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Background: Herb pair of Astragali Radix (AR) and Spreading Hedyotis Herb (SH)
has been frequently prescribed in clinical for the treatment of lung cancer owing
to its favorable efficacy. Yet, the mechanism under the therapeutic effects
remained unveiled, which has limited its clinical applications, and new drug
development for lung cancer.

Methods: The bioactive ingredients of AR and SH were retrieved from the
Traditional Chinese Medicine System Pharmacology Database, with the targets
of obtained components predicted by Swiss Target Prediction. Genes related to
lung adenocarcinoma (LUAD) were acquired from GeneCards, OMIM and CTD
databases, with the hub genes of LUAD screened by CTD database. The
intersected targets of LUAD and AR-SH were obtained by Venn, with David
Database employed to perform Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses. Survival analysis of the hub
genes of LUAD was carried out using TCGA-LUAD dataset. Molecular docking of
core proteins and active ingredients was performed by Auto-Dock Vina software,
followed by molecular dynamics simulations of protein-ligand complexes with
well-docked conformations.

Results: 29 active ingredients were screened out with 422 corresponding
targets predicted. It is revealed that AR-SH can act on various targets such
as EGFR, MAPK1, and KARS by ursolic acid (UA), Astragaloside IV(ASIV), and
Isomucronulatol 7,2′-di-O-glucoside (IDOG) to alleviate the symptoms of
LUAD. Biological processes involved are protein phosphorylation, negative
regulation of apoptotic process, and pathways involved are endocrine
resistance, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt, and HIF-1
pathway. Molecular docking analysis indicated that the binding energy of
most of the screened active ingredients to proteins encoded by core genes
was less than −5.6 kcal/mol, with some active ingredients showing even lower
binding energy to EGFR than Gefitinib. Three ligand-receptor complexes
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including EGFR-UA, MAPK1-ASIV, and KRAS-IDOG were found to bind relatively
stable by molecular dynamics simulation, which was consistent with the results
of molecule docking.

Conclusion:We suggested that the herb pair of AR-SH can act on targets like EGFR,
MAPK1 and KRAS by UA, ASIV and IDOG, to play a vital role in the treatment and the
enhancement of prognosis of LUAD.

KEYWORDS

Astragali Radix, spreading hedyotis herb, prognosis, network pharmacology, molecular
docking, molecular dynamics simulation

1 Introduction

Lung cancer, themajor cause of cancer-relatedmortality around the
world, resulted in 1.6 million deaths each year with a poor 5-year
survival rate of only 19% (Bray et al., 2018; Siegel et al., 2019). Lung
cancer can be categorized into small cell lung cancer (SCLC) (15%) and
non-small cell lung cancer (NSCLC) (85%) based on the pathological
characteristics and differentiation degree of cancer cells, where the latter
is further divided into adenocarcinoma, squamous cell carcinoma, and
large cell carcinoma (Sher et al., 2008). Lung adenocarcinoma (LUAD)
is one of the common types of lung cancer, accounting for
approximately 40% of all lung cancers, which originates from small
airway epithelial, type II alveolar cells that secrete mucus and other
substances (Noguchi et al., 1995; Zappa andMousa 2016). Expression of
mutated oncogenes in cells can lead to the activation of downstream
signaling molecules that drive the abnormal proliferation and
differentiation of cells to form tumor cells eventually. Various target
agents have been developed that are effective and have low toxicity, but
the therapeutic effect of targeted therapy remains unsatisfactory (Eguchi
et al., 2008; Yue et al., 2018; Zhong et al., 2021). Although great efforts
have been made over the decades, LUAD remains a persistent disease,
making it increasingly imperative to search for more effective therapies
and drugs for LUAD.

Traditional Chinese Medicine (TCM) pays attention to the
enhancement of healthy Qi in patient and individuated therapy
for each person in the treatment of lung cancer, which has been
widely applied in clinical practice. The advantages of TCM therapy
for cancer are extensive, including the improved survival quality of
patients (Duflos et al., 2002; Efferth et al., 2007), enhanced physical
fitness of patients, alleviation of clinical symptoms, minimum side
effects, reduced side effects by radiotherapy, prolonged survival with
tumor (Tian and Liu, 2010), and extended survival time (Liao et al.,
2017). Modern pharmacological research have demonstrated that
TCM and its extracts can act on tumor cells through multiple targets
to inhibit the proliferation and migration of tumor cells, playing an
essential role in all stages of tumor therapy. TCM has shown
potent therapeutic effects to enhance efficacy and reduce
toxicity in the complementary treatment of lung cancer, but the
underlying molecular mechanisms are too complex and have yet to
be revealed.

Through data mining, we discovered that herb pair of AR-SH
was most frequently used in the treatment of lung cancer in clinical
(Chen et al., 2022). AR, one of the most commonly used tonic herbs
in clinical practice, can strengthen the spleen, and enhance the body,
where modern pharmacological studies have shown that AR has a
wide range of effects including hepatoprotective, diuretic,

hypotensive, and immunomodulatory functions (Bedir et al.,
2000). Extracts of AR has been widely used as alternative
therapies in the treatment of various diseases, including fatigue,
anorexia, anemia, fever, allergies, gastric ulcers, and cancer
(Astragalus, 2003; Fu et al., 2014). SH is a famous herb with
heat-clearing and detoxifying properties, possessing several
biological activities, such as neuroprotection (Kim et al., 2001)
and antitumor activity (Lee et al., 2011). The anti-tumor effect of
SH is generally recognized. SH has been shown to inhibit
angiogenesis of tumor (Lin et al., 2011), combat HepG2 cancer
cells through inducing apoptosis (Li et al., 2016), effectively kill
human colorectal cancer cells (Lin et al., 2015) and breast cancer
cells (Liu et al., 2010).

