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The widespread conversion of synthetic receptors into luminescent sensors has
been achieved via the use of fluorescent-indicator displacement assays (F-IDAs). Due
to their rigid structures and efficient binding affinities, cucurbit[n]urils, combinedwith
a variety of fluorescent guests, have gained extensive utilization in fluorescent-
indicator displacement assays for sensing non-fluorescent or weakly fluorescent
organic compounds (analytes) in a selective and specific manner. This mini-review
summarizes recent advances in the design of cucurbit[n]uril-based fluorescent-
indicator displacement assays and discusses the current challenges and future
prospects in this area.
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Introduction

Indicator displacement assays (IDAs) (Metzger and Anslyn, 1998; Wiskur et al., 2001;
Nguyen and Anslyn, 2006) have been a favored approach for achieving synthetic-receptor
conversion into optical sensors in the supramolecular chemistry realm. IDAs, which exploit the
non-covalent interplays of the host with analyte/indicator, have been applied to the sensing of
diverse analytes (e.g., metal anions, cations, pharmaceuticals, and other biological molecules)
(Rather and Ali, 2021; Sedgwick et al., 2021). IDAs are recognized as a crucial and practical
strategy, especially in fluorescence-sensing applications. As the initial step of this approach, an
inclusion complex is created between an appropriate indicator dye and an adequate macrocyclic
host. In this way, arbitrary (mostly photophysical) traits of the dye molecules are either
attenuated or enhanced. Upon application of this inclusion complex for the analyte detection in
the solution, the dye’s modulated traits are reversed since the dye is displaced from the host
cavity through competitive analyte–host binding (Bakirci and Nau, 2006; Nguyen and Anslyn,
2006; Praetorius et al., 2008; Dsouza et al., 2011; Jadhav et al., 2015; Norouzy et al., 2015; Sayed
et al., 2016; Sayed and Pal, 2016). The utilization of fluorescent dyes in such IDAs is often
regarded as profoundly useful in view of the appreciable system response to the analytes under
these scenarios via either fluorescence “turn-off” or “turn-on” sequences (see Figure 1). This
approach is defined uniquely as Fluorescent-IDAs (F-IDAs).

Behrend was the original discoverer of cucurbit[n]urils (CBn, n = 6–8), the third class of
macrocycles, in 1905 (Behrend et al., 1905). The CBn, consisting of n-glycoluril units that are
bridged by 2n-methylene groups, in particular, hold immense negative charge density in the
carbonyl rim portals, allowing neutral and cationic organic guests to be bound. At the same
time, the interior cavities of CBn are hydrophobic and preferably accommodate hydrophobic

OPEN ACCESS

EDITED BY

Guoxing Liu,
Henan Agricultural University, China

REVIEWED BY

Bo Zheng,
Northwest University, China
Zhichao Pei,
Northwest A&F University, China

*CORRESPONDENCE

Qunpeng Duan,
qpduan@haue.edu.cn

Kui Lu,
luckyluke@haue.edu.cn

SPECIALTY SECTION

This article was submitted to
Supramolecular Chemistry,
a section of the journal
Frontiers in Chemistry

RECEIVED 15 December 2022
ACCEPTED 05 January 2023
PUBLISHED 13 January 2023

CITATION

DuanQ, Chen R, Deng S, Yang C, Ji X, Qi G,
Li H, Li X, Chen S, Lou M and Lu K (2023),
Cucurbit[n]uril-based fluorescent
indicator-displacement assays for sensing
organic compounds.
Front. Chem. 11:1124705.
doi: 10.3389/fchem.2023.1124705

COPYRIGHT

© 2023 Duan, Chen, Deng, Yang, Ji, Qi, Li,
Li, Chen, Lou and Lu. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Mini Review
PUBLISHED 13 January 2023
DOI 10.3389/fchem.2023.1124705

https://www.frontiersin.org/articles/10.3389/fchem.2023.1124705/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1124705/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1124705/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2023.1124705&domain=pdf&date_stamp=2023-01-13
mailto:qpduan@haue.edu.cn
mailto:qpduan@haue.edu.cn
mailto:luckyluke@haue.edu.cn
mailto:luckyluke@haue.edu.cn
https://doi.org/10.3389/fchem.2023.1124705
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2023.1124705


moieties (Isaacs, 2014). As the fluorescent guests’ photophysical traits
are alterable by the CBn hosts (Dsouza et al., 2011), the application of
CBn for host–guest complex creation has been reported, and these
complexes have gained further utilization for sensing or determining
non-fluorescent or weakly fluorescent organic compounds (analytes)
via F-IDAs (Ghale and Nau, 2014).

