to
identify the ideal sequence that will adopt a certain 3D structure. In
this model, we provided the PDB structure of the complex and asked
the model to design newmotifs to replace the native GFOGERmotif.

2.2 Stability MD simulations

We used standard minimization and equilibration protocols
(Braun et al., 2018) followed by production runs using Langevin
dynamics for 500 ns in the NPT ensemble using a Monte Carlo
barostat (Åqvist et al., 2004). Simulations used AMBER’s (Case
et al., 2020) pmemd module (Salomon-Ferrer et al., 2013). We
simulated the top 20 FoldX and Rosetta predictions using ff14SB
(Maier et al., 2015) solvated in a truncated octahedron box [OPC
water model (Izadi et al., 2014)], and 150 mM concentration of
Na+ and Cl− ions (Joung and Cheatham, 2008). As a control, we
simulated the I-domain in the presence and absence of the wild

type (WT) collagen (PDBid: 1dzi). All simulations were carried
out with a Co2+ ion in the MIDAS binding site. We simulated
10,000 steps of energy minimization, switching from steepest
descent to conjugate gradient after 5,000 cycles. The resulting
minimized system was heated from 0 to 100 K in NVT condition
for 50 ps with Langevin dynamics, and 100–300 K in NPT for
500 ps using Langevin dynamics, followed by a short (5 ns)
equilibration process at constant pressure (1 atm) and
temperature (300 K). Finally, unbiased and unrestrained
system went through production in a periodic boundary
condition for 500 ns in NPT by Langevin thermostat and
Monte Carlo barostat conditions. Bonds involving hydrogen
were constrained by the SHAKE algorithm. Cpptraj (Roe and
Cheatham, 2013) was used to analyze the root mean square
deviation (RMSD) and Dynamical Cross Correlation
(Kamberaj and Vaart, 2009) within the ensembles comparing
them to the wild type complex.

2.3 Structure predictions with AlphaFold

We used Alphafold Multimer (Evans et al., 2021b) to predict
the structure of the complex using either sequence data or
templates (containing the collagen and integrin domain far
from each other). Results were analyzed in terms of the
predicted local distance difference test (pLDDT) score as is
standard in the field (Jumper et al., 2021). In short, the pLDDT
score gives a per residue and global value to show how confident
the Alpha Fold prediction results are. Results above 80 typically
reflect high confidence in the prediction.

2.4 Thermodynamic integration (TI)
calculations

TI was used to calculate the relative binding affinity
(ΔΔGmutant−WT

bind ) between collagen and α2β1 upon mutation of
certain residues in collagen. Here, we applied “One-step”
transformations (Steinbrecher et al., 2011) to decrease the
simulation time, in which electrostatic and van der Waals
forces are varied synchronously (Shirts et al., 2003). The initial
system was prepared using AMBER’s tiMerge to eliminate
redundant bonding terms and increase calculation efficiency.
We ran TI simulations with pmemd. The complex and mutant
ligand were solvated separately in a cubic box with explicit OPC
(Izadi et al., 2014) water and a 10 Å clearance. We employed ff14SB
(Maier et al., 2015) for the protein parameters and general AMBER
force field (He et al., 2020) for general atom and bonds parameters.
Minimization, heating and equilibrium process was performed in
the NVT ensemble with a Monte Carlo barostat. The TI
production phase was done in the NPT ensemble (300 K and
1 atm), running for 500 ns Softcore potentials were applied to
reduce issues with the integration step at the endpoints
(Steinbrecher et al., 2011). Eleven independent MD simulations
were performed spaced evenly between the end-points (λ ∈ [0, 1]).
We performed six replicates for each simulated system. The
average and standard deviation for ΔΔGbind were calculated
from the differences amongst replicates.
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2.5 Sampling collagen binding modes with
MELD

The Modeling Employing Limited Data (MELD) approach uses
H,T-REMD (Sugita and Okamoto, 1999) to sample rare events. The
method changes the Hamiltonian by enforcing information that
guides to different conformations that might be compatible with the
end state. The caveat is that the data is framed as ambiguous and
noisy—thus MELD relies on Bayesian inference to identify the best
interpretation of the data compatible with the forcefield. In this

process, analyzing the resulting ensemble (e.g., through clustering)
identifies the states (conformations) most compatible with the
information and force field.

