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P-chirality broadly appears in natural and synthetic functional molecules. The
catalytic synthesis of organophosphorus compounds bearing P-stereogenic
centers is still challenging, due to the lack of efficient catalytic systems. This
review summarizes the key achievements in organocatalytic methodologies for
the synthesis of P-stereogenic molecules. Different catalytic systems are
emphasized for each strategy class (desymmetrization, kinetic resolution, and
dynamic kinetic resolution) with examples cited to illustrate the potential
applications of the accessed P-stereogenic organophosphorus compounds.
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Introduction

Organophosphorus compounds bearing P-stereogenic centers have widely emerged in biological
molecules and natural products (Figure 1A)(Kolodiazhnyi, 2021), and they also serve as broadly useful
ligands and catalysts in asymmetric synthesis (Dutartre et al., 2016; Xu et al., 2019; Imamoto, 2021)
(Figure 1B). Nowadays, P-stereogenic scaffolds show an increasing presence in bioactive molecules for
medical uses (Figure 1C). For example, remdesivir is used to treat coronavirus disease (Wang et al.,
2020a). Tenofovir alafenamide is an antiviral prescription medicine for the treatment of HIV (Ray et al,,
2016) and chronic hepatitis B infection (Scott and Chan, 2017); phostine serves as an anti-malignant
proliferation agent (Bousseau et al., 2019). Cyclophostin is an inhibitor of acetylcholinesterase (Martin
et al, 2015). It is worth noting that the absolute stereochemistry of phosphorus is often directly
associated with the biological activity of these molecules (Pradere et al., 2014; Nocentini et al,, 2019;
Babbs et al., 2020; Nocentini et al., 2020). Thus, developing efficient strategies to access P-stereogenic
organophosphorus compounds is of great importance.

In the early years, optically pure P-stereogenic compounds were obtained by relying on the
resolution of organophosphorus enantiomers or the related diastereomeric mixtures (Meisenheimer
and Lichtenstadt, 1911). The pioneering asymmetric strategy to access P-stereogenic molecules is chiral
auxiliary-assisted synthesis, in which the auxiliary is bound to the P-atom to control the stereochemistry
(Farnham et al., 1970; Berger and Montchamp, 2013). Similarly, using stoichiometric chiral reagents to
influence the enantiomeric outcome of the P-stereogenic center is also a viable approach (Muci et al,,
1995; Bergin et al., 2007; Kortmann et al., 2014). However, stoichiometric amounts of chiral reagents are
essential in all the aforementioned strategies. In parallel, catalytic asymmetric strategies to access
P-stereogenic molecules are more succinct and economic. These catalytic strategies have had an
impressive breakthrough in the past two decades, especially in transition metal catalytic systems
(Lemouzy et al., 2020; Ye et al,, 2021). In contrast, organocatalytic asymmetric strategies were not so
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P-stereogenic compounds and the existing synthetic strategies. (A): Examples of natural products; (B): Examples of P-stereogenic phosphine ligands;
(C): Examples of medicinal molecules; (D): Strategies to access P-stereogenic compounds.

developed until recent years. In order to guide a better understanding, this
review will focus on organocatalytic strategies and introduces the most
recent developments of stereoselective access to P-stereogenic compounds.

Asymmetric desymmetrization
strategies

A powerful strategy to access P-stereogenic compounds is the
desymmetrization of symmetrical achiral organophosphorus compounds,
which has accounted for a large part of the catalytic synthesis of
P-stereogenic compounds. This pioneering work was reported by Lebel
et al. (2003), in which catalytic alkylation of phosphine-boranes for
constructing P-stereogenic phosphine borane 2 was demonstrated using
a Cinchona alkaloid-derived catalyst Cl as a phase-transfer catalyst
(Figure 2A; Supplementary Scheme S1). Although enantioselectivity was
not satisfying (17% ee), this work greatly encouraged the synthesis of
P-stereogenic phosphorus compounds through asymmetric organocatalysis.

Frontiers in Chemistry

In 2014, Johnston and co-workers reported a chiral Brensted
acid-catalyzed diastereo- and enantio-selective iodocyclization of
phosphoramidic acid for the construction of C- and P-stereogenic
(Toda et 2014) (Figure 2B;
Supplementary Scheme S2). Utilizing this strategy, a range of

cyclic phosphoramidates al.,
cyclic products (4a-4f) was prepared with high levels of absolute
and relative stereocontrol (up to >20:1 dr, 98% ee). The resulting
phosphoramidate products acted as precursors for enantio-enriched
epoxy allylamines (5) upon treatment with alkoxy anions. Thus, this
method could be regarded as a formal asymmetric epoxidation of
allylamine derivatives.