Network pharmacology is a popular method for predicting the
underlying mechanism of herbal medicines. Prognostic analysis is
an essential way to evaluate the efficacy of antitumor drugs, and
molecular docking (Wang and Zhu 2016), and molecular dynamics
simulations (De Vivo et al., 2016) can be used to validate and
complement the network pharmacological results. In this study, a
systemic pharmacology strategy (Figure 1) integrating network
pharmacology, molecular docking and molecular dynamics
simulations, was employed to explore the active components of
AR-SH, and their corresponding targets and signaling pathways in
the treatment of LUAD, with prognostic analysis used to examine
key targets of AR-SH so as to provide scientific evidence for the
complementary therapeutic effect of AR-SH in LUAD.

2 Materials and methods

2.1 Collection of active compounds and
targets prediction of AR-SH

The active compounds of AR-SH were searched using the
Traditional Chinese Medicine Systems Pharmacology (TCMSP,
https://old.tcmsp-e.com/tcmsp.php) with the criteria set as oral-
bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.18. In
addition, bioactive ingredients of AR-SH were supplemented
from relevant literature. Pubchem database (https://pubchem.
ncbi.nlm.nih.gov/) were employed to acquire the 2D structure of
the ingredients, which were further uploaded to Swiss Target
Prediction (http://www.swisstargetprediction.ch/) for target
prediction with screening standard as Probability≥0.1. We
calculated the similarity matrix of the molecules by Morgan
Fingerprint in the RDKit toolkit, and the similarity was evaluated
using the Tanimoto score (Hert et al., 2004; Rogers and Hahn 2010).
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2.2 Acquisition of LUAD genes and screening
of hub genes

LUAD related genes were obtained using the keyword “lung
adenocarcinoma” in various databases, including GeneCard

(https://www.genecards.org/), Online Mendelian Inheritance in
Man (OMIM, https://omim.org/) and Comparative
Toxicogenomics Database (CTD, http://ctdbase.org/). The
genes retrieved from the databases were integrated and de-
duplicated, and the protein names were normalized using the

FIGURE 1
Flow chart of the employed systemic pharmacology strategy.
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Uniprot (https://www.uniprot.org/) database. Through the CTD
database, the common targets with the highest “Inference Score”
and “References” were selected as hub genes of LUAD.

2.3 Gene ontology (GO) and kyoto
encyclopedia of genes and genomes (KEGG)
pathway enrichment analyses

The screened targets of AR-SH and LUAD genes were
imported into the Venny2.1 online platform to capture the
common targets of active compounds and LUAD. GO
enrichment analysis of the intersected targets was performed
in terms of the biological process (BP), cellular component
(CC), and molecular function (MF) based on the David
database. KEGG was selected for target pathway annotation
analysis with P set less than 0.05, and the top 20 KEGG signal
pathways were ranked according to the results in descending
order of enrichment value.

2.4 Survival analysis of hub genes of LUAD

Gene expression data and survival information obtained from
the Cancer Genome Atlas (TCGA) database were assessed by
Kaplan-Meier survival analysis, and a log-rank test was
performed using the survival package version 2.44-1.1 in R software.

2.5 The molecular docking of active
compounds of AR-SH with core proteins of
LUAD.

The 2D structure of the screened ingredients were downloaded
from the PubChem database, which were imported into Chem3D
software to draw the 3D structure of the compounds and optimize
the energy of the ligand structure. The processed structure was saved
in PDB format, and AutoDockTools-1.5.6 software was then applied
to add charge and display rotatable keys, with the final structure
saved in PDBQT format.

Next, the protein crystal structures encoded by hub genes
were obtained from the PDB database (https://www.rcsb.org/),
which were imported into PyMOL software to remove solvent
and ligand. AutoDockTools-1.5.6 software was then employed to
add hydrogen atoms, and the structure was saved in PDBQT
format, with their active pockets searched. Molecular docking was
performed by adjusting the X-Y-Z coordinates and grid size of the
protein and optimizing the position of the protein structure
binding sites. Processed active compound and the protein were
docked for ten times by AutoDock Vina with the minimum
binding energy of each docking taken as the final result.
Docking results of the clinically used epidermal growth factor
receptor-tyrosine kinase inhibitor (EGFR-TKI) Gefitinib with the
core proteins were compared with those of the screened
compounds with the core proteins. Docked ligand-protein
complexes with lower docking binding affinity and research
value for each protein were selected for further detailed
demonstration.

2.6 Molecular dynamic (MD) simulation

The conformations of core protein-ligand complexes with
lower docking binding affinity and research significance in the
molecular docking results were further analyzed by MD
simulations. MD simulation was carried out using GROMACS
(version 2021-2). Protein topology file was generated using the
AMBER99SB-ILDN force field, whereas ligand topology file was
generated by ACPYPE script using the AMBER14SB force field.
MD simulation was carried out in a dodecahedral box filled with
TIP3 water molecules, and periodic bounding conditions were
applied. The system was neutralized with NaCl counter ions.
Energy minimization was achieved using the steepest descent
algorithm, with cutoff of 1.4 nm for Coulomb interactions and
Van der Waals interactions.

Before the simulation, each system was equilibrated for 100 ps
at 310 K for NVT (constant atomic number, volume, and
temperature) using a V-rescale thermostat (Bussi et al., 2007)
and for 100 ps at 1.0 bar for NPT (constant atomic number,
pressure, and temperature) via a Parrinello-Rahman barometer.
The protein backbone was inhibited, while the solvent and
countercharge ions were allowed to move during the
equilibrium phase. The LINCS algorithm was used for all
binding constraints. The particle-mesh Ewald (PME) method
was used for long-range electrostatic processing. During the
simulation, the positional constraints were removed. Finally,
simulations were performed for 100 ns for each system under
periodic boundary conditions at 310 K temperature and
1.0 bar pressure, and snapshots of the trajectories were taken
every 10 ns.