To guide the binding process we first placed harmonic distance
restraints amongst native contacts in the integrin (so it would not
unfold), and also between the three collagen strands, so it would not
dissociate. We then selected residues in the active site of the integrin
and in those of the collagen bindingmotif. Based on those two lists of
residues, we generated a list of twenty five possible contacts (some of
which were present in the native state and some of which were not).

FIGURE 2
Pipeline for selecting newmotifs. (A) FoldX and Rosetta are used to estimate relative free energy changes uponmutating each residue in the binding
motif to all possible amino acids. (B) Predicted effect of mutations by three different methods (FoldX, Rosetta, and MD) for a set of 22 mutations. (C) The
wild type samples a single state throughout the trajectory as identified by projecting onto the two first principal components. Reference Dynamic cross
correlation matrix (DCCM) for the wild type state. (D–F) Examples of a stable (D) and unstable (E,F) mutations as identified from RMSD, PCA, and
DCCM.
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We found that when enforcing 15 or more restraints, replica
exchanges were inefficient, leading to poor sampling. At the
other extreme, satisfying less than four restraints sampling was
not restrictive enough to sample native-like bound
conformations. We thus required that only eight restraints out of
the 25 possible ones be satisfied. Satisfying different subsets of eight
restraints give rise to different binding modes.

MELD simulations used the ff14SB force field (Maier et al.,
2015) for side chains and ff99SB (Hornak et al., 2006) for backbone,
together with the GBneck2 (Nguyen et al., 2013) implicit solvent
model. The collagen fiber was placed over 30 Å away from the
integrin. The temperature range was set between 300 and 500 K,
with 30 replicas. Ensembles were analyzed using hierarchical
clustering as implemented in CPPTRAJ (Roe and Cheatham,
2013) with an ϵ = 2 value, including heavy atoms at the interface
of the complex in the native state.

3 Results

3.1 Local search for new interaction motifs

Traditional design strategies start with a known binding motif and
search for single amino acid mutants that increase binding affinity
(ΔΔGbind). Such strategies lead to local sequence optimization, with
designs similar to the original motif. Here we used FoldX (Schymkowitz
et al., 2005) and Rosetta (Barlow et al., 2018) (see methods), two
traditional approaches with varying computational cost and success
rate. We observed that FoldX single point mutations have a wider
ΔΔGbind distribution, and are generally shifted towards higher energies
(see Figure 2A). While there is good agreement on the failed mutations,
the more computationally demanding Rosetta is better at
discriminating mutations that FoldX finds favorable.

To further assess the predicted motifs with an independent
methodology, we performed MD simulations of a selected group of
15 mutants. We expect that monitoring standard structural and
dynamical properties like RMSD and dynamical cross correlation
functions would be enough to distinguish those mutations that
remain stable in the 500 ns timescale vs. those that are unlikely to
bind (see Figures 2C–F). We monitored the RMSD of the interface
region, defined as heavy atom contacts to collagen in the native
structure (using a 10 Å cutoff). In this timescale, the integrin
oscillates around 1 Å from the initial structures, with few deviations
to higher RMSD values (2.5 Å). In the presence of collagen we observe a
similar behavior, where there are no deviations to larger RMSD states in
the 500 ns timescale. The RMSD of the whole complex oscillates at
around 4 Å. Figure 2 showcases the behavior of the wild type, neutral
and negative mutation on sampling [RMSD and projection on the top
two principal components using the Bio3d package (Grant et al.,
2006)]. Figure 2 exemplifies a negative control mutation (which
rapidly dissociates) and a neutral mutation that remains close to the
starting conformation.

We find that the more computationally efficient FoldX is capable
of filtering out mutations that are likely detrimental to the binding
affinity.While the ones predicted to be beneficial do not always agree
with MD and Rosetta results (see Figure 2B). We notice several
disagreements with Rosetta and MD—this is not surprising as
Rosetta has been designed to predict free energy differences while

short conventional MD trajectories do not contain enough sampling
to assess the free energy. We thus decided to perform
thermodynamic integration calculations to further identify the
agreement between Rosetta and MD-based approaches.