In our current mini-review, we detail recent advances in the
application of a variety of CBn analytically applied to achieve the
fluorescence intensity quenching or enhancement for various guest
molecules and the design of F-IDAs induced by CBn based on the
quenching or enhancement of fluorescence signals for the analyte
assessment purpose. Figure 2 illustrates the structures of CBn,
analytes, and fluorophores adopted in F-IDAs as synthetic
receptors, competitors, or indicators.

IDAs for analyte sensing using a “turn-
on” fluorescence response

Fluorescence “turn-on” displacement assays exploit the guest
molecule-induced competitive displacement of a fluorescent dye
[e.g., acridine (Ac), methylene blue (MB), or proflavine (PF)] from
the hydrophobic cavity of the CBn.

In 2008, Praetorius et al. (2008) proposed a concept of product-
selective supramolecular tandem assay through F-IDA based on CB6 and
diamino-alkyl-anchored 3-amino-9-ethylcarbazole as a fluorescent
guest, with which amino acids and their decarboxylases were
detected. Later, in 2014, Sun and co-workers employed the F-IDA
strategy to detect paraquat (PQ), an environmental pollutant, where
the host–guest complexes ofMB and CB8 were utilized (Sun et al., 2014).
MB forms a powerful inclusion complex (2:1) with CB8 in an aqueous
solution, MB2⊂CB8. Despite the potent fluorescent trait of monomeric
MB, the dimeric MB in MB2⊂CB8 is relatively non-fluorescent. When

PQ is resent, there is a displacement of probe MB from the
MB2⊂CB8 complex, as the competitive binding interaction of PQ
with the CB8 host is more powerful. In response to the existence of
PQ,MB is discharged, resulting in an immensely-enhanced fluorescence.

Xi et al. (2017) reported an innovative F-IDA for sensing an
anticarcinogen known as gefitinib (GEF), where the macrocyclic host
was CB8 and the fluorescent guest was proflavine (PF). They observed
that a 1:2 host–guest complex was created between CB8 and PF, with the
latter showing quenched fluorescence intensity. Upon incorporation of
GEF into the CB8–PF mixture, the fluorescence intensity recovered as
the PFwas displaced by the GEF. The proposed F-IDA has demonstrated
encouraging results in actual applications in determining GEF in living
cells using an appropriate imaging technique. In 2018, Hirani et al. (2018)
reported F-IDA based on CB8 and tetramethylbenzobis(imidazolium)
(MBBI) as the fluorescent indicator for identifying non-aromatic and
methionine-terminated aromatic peptides in aqueous solutions in a
selective manner. It was revealed that no aromatic residue is
necessary with the CBn-mediated identification of peptides to attain
high affinity. Capable of targeting disorderly folded protein loops and
peptide N-termini, the CBn are encouraging receptors for the newly
translated and unmodified proteins. Similarly, F-IDA was also used in
the identification and testing of octreotide based on CB8 and acridine as
an F-IDA system (Yin et al., 2019).

IDAs for analyte sensing using a “turn-
off” fluorescence response

Fluorescence “Turn-off” displacement assays mainly exploit the
guest molecule-induced competitive displacement of a fluorescent dye
[e.g., dapoxyl (DAP), acridine orange (AO), palmatine (PAL),
berberine (BER), or coptisine (COP)] from the CBn hydrophobic
cavity.