2.7 Free binding energy calculations

The calculation of the free binding energy of protein-ligand
complexes is an important way to verify the strength of
intermolecular interactions, providing insight into the relative
importance of various chemical energies that contribute to the
overall stability. The molecular mechanics Poisson-Boltzmann
surface area (MM-PBSA) method is a simple technique for
quantifying the binding free energy of a ligand docked to an
acceptor (Miller et al., 2012). The g_mmpbsa (Miller et al., 2012)
tool was used to calculate the binding affinity of simulated protein-
ligand complexes.

In general, Formula 1 can be used to calculate the free binding
energy of a protein to a ligand in a solvent (Kollman et al., 2000):

ΔGbind � Gcomplex − Gprotein + Gligand( ) (1)

Gprotein and Gligand denote the total free energy of the isolated
protein and ligand in the solvent, respectively, and Gcomplex

represents the total free energy of the protein-ligand complex. In
addition, the free energy of each entity can be obtained using
Formula 2:

Gx � EMM( ) − TS + Gsolvation( ) (2)
X denotes protein or ligand or protein-ligand complex. (EMM)

represents the average molecular mechanical potential energy in
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vacuum. (Gsolvation) denotes the solvation free energy (Kollman
et al., 2000; Kumari et al., 2014). TS represents the entropic
contribution of the free energy in vacuum, where T and S denote
temperature and entropy, respectively. The TS term is the
conformational entropy term associated with complex, and
isolated protein is calculated in the vacuum environment.
Instead of considering absolute binding free energy, we
focused on the contribution of individual residues of
protein and ligands to the individual components of EMM and

Gsolvation terms. The change in entropy term was neglected
owing to that it does not affect the relative binding energy of
ligands.

The molecular mechanics potential energy EMM is the vacuum
potential energy and includes both bonded and non-bonded
interactions. It is calculated using molecular mechanics (MM)
force field parameters, as in Formula 3

EMM � Ebonded + Enonbonded � Ebonded + EvdW + Eelec( ) (3)

TABLE 1 Active components of AR-SH.

Num PubChem CID Molecule name Source MW OB (%) DL

1 10380176 (R)-Isomucronulatol AR 302.35 67.67 0.26

2 15976101 (24S)-24-Propylcholesta-5-ene-3beta-ol AR 428.82 36.23 0.78

3 11869658 3-Epioleanolic acid SH 456.78 32.03 0.76

4 14077830 Astrapterocarpan AR 300.33 64.26 0.42

5 5316760 1,7-Dihydroxy-3,9-dimethoxy pterocarpene AR 314.31 39.05 0.48

6 2782115 2-(Chloromethyl)-4-(4-nitrophenyl)-1,3-thiazole AR 254.69 \ \

7 162906151 2,3-dimethoxy-6-methyanthraquinone SH 282.31 34.86 0.26

8 10514946 2-methyl-3-methoxyanthraquinone SH 252.28 37.83 0.21

9 15689655 3,9-di-O-methylnissolin AR 314.36 53.74 0.48

10 162842488 5′-hydroxyiso-muronulatol-2′,5′-di-O-glucoside AR 642.67 41.72 0.69

11 15689652 7-O-methylisomucronulatol AR 316.38 74.69 0.3

12 101679160 9,10-dimethoxypterocarpan-3-O-β-D-glucoside AR 462.49 36.74 0.92

13 222284 beta-sitosterol SH 414.79 36.91 0.75

14 108213 Bifendate AR 418.38 31.1 0.67

15 5280448 Calycosin AR 284.28 47.75 0.24

16 6037 FA AR 441.45 68.96 0.71

17 5280378 formononetin AR 268.28 69.67 0.21

18 73299 hederagenin AR 414.79 36.91 0.75

19 15689653 Isomucronulatol 7,2′-di-O-glucoside AR 626.67 49.28 0.62

20 5281654 isorhamnetin AR 316.28 49.6 0.31

21 5318869 Jaranol AR 314.31 50.83 0.29

22 5280863 kaempferol AR 286.25 41.88 0.24

23 64971 Mairin AR 456.78 55.38 0.78

SH

24 10494 Oleanolic acid SH 456.78 29.02 0.76

25 5281330 Poriferasterol SH 412.77 43.83 0.76

26 5280343 quercetin AR 302.25 46.43 0.28

SH

27 5280794 Stigmasterol SH 412.77 43.83 0.76

28 64945 ursolic acid SH 456.78 16.77 0.75

29 122130319 AstragalosideIV AR 785.09 17.74 0.15
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The value of Ebonded energy can be taken as zero under the
assumption that the bound and unbound forms of protein and
ligand conformations in the single trajectory method are similar
(Homeyer and Gohlke 2012). Non-bonded interactions
(Enonbonded) include electrostatic (Eelec) and van der Waals
(EvdW) interactions.

The free energy of dissolution is the energy required to transfer
the solute from the vacuum to the solvent. In the MM-PBSA
method, the free energy of dissolution is calculated using the
following solvent model, as in Formula 4:

Gsolvation � GPB + GSA (4)
GPB and GSA denote the electrostatic and non-electrostatic

contributions to the free energy of dissolution, respectively. The
electrostatic term Gpolar was calculated by solving the Poisson-
Boltzmann (PB) equation (Wang et al., 2004), and the GSA term
was calculated using the solvent accessible surface area (SASA). We
also performed studies related to the energy decomposition of each
residue, which help to estimate the MM-PBSA binding energy of the
ligand in the protein-ligand complex.

3 Results

3.1 The active compounds and targets of
AR-SH

The active compounds and targets of AR-SH were obtained by
searching the TCMSP platform and the Swiss Target Prediction
database, respectively. Among them, 29 active compounds of AR
were retrieved with 361 targets predicted, and 2 compounds
supplemented from literature were Astragalus polysaccharide
(Bamodu et al., 2019) and AstragalosideIV (Zhang et al., 2018;
Chen et al., 2021). 7 active compounds of SH were retrieved, with
227 targets predicted, and 3 compounds supplemented from
literature included ursolic acid, Mairin and oleanolic acid (Liang
et al., 2022), as shown in Table 1. 21 of the 29 obtained active
compounds were found to possess a diversity index less than 0.8 and

an average score of 0.178, which indicated a favorable diversity, as
shown in Supplementary Table S1.