Thermodynamic integration increases the complexity in system
setup and analysis with respect a conventionalMD trajectory—but the
computational costs (considering replicates needed, see methods)
remains relatively small compared to other MD approaches. We
selected 15 mutations and compared results using Rosetta and TI
(see Supplementary Figure S1). For most residue mutations, both
programs agree in sign if not in magnitude. Previous work points to
systems including multiple binding modes or systems that are
sensitive to local conformational changes (such as the MIDAS
binding site) (Armacost et al., 2020) as problematic for TI. For
example, Guest and coworkers performed free energy perturbation
studies on a series of small molecule inhibitors to the β6 integrin with
an average error of 1.5 kcal/mol with respect to the experimental
results (Guest et al., 2020).

We searched for alternative binding modes by using the MELD
approach, which can simulate multiple binding/unbinding events.
MELD combines ambiguous/noisy information with molecular
simulations through Bayesian inference and has been routinely used
for predict the binding of macromolecules [protein-protein (Brini et al.,
2019), protein-peptide (Morrone et al., 2017; Mondal et al., 2022),
protein-DNA (Bauzá and Pérez, 2021), and protein-small molecule (Liu
et al., 2020)]. We derived ambiguous information based on native
contacts present in the crystal structure in such a way that different
interpretations of the data is compatible with different binding modes.
We expected, that the force field would be able to recognize the most
native-like amongst the binding modes for those sequences that have a
high affinity (clusters with high population) (Lang and Perez, 2021).
Unfortunately, due to the small interface region between collagen and
the integrin, the different binding modes found give rise to large
deviations in binding angles between the collagen in MELD
simulations with respect to the native structure (see Supplementary
Figure S2). On the other hand, satisfyingmore information overrides the
force field preferences and yields native-like bindingmodes regardless of
the sequence. Similarly, competitive binding simulations (Morrone et al.,
2017) with MELD also failed to distinguish which collagen mutations
were more likely to lead to more stable complexes. Presumably, these
limitations arise from the use of an implicit solvent (Nguyen et al., 2013)
needed for the MELD binding simulations.

Similarly, the recent successes of the AlphaFold (AF) (Evans
et al., 2021a) machine learning approach did not translate to this
system. We used a local installation of AlphaFold and performed
predictions in the presence/absence of structural templates. In our
hands, Alphafold multimer predictions were confident about the α2
I-domain structure (high pLDDT scores), but failed to predict the
structure of the collagen triple helix structure—and hence of the
complex (see Supplementary Figure S2).

3.2 Recent machine learning approaches
can suggest novel sequences based on the
structure

Whereas we used FoldX and Rosetta to predict local changes in
the sequence (single mutants), the recent protein MPNN (Dauparas

Frontiers in Chemistry frontiersin.org05

Liu and Perez 10.3389/fchem.2023.1107400

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1107400


et al., 2022) machine learning approach can in principle find an
optimal sequence given the structure of the complex. Contrary to the
other two methods, this approach does not provide a relative
binding affinity. We first generated two predictions in which we
allowed any residue in the motif along the tree collagen strands to
change (see “Prediction 1″ and “Prediction 2” in Supplementary
Figure S3). This gave rise to four different binding motifs. We next
generated four more sequences by creating homo-trimer collagen
strands with each of the four predicted motifs (see the latter four
motifs in Supplementary Figure S3A). We assessed the viability of
these motifs by running conventional MD. All sequences in which
the leading strand had an E to P mutation were unstable. Whereas if
this mutation occurred in other strands, the system remained stable.
This is expected as the Glutamic acid coordinates with a divalent site
when interacting with the integrin.

4 Discussion

In this work we focused on identifying collagen-like motifs that
bind the I-domain of the α2β1 integrin. Despite their biological
relevance and some successes (Craig et al., 2004; Murcia et al., 2008;
Choi et al., 2010; Zhu et al., 2010; Wang et al., 2015; Farina et al.,
2016; Fratev and Sirimulla, 2019), integrins remain challenging
systems to study through molecular modeling. The collagen fiber
with the GFOGER motif that we study was initially suggested based
on docking calculations (Emsley et al., 2000), which led to the
crystallization of the complex (pdb code 1dzi). Our use of local
(single mutant) and global (proteinMPNN) approaches shows that
current methodologies are better at discerning unfavorable
mutations than at providing reliable predictions. However,
consensus between different methods increases the likelihood of
success. Our use of MD stability analysis showed that it can be a
helpful tool to distinguish unfavorable mutations, but stable
simulations are not a guarantee of favorable mutations as
timescales remain limited. This becomes an issue even when
using thermodynamic integration, as multiple binding modes are
possible. While this is an actively developed field for small molecule
binders Gill et al. (2018), it remains more challenging for flexible
molecules such as collagen. For such flexible systems, we have
previously found the MELD Bayesian inference approach can
typically identify differences amongst different binder sequences.
Due to the small interface area, our standard protocol results in
binding modes where the collagen binds in the right region, but with
orientations that can deviate up to 90° from their experimental
binding mode. The caveat of increasing the number of restraints in
MELD to solve this issue leads to the inability to distinguish motif
sequence preferences.