FIGURE 1
Schematic illustration of an F-IDA, where the disassembly of an integrated CBn-fluorophore sensor happens when an analyte exists, triggering either a
“turn-on” or “turn-off” fluorescence response.
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In 2007, Hennig et al. (2007) reported an F-IDA for the surveillance of
cationic products from reactions catalyzed by the amino acid
decarboxylases. CB7 was used to interact with DAP as a fluorescent
guest. DAP exhibited a 200-fold enhancement in its fluorescence intensity
after binding to CB7, as well as a turn-off of signal following ammonium
product-induced displacement. Given the stronger affinity of CB7 for
cationic alkylammonium products than amino acids, the amino acid
incorporation failed to interfere with the F-IDA. In another study, a label-
free F-IDA strategy was designed by Nau and co-workers to achieve real-
time continuous protease activity surveillance on unlabeled peptides,
where CB7 and AO were utilized as the macrocyclic host and
fluorescent guest, respectively (Ghale et al., 2011). CB7 was responsible
for selectively identifying the cleavage products, which bear anN-terminal
phenylalanine residue. AO was responsible for the reaction signaling after
being selectively displaced from CB7 by the high-affinity proteolysis
product. An established inhibitor phosphoramidon was adopted to
verify the protease inhibition quantifying the capacity of the proposed
F-IDA strategy. Wang et al. (2014) employed another label-free
competitive fluorescence displacement system comprising the
macrocyclic host CB7, and AO was employed for the detection of
cadaverine. Following the incorporation of the cadaverine into a
strongly fluorescent supramolecular CB7–AO complex, the dye was
displaced, and the fluorescence was attenuated. For the activity
surveillance of lysine decarboxylase (an enzyme enabling lysine
conversion into cadaverine), differential fluorescence responses were
observed for the enzymatic reactant, as well as its product. Enzyme
suppression by different organophosphate esters was assessed using the
proposed system. In 2011, an extraordinary F-IDA was put forward by

Florea and Nau (2011), which enabled volatile hydrocarbon surveillance
in aqueous solutions in real time. CB6 was employed as the host, and
putrescine-anchored 1-naphthylamine-5-sulfonic acid was adopted as the
fluorescent guest. After an aqueous solution of the F-IDA was exposed to
diverse hydrocarbon gases, displacement of the fluorescent guest was
detected, along with fluorescence ‘‘turn-off.” As a later air purge
demonstrated, this active F-IDA system was reversible.

Pozo et al. (2018) and Yang et al. (2013) reported an F-IDA for
recognizing amantadine (AMA), an acknowledged agent for
managing Parkinson’s disease. In the prior report, AMA-induced
displacement of a thionine (Th) guest from the cavities of CB7 or
CB8 was noted, resulting in a fluorescence attenuation of the CB7 host
and a fluorescence intensification of the CB8 host. Yang et al. (2013)
adopted a different guest, 1,1′-butane(1,4-diyl)bis(2-aminopyridine)
bromide (DPAD), combined with CB7 as the host for detecting AMA
by fluorescence quenching. In another study, Liu and co-workers also
proposed an F-IDA for recognizing AMA in a highly sensitive and
selective way, where CB7 was employed as the macrocyclic host and
the fluorescent guest utilized was N-(4-(aminomethyl)benzyl)-1-
(anthracen-9-yl)methanamine (ABAM) (Zhu et al., 2018). Powerful
binding of ABAM to the CB7 was noted, and ABAM⊂CB7, a
fluorescent host–guest mixture, was formed, which sequentially
exhibited strong interference resistance and enabled highly selective
AMA recognition. The AMA incorporation led to the discharge of
ABAM from the CB7 cavity, causing significant fluorescence
quenching of the ABAM. It is expected that this system would be
profoundly useful for AMA content quantification in innumerable
pharmaceuticals and diverse other drug compounds.

FIGURE 2
Chemical architectures for (A) CBn synthetic receptors, (B) fluorophore indicators, and (C) selected analyte competitors.
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In 2015, Li and co-workers reported F-IDAs of CB7 with three
fluorophores, palmatine (PAL), berberine (BER), and coptisine
(COP), for the detection of both labetalol hydrochloride (LBT) (Li
et al., 2015a) and dibucaine (DC) (Li et al., 2015b). Notably, although
the labetalol hydrochloride and dibucaine were examined with
identical systems, the authors failed to compare the analytes
against one another. Later, in 2017, CB7 with the same three
fluorophores, PAL, BER, and COP, was also used to detect the
anti-cancer drug methotrexate (MTX) through F-IDA (Chang
et al., 2017). After the MTX incorporation, linear quenching in the
fluorescence intensities was noted for the CB7–PAL, CB7–BER, and
CB7–COP. The application of this approach for MTX recognition in
plasma samples has been successful, implying its encouraging
applicability in diverse practical settings. In 2016, Aryal et al.
(2016) reported that certain pharmaceuticals, such as adamantyl-
carboxamido-benzenesulfonamide, N-(aminophenyl)-piperidine,
and doxorubicin, enabled a naphthalimide (NMI)-derived
fluorescent guest from being displaced from the CB7 cavity, and
quenching of the fluorescence emission signal was noted.