3.2 Acquisition of LUAD-related genes and
screening of hub genes of LUAD

Using Gene Cards, OMIM and CTD databases, 1091, 227 and
157 LUAD-related genes were acquired respectively, with a total
1381 LUAD-related genes obtained after de-duplication. The
422 active compounds targets and 1381 LUAD genes were
analyzed by Venn, and 127 common targets were obtained,
which maybe the potential targets of AR-SH for LUAD
treatment, as shown in Figure 2.

Based on CTD database, 10 hub genes were selected as docking
targets for the next simulation experiments according to their
“Inference Score” and “References” scores as well as lung
adenocarcinoma-related research hotspots. As shown in the
Table 2, the proteins coded by the 10 hub genes are Epidermal
growth factor receptor (EGFR), Fas cell surface death receptor
(FAS), Growth differentiation factor 15 (GDF15), Thymidylate
synthetase (TYMS), AKT serine/threonine kinase 1 (AKT1),
Cyclin dependent kinase 1 (CDK1)), Mitogen-activated protein
kinase 1 (MAPK1), KRAS proto-oncogene, GTPase (KRAS),
Signal transducer and activator of transcription 3 (STAT3), and
Matrix metalloproteinase-9 (MMP9).

3.3 GO and KEGG pathway enrichment
analysis

GO is a bioinformatics analysis tool that defines the input genes
by describing the function of the gene and the relationship between
the enriched terms. GO functional analysis divides the gene
functions into three parts: cellular component (CC), molecular
function (MF), and biological process (BP), among which, BP
can best reflect changes in biological function within the body.

In total, 775 GO entries of the GO functional enrichment
analysis were obtained from DAVID database, including

FIGURE 2
Venn diagram of AR-SH and LUAD intersected targets.

TABLE 2 The inference score and reference score of the hub genes.

Gene symbol Inference score References

EGFR 41.93 38

FAS 39.02 23

GDF15 35.62 22

TYMS 35.01 24

AKT1 34.17 34

CDK1 33.91 26

MAPK1 32.37 39

KRAS 32.07 33

STAT3 30.93 29

MMP9 28.3 29
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556 entries in BP, 89 entries in CC, and 130 entries related to MF.
Figure 3A shows that the potential targets were mainly enriched
in BP such as protein phosphorylation, negative regulation of
apoptotic process, response to xenobiotic stimulus, peptide-
tyrosine phosphorylation and response to drugs. The involved
terms of CC shown in Figure 3B are cyclin-dependent protein
kinase holoenzyme complex, receptor complex, cytoplasm and
plasma membrane accounted for a significant proportion. As for
MF, ATP binding, protein kinase activation, transmembrane
receptor protein tyrosine kinase activity, protein tyrosine
kinase activity and protein serine/threonine kinase activity
were ranked in the top, as shown in Figure 3C. Using KEGG
pathway enrichment analysis, 147 pathways were screened out
based on the threshold of p < 0.05. As shown in Figure 3D, the
pathways with the highest significance, involve a variety of cancer
pathways, including non-small cell lung cancer, prostate cancer,
pancreatic cancer, colorectal cancer, etc. Cancer-related cell
alterations, including endocrine resistance, EGFR tyrosine

kinase inhibitor resistance, central carbon metabolism and
proteoglycans in cancer are also enriched significantly.
Signaling pathways including PI3K-Akt and HIF-1 also are
shown to be important.

3.4 Survival analysis of important targets

TCGA-LUAD dataset consisting of 526 LUAD samples and
59 normal samples were obtained from the TCGA database. We
divided the LUAD samples into high and low expression groups
according to the expression levels of the ten hub genes, and further
investigated the correlation between the expression of the ten hub
genes and the prognosis of LUAD patients by Kaplan-Meier survival
analysis. As shown in Figure 4, the expression of FAS (p = 0.046),
GDF15 (p = 0.023), TYMS (p < 0.001), CDK1 (p < 0.001), MAPK1
(p = 0.027) and KRAS (p = 0.028) showed significant correlation
with prognosis. The survival analysis revealed that the correlation

FIGURE 3
Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. (A) Biological Processes. (B) Cellular
Component. (C) Molecular Function. (D) KEGG analysis. The size of the dots represents the number of genes; the larger is the dot, the higher is the
number of genes in the corresponding process. p values indicate the importance of enrichment; the lower is the p values, the redder is the color of the
graph.
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between the expression of other hub genes and the survival is not
statistically significant. However, EGFR has been proven to be a
determinant driving lung adenocarcinoma growth and treatment
response in vivo (Foggetti et al., 2021), thus subsequent analysis will
also be performed for EGFR.

3.5 Molecular docking

The molecular docking results are illustrated in Figure 5 (the
unit of measurement are kcal/mol). The redder the color, the lower

binding energy and stronger affinity of the ligand-protein complex.
The bluer the color, the higher the binding energy and weaker
affinity of the ligand-protein complex. It is generally accepted that a
compound with a binding energy less than −5.6 kcal/mol to the
receptor protein indicates a strong binding (Hsin et al., 2016). The
molecular docking results showed that the binding energy of most of
the screened active compounds to core proteins was lower
than −5.6 kcal/mol, with the binding energy of some active
compounds to important targets being even less than that of
Gefitinib. So, we assume that the active compounds of AR-SH
can effectively treat LUAD via multiple targets. The complexes

FIGURE 4
Kaplan-Meier Survival analysis of the correlation between expression of important target genes (A–J) and prognosis of LUAD in TCGA database.
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with lower binding energy and better conformation in each group of
docking results, which were shown in Figure 5, were selected for
detailed demonstration to investigate the stability of the binding, as
shown in Figure 6; Figure 7 The box co-ordinates and grid size
information of the protein-ligand binding sites were shown in
Supplementary Table S2.