Molecular modeling pipelines are undergoing rapid and drastic
changes thanks to the eruption of machine learning approaches. The
CASP event served as the perfect scenario for the first iteration of
AlphaFold to show the potential of machine learning in protein
structure prediction (Senior et al., 2020). Their initial approach
relied on following the leading strategies in the field: determine pair-
wise distance distributions between residues to impose as restraints
to predict structures. Two years later, AlphaFold presented a novel
strategy based on attention networks with an impressive
performance in CASP (Jumper et al., 2021). Making the network

available to the community and the appearance of collaborative
notebooks (Mirdita et al., 2022) rapidly allowed groups to apply it to
a myriad of problems: for molecular recognition (protein-protein
and protein-peptide) (Humphreys et al., 2021; Tsaban et al., 2022),
for predicting multiple biological states (Wayment-Steele et al.,
2022), relative binding affinities (Chang and Perez, 2022), or
even for designing new proteins via deep network hallucination
(Anishchenko et al., 2021). As these networks learn from data
deposited in the protein data Bank, they also implicitly learn
about the position of ions or ligands in active sites. However, AF
multimer was not able to predict the structures of the 1dzi complex.
Recent work showed that partial retraining pf AF weights for specific
targets could lead to an improved ability to correctly identify bound
or unbound peptides binding to the Major Histocompatibility
Complex (MHC) (Motmaen et al., 2022). This was possible
thanks to a large database of peptides known to be either
binders/non-binders to MHC. Such type of initiatives could soon
provide accurate results for predicting complexes involving
integrins, which combined with competitive binding strategies
(Chang and Perez, 2022) could lead to rapid identification of
functional motifs.

During the writing of this paper, several new machine learning
approaches appeared in the literature which make us optimistic
about the future: we highlight three that are relevant to the
discussion above. The first one is RosettaFoldNA (Baek et al.,
2022), which predicts the folding of RNA as well as nucleic acid-
protein complexes. The approach draws on the AF principles but
incorporates an additional physics-inspired term (Lennard Jones
potentials taken from Rosetta) to better reproduce geometries (e.g.,
reduce the overlap between protein and nucleic acids). In this
process, the algorithm has learned to assemble double-stranded
DNA, much like we hope the collagen triple helix can be predicted.
The second development is the OpenFold (Ahdritz et al., 2022)
initiative—a pyTorch-based implementation trainable to reproduce
AlphaFold levels of accuracy at a lower computational cost. The
authors also report the OpenProteinSet used to train the model. In
the last few months, the field used AF beyond what it was originally
designed to do. OpenFold will now give users the possibility to
retrain a tool equivalent to AF for new purposes. Finally, a recent
study (Akdel et al., 2022) highlights the potentially transformative
role of AF in structural biology, its accuracy matching experiments
for many applications, as well as the role of potential biases, and its
ability to identify features that are not typically present in databases.

5 Conclusion

In this work we assessed the role of different computational tools
to identify novel collagen-integrin binding motifs. FoldX serves as a
fast mutant screen, to filter out mutations that do not improve
binding affinity. A combination of Rosetta and MD (TI) serves to
further identify those mutations most likely to lead to improved
binding affinities. Although we were very enthusiastic about the
possibility of using AlphaFold to differentiate amongst binding
motifs, we found no evidence that it could predict the native
state. However, in light of recent work it seems like partial
retraining of the weights against known binders/non-binders
might lead to a feasible pipeline. Finally, proteinMPNN was able
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to correctly identify that mutations to the glutamic acid involved in
binding would be deleterious only in the leading strand. Although
further assessment is needed, proteinMPNN paves the way to
identifying functional motifs far from the starting sequence motif.
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