Lazar et al. (2016) used perylenediimide (PDI-OH), BER, and MB
as fluorescent guests for the effective detection of steroidal drugs.
Displacement of the fluorescent guest from the cavity of CB8 was
caused by a number of steroidal drugs. Recognition of these steroidal
drugs at low micromolar levels was possible using these F-IDAs. In
2018, an F-IDA was designed by Wu et al. (2018) for sensing Sunset
Yellow (SY) in soft drinks, which exploited the competitive interplays
between a CB7 host and signal luteolin/epigallocatechin gallate
(EGCG) guests. It was observed that the formation of
luteolin⊂CB7 and EGCG⊂CB7 complexes led to the immensely-
intensified fluorescence of luteolin and EGCG. The incorporation
of SY into either of these two complexes led to extreme fluorescence
attenuation. The two above-mentioned fluorescence detection studies
are considered to hold broad prospects in food safety and preservation.

In the same year, 2018, a red-NIR F-IDA was reported by Aryal
et al. (2018), where a supramolecular CB8–perylene (PMI1) mixture
exhibiting an aggregation behavior-induced fluorescence response of
“turn-off” in aqueous solutions was utilized. After a stable host–guest
mixture was created, the PMI1 was de-aggregated via encapsulation to
incur a “turn-on” fluorescence response. Due to the addition of
strongly affine addictive drugs (as binding guests), PMI1 was
displaced from CB8 to again trigger the “turn-off” fluorescence
response. With the aid of the PMI1⊂CB8 mixture, successful
urinary addictive drug identification was further demonstrated, and
the autofluorescence interference with the urine sample was
successfully eliminated.

Later, in 2019, Sinn et al. (2019) reported the first CB8-based
F-IDA for sensing serum memantine (Mem), an anti-Alzheimer’s
drug, utilizing a fluorescent guest methyl pyridine paracyclophane
(MPCP) developed for the CB8 host. This allowed serumMem sensing
even within a low range of concentrations, as the host–guest affinities
were improved, with Ka > 1012 M−1 in water. Later, in 2020, Paudics
et al. (2020) reported an F-IDA based on CB7 and 4-(4-
(dimethylamino)styryl)-1-phenylpyridiniumiodide (PhSt) for the
selective recognition of trimethyl-lysine over other lysine
derivatives. Alongside the PhSt binding to CB7, the fluorescence
was greatly intensified, suggesting the potential of the CB7–PhSt
system as a feasible F-IDA.

Recently, Yan et al. (2022) reported a novel host-guest inclusion
complex based on CB8 and PAL, whose AIE behavior in an aqueous

solution was outstanding while also demonstrating preferable
sensitivity for recognizing ketamine (KET). It was observed that
PAL moieties in the CB8 cavity underwent head-to-tail dimeric
stacking as a homoternary complex (2:1), which was the origin of
the unconventional AIE effects. The incorporation of KET, which
exhibited stronger binding to CB8, led to the guest competition-
induced PAL displacement from the host cavity and fluorescence
regeneration of free PAL.

Conclusion and outlook

Our current mini-review has attempted to provide a summary of
the latest advances and future prospects of F-IDAs that use CBn as
molecular recognition units. However, CBn-based F-IDAs also face
some challenges and deficiencies, despite their promising role in
molecular sensing. For example, the supramolecular ensembles
formed via non-covalent interactions during the assays display
thermodynamic instability. Due to the variations of equilibrium
processes with polarity, viscosity, temperature pH, and
concentration, the association constants are greatly impacted. The
present comprehensive mini-review, which covers the available
literature concerning CBn-based F-IDAs, may offer insights and
inspirations for developing innovative and improved F-IDAs to
remedy extant challenges and deficiencies. Finally, yet importantly,
we expect persistent efforts will be devoted to developing more
versatile and reliable F-IDAs, so that an ever-broader scope of real-
world issues can be addressed, including the detection of the virus
responsible for COVID-19 omicron variant.
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