We observed that UA and Gefitinib enter the same EGFR binding
cavity. UA interacted with Thr-854 and Asp855 via hydrogen bonding
and forms hydrophobic contacts with Ala722, Phe723, Val726, Ala743,
Leu792, Met793 and Leu844. The interaction of UAwith these residues
may be the reason for its action on the target EGFR. Gefitinib forms
hydrogen bonds with Asp855, as well as two π-H bonds with
Leu718 and interacts with Val726, Ala743, Leu792, Met793,
Leu844 and Met1002 through hydrophobic bonds.

3.6 MD simulation

EGFR-ursolic acid (UA), MAPK1-AstragalosideIV (ASIV) and
KRAS-Isomucronulatol 7,2′-di-O-glucoside (IDOG), which are the
complexes with favorable conformations and research value in the
docking results, were selected for further MD simulations. MD
simulations can provide a digital environmental condition like those
of human cells for us, involving temperature, pressure, solvents and

ions, to investigate the effects of temperature and environmental
conditions on the binding process. Therefore, data obtained from
MD simulations can offer valuable insights into the mechanism,
dynamics, and nature of ligand-protein interactions (Wang et al., 2001).

For the information of the equilibrium time of each simulated
protein-ligand complex during the MD simulation, the Root Mean
Square Deviation (RMSD) of the protein backbone was calculated.
RMSD is a valuable parameter for estimating changes or variations
in molecular conformation, whose plots are commonly used to
assess the time it takes for a system to reach structural equilibrium
and to estimate the duration of the run. During the period of
dramatic change in the initial structural conditions, a sudden
increase of the RMSD values of the simulated complexes
including the reference is expected, because the protein is rigid
and would return to its dynamic motion when it is solventized in the
water box in the crystal structure.

As shown in Figure 8A–C, the horizontal coordinates represent the
time, while the vertical coordinates represent the specific values of
RMSD. Sharp fluctuations of the RMSD of the three receptor-ligand
complexes were witnessed in the initial stage. As the simulation
proceeds, the RMSD of the three complexes tends to be smooth and
stable after 20 ns. EGFR and UAwere stable near 0.25 nm and 0.04 nm,
MAPK1 and ASIV were stable near 0.17 nm and 0.03 nm after 50 ns,
and KRAS and IDGO were stable near 0.25 nm and 0.1 nm. This

FIGURE 5
Docking results of active ingredients of AR-SH with core proteins.

Frontiers in Chemistry frontiersin.org09

Guo et al. 10.3389/fchem.2023.1128671

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1128671


phenomenon suggests that the three complexes were relatively stable in
stimulated conditions (Martínez 2015). It is necessary to note that the
higher the RMSD value, the more unstable the complexes (Zhao et al.,
2015). Therefore, EGFR-UA exhibited greater stability.

Root Mean Square Fluctuation (RMSF) is used to examine areas
with high levels of volatility, where a higher RMSF value indicates a less

stable protein-ligand complex. As shown in Figures 8D–F, KRAS and
the tail of MAPK1 exhibit high RMSF values, which may due to the
presence of a large number of tightly coiled structures (e.g. a-helix and
ß-sheet). In addition, the lower RMSF value can be caused by the loss of
the corresponding structures in the complex.

Hydrogen bonding facilitates the binding capability between
proteins and ligands, and the number of hydrogen bonding can
reflect the induced binding affinity (Dichiara et al., 2020). As shown
in Figures 8G–I, KRAS forms 6 hydrogen bonds with the ligand on
average, MAPK1 forms an average of 3 hydrogen bonds with the
ligand, and EGFR creates 2 hydrogen bonds on average with ligands,
all of which contribute to the stable binding of the complexes.

The radius of gyration (Rg) is directly associated with the tertiary
structure and overall conformational state that has been utilized to
determine whether a structure has a stable, compact and folded
conformation. The Larger Rg value, the more flexible proteins, and
the more unstable the complexes of ligand-protein. In contrast,
lower Rg values indicate densely and tightly packed protein
structures (Islam et al., 2021; Dey et al., 2022). As shown in
Figure 8J, EGFR and MAPK1 exhibit low Rg values, from which
we thought that they are stable.

The solvent accessible surface area (SASA) can be used to
describe the effective interaction between ligand complexes and
receptors (Geierhaas et al., 2007), which represents the
interconnection between the water molecules and the surface of
the complex submerged in water molecules. SASA is based on the
ratio of the total area to energy. Compounds with high SASA values
form unstable protein-ligand complexes due to their easy access to
solvent, while complexes with low SASA values are considered to be
stable (Patel et al., 2021). Through the hydrophobic interactions in
non-polar amino acids, the SASA value of the complex can be
maximally reduced (Shivanika et al., 2022). In Figure 8K, EGFR and
MAPK1 possess low SASA values, indicating their better stability.

Molecular mechanics Poisson-Boltzmann surface area (MM/
PBSA) is an effective and reliable method for calculating the free
binding energy of small inhibitors to their protein targets (Wang
et al., 2017). The free binding energies of the three complexes and
their changes within 100 ns of simulation are shown in Figure 8L. The
average free binding energy of KRAS is −53.08 kJ/mol, the average free
binding energy of MAPK1 is −85.81 kJ/mol, and the average free
binding energy of EGFR is −139.21 kJ/mol. From Table 3 we could
propose the complex of EGFR-UA with the best binding energy, of
which the EvdW and Eele were both lower than that of MAPK1-ASIV.
Although the EvdW and Eele of KRAS-IDOGwere the lowest, the highest
EPB hindered the binding of receptor and ligand.

The contribution of protein residues to free binding energy was
calculated. As shown in Figures 8M–O, in the 100 ns simulation, the
EGFR complex has more amino acid residues that can provide binding
energy compared to the KRAS andMAPK1 complexes, indicating higher
binding of ligands and receptors of the EGFR complex. Residues
contributing to the free binding energy of the EGFR complex were
LYS716, LYS746, ARG795, ARG841, LYS897 and SER972. Residues
contributing to the binding energy of the MAPK1 complex were VAL36,
ILE81, THR102 and LEU153. ASN26 VAL44 and ARG149 made
significant energy contributions to the KRAS complex. These amino
acid residues contributing to the free binding energy play a pivotal role in
the interactionwith the ligand and are the active sites for binding, which is
consistent with the molecular docking results.

FIGURE 6
Docking complexes with the lowest binding energy: (A) EGFR-
ursolic acid; (B) FAS-ursolic acid; (C)GDF15-Oleanolic acid; (D) TYMS-
9,10-dimethoxypterocarpan-3-O-β-D-glucoside; (E) ATK1-Oleanolic
acid; (F) CDK1-Oleanolic acid; (G) MAPK1-AstragalosideIV; (H)
KRAS-isomucronulatol-7,2’-di-O-glucosiole; (I) STAT3-ursolic acid;
(J) MMP9-isorhamnetin.
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The secondary structure analyses of 100 ns simulated
trajectory were shown in Figures 8P–R. We identified that the
number of secondary structures of the three complexes including
a-Helix, ß-Sheet, ß-Bridge, Bend, Turn and Coil is kept relatively
steady, and the fluctuations get smaller as the simulation
proceeds, indicating that the complexes are relatively stable.

100 ns MD simulations analysis revealed that all three
complexes were stable during the simulation. Based on the
RMSD, RMSF, RG, SASA, hydrogen bonding number and free
binding energy, the EGFR complex emerged as the most stable
complex, followed by MAPK1, which might be because of Van der
Waals forces and electrostatic potential energy. KRAS complex was
slightly less stable may be attributed to its more flexible protein and
denser convoluted structures.

The simulation trajectory of the EGFR-UA complex with the best
stability was chosen for visualization. As displayed in Figure 9, UA can
interact flexibly and gradually stabilize in the docking pocket of EGFR,
with the snapshots of complexes obtained every 10 ns. As the simulation
proceeded, the stability of the complex system did not change, and the
ligand and protein were in a relatively static state of motion.

Free energy landscape (FEL) diagram was drawn to study the
relationship between structural transitions or conformational changes
of proteins and free binding energy through appropriate conformational
sampling procedures. RMSD and Gyrate were selected to construct 3D
landscapemaps to detect and explore their steady-state structures. As we
can see in Figure 10, the FEL plot of EGFR-UA has a minimum in a
single lowest energy well, and the free energy values are below 0 kJ/mol,
indicating that the system has good stability.

4 Disscussion

Targets chemotherapy remains to play a leading role in the
treatment for the majority of patients with advanced-stage LUAD,

and EGFR-TKI is the first line drug for lung cancer patients
harboring an EGFR mutation in routine clinical practice
(Ciuleanu et al., 2012). EGFR-TKI has been confirmed to
significantly prolong disease free survival (DFS) but not overall
survival (OS) of patients compared to conventional
chemotherapeutic agents (Wu et al., 2022). Nowadays, Chinese
herbal medicines have been demonstrated by several studies to
increase therapeutic efficiency and reduce the adverse effects of
chemotherapy drugs (Tseng et al., 2016; Yang et al., 2019a; Zhang
et al., 2020; Wei et al., 2022).

Herb pair of AR and SH were found to be most frequently used
in the treatment of lung cancer in clinical (CHEN.H.F et al., 2022).
AR, one of the most commonly used tonic herbs in clinical practice,
can strengthen the spleen, and enhance the body, where modern
pharmacological studies have shown that AR has a wide range of
effects including hepatoprotective, diuretic, hypotensive, and
immunomodulatory functions (Bedir et al., 2000). AR may
inhibit the progression and metastasis of LUAD by regulating
immune system such as modulating macrophage polarization (Xu
et al., 2018). SH possesses heat-clearing and detoxifying properties,
with several biological activities, such as neuroprotection (Kim et al.,
2001) and antitumor activity (Lee et al., 2011). But there is no
systematic study on the bioactive ingredients of AR-SH and the
underlying mechanism of AR-SH compounds in the treatment of
LUAD by now. Therefore, a network pharmacology strategy and
molecular docking approach as well as molecular dynamics
simulations were adopted to identify the potential targets and
elucidate mechanisms of action of AR-SH in the treatment
of LUAD.

A total of 29 active compounds were acquired from TCMSP
using ADME parameters, and literature, with 422 targets
obtained. 1381 LUAD-related targets were collected from
GeneCards, OMIM and CTD databases. There are
127 common targets of AR-SH and LUAD. Among the

FIGURE 7
Cartoon representation of EGFR in complex with: (A) Ursolic acid; (B) Gefitinib. The binding site is shown as surface representation with the ligands
shown as sticks.

Frontiers in Chemistry frontiersin.org11

Guo et al. 10.3389/fchem.2023.1128671

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1128671


bioactive compounds, UA is a natural pentacyclic triterpenoid
with anticancer activity against a variety of cancers in vitro and in
vivo (Shanmugam et al., 2011; Yang et al., 2016; Yang et al.,

2019b). Wang et al. (2020) proved that UA can suppress the
proliferation of various lung cancer cells, including human
NSCLC cells H460, H1975, A549, H1299 and H520.

FIGURE 8
Molecular dynamics simulations. (A–C) The RMSD plot of EGFR-UA, MAPK1-ASIV and KRAS-IDOG. (D–F) The RMSF plot of EGFR-UA, MAPK1-ASIV
and KRAS-IDOG. (G–I) The hydrogen bond numbers of EGFR-UA, MAPK1-ASIV and KRAS-IDOG. (J,K) Rg and SASA plots of EGFR-UA, MAPK1-ASIV and
KRAS-IDOG. (L) Binding Free Energy plots of EGFR-UA, MAPK1-ASIV and KRAS-IDOG. (M–O) Binding energy contribution plots of amino acid residues of
EGFR-UA, MAPK1-ASIV and KRAS-IDOG. (P–R) The secondary structure analysis plot of EGFR-UA, MAPK1-ASIV and KRAS-IDOG.
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Yang et al. (2019b) found that UA can inhibit the expression of
CT45A2, and suppress the proliferation and motility of tumor
cells while promoting apoptosis in NSCLC carrying the EGFR
T790M mutation with this mutation being the main cause of drug
resistance to EGFR. ASIV is a naturally occurring tetracyclic
triterpene saponin that has been shown to be free of any
significant hepatotoxic or nephrotoxic effects. Studies have

shown that ASIV enhances the Bax/Bcl-2 ratio and induces
intrinsic apoptosis in a variety of cancer cells, including cells
of colorectal, breast, lung, vulvar squamous cell carcinoma, and
hepatocellular carcinoma (Jia et al., 2019; Sun et al., 2019; Zhao
et al., 2019; Zheng et al., 2019; Cui et al., 2020). Li et al. (2017a)
suggested that ASIV can inhibit glioma progression by interfering
with the MAPK/ERK signaling pathway, which is consistent with

TABLE 3 Binding free energies of complexes in kJ/mol.

Complexes Gbind (±SEM) EMM (±SEM) EvdW (±SEM) Eele (±SEM) EPB (±SEM) ESA (±SEM)

EGFR-UA -139.21 ± 2.596 -212.0 ± 3.003 -167.8 ± 1.153 -44.15 ± 2.801 99.70 ± 2.732 -26.94 ± 0.1091

MAPK1-ASIV -85.81 ± 1.284 -164.2 ± 1.078 -145.2 ± 0.8670 -18.97 ± 0.6718 97.60 ± 1.176 -19.23 ± 0.05296

KRAS-IDOG -53.08 ± 2.546 -368.6 ± 3.087 -247.2 ± 2.245 -121.3 ± 1.926 348.3 ± 2.051 -32.83 ± 0.08525

FIGURE 9
Snapshots of molecular dynamics simulations taken at 10-ns intervals that point to the movement of UA inside the binding site of EGFR.

FIGURE 10
3D representation of binding free energy landscape as a function of RMSD and Gyrate. Energy distribution is shown by the coloring pattern: Blue
defines the conformational space with minimum energy (stable state) while red defines a conformational space with maximum energy (unstable state).
Transient local energy states are defined by intermediate color patterns.
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the high and stable MAPK1-ASIV binding ability in the present
study, making ASIV a promising anti-cancer candidate. IDOG
showed a strong binding affinity with KARS, indicating it may be
a potentially active compound against cancer. Further studies
should be conducted to investigate the anti-tumor effects of
IDOG. In addition to the tumor suppressive function, we
found that UA and ASIV can also co-regulate immune
function. UA could reduce Th1 cytokine expression (IL-2, IL-
6, IL-12, IFN-γ and TNF-α) and induce Th2 (IL4, IL5) cytokine
expression (Raphael and Kuttan 2003; Ahmad et al., 2006). ASIV
was thought to act as an immune adjuvant (Hong et al., 2011) to
enhance cellular immune function by activating the NF-κB/
MAPK signaling pathway (Li et al., 2017b). The cooperative
anticancer activity of UA and ASIV, and the modulation of
the immune system demonstrated the synergistic effect of the
AR-SH drug pair.

GO enrichment analysis showed that the biological processes
involved in AR-SH treatment of LUAD mainly include protein
phosphorylation, negative regulation of apoptotic process, response
to xenobiotic stimulus, peptide-tyrosine phosphorylation and
response to drugs. KEGG pathway analysis associated with AR-
SH against LUAD includes pathways of a variety of cancers, such as
non-small cell lung cancer, prostate cancer, pancreatic cancer, and
colorectal cancer. Cancer-related cellular alterations include
endocrine resistance, EGFR tyrosine kinase inhibitor resistance,
central carbon metabolism, and proteoglycans in cancer. PI3K-
Akt, HIF-1 and other signaling pathways were also engaged. The
emergence of drug resistance remains a major issue for EGFR-TKIs
treatment of lung cancer. PI3K-Akt, an important signaling pathway
present in normal human cells, is involved in a variety of
physiological and pathological processes and plays a central
regulatory role in cell growth and proliferation. Furthermore,
PI3K-Akt pathway can also affect the development of NSCLC by
inducing apoptosis, inhibiting cell proliferation, invasion and
migration, and regulating tumor angiogenesis (Wang et al., 2019;
Chen et al., 2020; Hu et al., 2020). HIF-1 is a key transcriptional
activator that mediates the adaptive response of the organism to
hypoxia, which regulates gene expression through changes in
intracellular oxygen concentration and exerts an influential role
in tumor cell hypoxia adaptation, energy metabolism, tumor
angiogenesis, and invasion and metastasis, with its expression of
HIF-1 closely related to invasive metastasis of lung cancer (Hua
et al., 2020). During rapid tumor cell multiplication in patients with
non-small cell lung cancer, tumor cells are in a relatively hypoxic
state, making HIF-1αmore likely to be activated and stay in a highly
expressed stage.

Based on the reference “Inference Score” and “References” scores of
each target in the CTD database and the hot spots of LUAD-related
research, 10 targets were selected and considered as core targets of AR-
SH for LUAD treatment, including EGFR, FAS, GDF15, TYMS, AKT1,
CDK1, MAPK1, KRAS, STAT3 and MMP9. Survival analysis of core
targets revealed a significant correlation between the expression of FAS
(p = 0.046), GDF15 (p = 0.023), TYMS (p < 0.001), CDK1 (p < 0.001),
MAPK1 (p = 0.027) and KRAS (p = 0.028) and prognosis of LUAD.
However, it is undeniable that EGFR is a determinant driving lung
adenocarcinoma growth and treatment response in vivo (Foggetti et al.,
2021). EGFR andKRAS are the twomost frequentlymutated oncogenic
driver genes (Rodenhuis et al., 1987; Lynch et al., 2004; Paez et al., 2004)

that occur in the presence of multiple identified tumor suppressor gene
alterations (Cancer Genome Atlas Research Network, 2014; Politi and
Herbst 2015; Campbell et al., 2016; Skoulidis and Heymach 2019).
EGFR, a receptor-type tyrosine kinase, is overexpressed and/or mutated
in LUAD and controls tumor growth through signaling regulation. The
expression of EGFR is closely associated with neo-angiogenesis, tumor
invasion and metastasis (Cancer Genome Atlas Research Network,
2014), whose mutations are a major causative factor for LUAD in East
Asian countries (accounting for approximately 60% of LUAD) (Dong
et al., 2018). Remarkable advances have been made in the treatment of
advanced NSCLC with molecularly targeted EGFR-TKIs, yet patients
are highly susceptible to drug resistance (Tan et al., 2017; Dong et al.,
2018). Mutation of KRAS was first initiated in lung cancer in the 1980s
(Santos et al., 1984), which is a gene that is hard to target. Mutations in
the KRAS gene directly trigger the EGFR-Ras-Raf-MAPK pathway in
the EGF signaling pathway, followed by activation and overexpression
of MAPK1 to further promote tumor cell migration and invasion,
increase cell viability and participate in epithelial mesenchymal
transition, allowing the rapid progress of LUAD and rendering
targeted drugs against the EGFR upstream pathway ineffective (Lee
et al., 2014). There exist a close relationship betweenmutations of KRAS
andMAPK1 and the resistance of NSCLC to EGFR-TKI targeted drugs
such as Gefitinib and Erlotinib, which can cause sustained activation of
the EGFR signaling pathway and accelerate tumor cell proliferation (Zer
et al., 2016).

What’s more, as one of the most commonly used tonic herbs, AR
is not negligible for its modulating effect on the immune system. We
found that the core targets EGFR, MAPK1 and KRAS are closely
related to the regulation of immune system function. In the EGFR-
positive genetic state, tumors exhibit a relatively
immunosuppressive microenvironment, as evidenced by a
decrease in CD8+ T cells and an increase in regulatory T cells
(Treg) (Xiao et al., 2023). Of note, KRAS-mutant tumors showed a
marked immune activation status in LUAD, exemplified by an
elevated abundance of CD8+T cells, Cytotoxic T Lymphocyte
cells (CTL), and Follicular helper T cells (Tfh), and reduced
immunosuppressed M2-macrophage. In primary lung cancer, a
retrospective study found KRAS-mutant tumors had a
significantly higher PD-L1 expression, high CD8+T cells
infiltration and higher TMB than EGFR-mutant tumors (Liu
et al., 2020). Therefore, the high response rate of KRAS-positive
tumors to immunotherapy may be related to the activated immune
microenvironment (Lee et al., 2018). Zfp831, as a downstream
molecule of MAPK1, directly binds to the Tfh cells signature
gene Bcl6 and thus promotes Tfh cells differentiation (Wan et al.,
2021). Consequently, we suggest that AR can modulate the immune
system by acting on the core targets EGFR, MAPK1 and KRAS, thus
improving the tumor immune microenvironment.

Molecular docking results showed that the binding affinities of
the screened active compounds to the core targets ranged
from −4.9 to −11.2 kcal/mol, with most of the ingredients
exhibiting binding energies less than −5.6 kcal/mol. The binding
energy of UA and oleanolic acid of SH to EGFR was even less than
that of Gefitinib, while ASIV and IDOG of AR showed stronger
binding to MAPK1 and KARS, respectively. It is drug pair formed
from AR and SH that the effect could be reached, therefore, the
synergistic effects of AR-SH on the targets may be responsible for the
treatment of LUAD. Three docked complexes including UA-EGFR,
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ASIV-MAPK1 and IDOG-KRAS exhibited favorable docking
conformations and low binding energies, and molecular
dynamics simulations further suggested stability of the binding of
docked complexes, with hydrogen bonding being the most critical
factor for their stable binding. It was found that KRAS protein
functions as a molecular switch, as it activates and regulates the
downstream MAPK pathway in response to upstream EGFR, which
amplifies the signaling efficiency of the MAPK pathway in KRAS
mutations, ultimately controlling tumor cell proliferation and
metastasis, and thus promoting tumor growth (Ponsioen et al.,
2021). In this study, we found that the active ingredients of AR-
SH can stably bind to EGFR, MAPK1 and KRAS to trigger or
suppress their protein functions, thus contributing to the treatment
of LUAD.

Although molecular dynamics simulation can be used to
describe the motion of ligand-protein complex in one system, it
lacks the ability to simultaneously show the interactions between the
compound and other proteins which are unavoidable in human
body. So, many unknown variables that cannot be controlled are
stand in the way, which may have an impact accuracy of result.
Despite these limitations, the molecular level analysis in this study
provides a reference and guidance for further exploration of the
mechanism of AR-SH for LUAD treatment. What’s more, we also
found that the main active compounds of AR-SH were not acquired
from databases but from literature supplementation, so we suggest
that we should not rely on the database alone for active ingredient
mining.

5 Conclusion

In conclusion, we suggested that the herb pair of AR-SH can act
on targets like EGFR, MAPK1 and KRAS by UA, ASIV and IDOG,
to play a vital role in the treatment and the enhancement of
prognosis of LUAD.
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