With  the
investigations on P-stereogenic constructions were performed. In
2016, the Chi group reported N-heterocyclic carbene (NHC)-
catalyzed desymmetric acylation of pro-chiral bisphenol phosphine
the  synthesis of
phosphinamides, and triarylphosphine

diverse development of organocatalysis, more

oxides for P-stereogenic  phosphinates,

(Figure  2G;
Supplementary Scheme S3) (Huang et al, 2016). Good to excellent

oxides
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Organocatalytic asymmetric strategies for access to P-stereogenic compounds. (A—G): Desymmetrization strategies; (H-J): Kinetic resolution; (K-0):

Dynamic kinetic resolution strategies.

yields and enantioselectivities were realized in this work. Moreover, this
reaction possesses a wide substrate scope and could be performed on a
gram-scale with low catalyst loading (1 mol%). To further demonstrate
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the utility of this methodology, the P-stereogenic product 8a was
converted to the chiral bidentate Lewis base 10 and the precursor of
the chiral ligand DiPAMP via simple transformations. The newly
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synthesized bidentate Lewis base 10 could be directly used as a catalyst in
asymmetric reductive aldol reactions of enones and aldehydes.

Based on the bis(2-hydroxyphenyl) phosphine oxides, the Li group
demonstrated a biscinchona alkaloid-catalyzed desymmetric allylation
reaction with the Morita-Baylis—-Hillman carbonate to produce
P-stereogenic phosphine oxides (Figure 2D; Supplementary Scheme
S4) (Yang et al, 2019). Multiple functional groups were tolerated
under mild reaction conditions, with a wide range of chiral
P-stereogenic phosphine oxides prepared with good yields (up to
99%) and high enantioselectivities (up to 98.5:1.5 er). Additionally,
large-scale reactions and synthetic transformations were also
conducted in the study. Mechanically, theoretical calculations
revealed that the AAG*
2.2 kcal mol™ (Supplementary Scheme S$4b), and the stabilization
effect of the C-H -
substrate (as shown in TS1), as well as the destabilization steric
effect of bulky tert-butyl (as shown in TS2), were the key factors
that contributed to the energy difference of the two transition states,

value between TS1 and TS2 was

7 interaction between the catalyst and

which were crucial for the excellent enantioselectivity control.
Recently, the Li group reported an alternative strategy for the
desymmetrization of bisphenol phosphine oxides using chiral
squaramide-catalyzed ortho-selective mono-bromination
(Figure 2E; Supplementary Scheme S5) (Huang et al.,, 2021). This
reaction could provide a series of chiral bisphenol phosphine oxides
and phosphinates with good to excellent yields (up to 92%) and
enantioselectivities (up to 98.5:1.5 er). Furthermore, this reaction
could be scaled up to 1.0 mmol without the loss of the er value for
16a. The ortho-brominated P-stereogenic product can be further
transformed into functional molecules, which retained the optical
purities, via reactions including metal-catalyzed cross-couplings,
O-alkylations, or

(Supplementary Scheme S5b). This asymmetric ortho-bromination

nucleophilic ~ substitutions in  P-centers
strategy provided an alternative route for the desymmetrization of
bisphenol phosphine oxides.

In contrast to the desymmetric functionalization of bisphenol
phosphine oxides, direct nucleophilic desymmetrization at the P-center,
with the formation of a new P-X bond, is a more challenging but powerful
strategy. In 2021, Dixon’s group published a preprint work, in which a novel
bifunctional ~iminophosphorane (BIMP, C7) catalytic —two-stage
desymmetrization strategy for the construction of P-stereogenic
compounds was reported (Figure 2F; Supplementary Scheme S6)
2021). This BIMP-catalyzed
asymmetrically nucleophilic substitution of one phenolic leaving group

(Formica et al, process  involves
at the P-center (first stage) and subsequent enantiospecific displacement of
the other phenolic leaving group via SN2 substitution (second stage), which
allows quick access to a diverse range of chiral P(V) compounds including
those with O-, N-, and S-linkages. Notably, nucleophilic phenols with an
ortho-substituent were essential for the first stage. Also, the O-, S-, and
N-centered nucleophiles were all suitable for the second stage, which gave
rise to a range of chiral phosphonate esters, phosphorothioates, and
phosphonamidite esters, with good yields and high enantioselectivities or
diastereoselectivities.

Pro-chiral phosphonic dichlorides are also suitable substrates
for the acquisition of P-stereogenic molecules via asymmetric
desymmetrization. and Jacobsen (2022) reported
hydrogen bond donor C8-catalyzed desymmetrization of pro-

Forbes
chiral phosphonic dichloride via enantioselective substitutions at

the P-center for the preparation of aryl chlorophosphonamidates,
which were developed as versatile P(V)-stereogenic building
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blocks. After the first desymmetric substitution step, the
remaining two leaving groups (chloro and amino groups) on
chlorophosphonamidates (25) can be displaced sequentially
and stereospecifically to give a diverse range of P(V)-
stereogenic compounds through substitutions with different
nucleophiles (e.g. alkoxides, phenoxides, thiolates,
deprotonated carbamates, and Grignard reagents) (Figure 2G;
Supplementary Scheme S7a). A series of P(V)-stereogenic
compounds were obtained in good yields and high optical
alkyl
dichlorides as substrates. The phosphonamidite product 26

purities, except for reactions using phosphonic
could further be converted to a wide range of phosphonates,
phosphonate thioesters, phosphinates, and phosphonamidates
with retained enantioselectivities or slight loss via acid-
promoted nucleophilic substitution of the diisoamyl amino
group (Supplementary Scheme S7b).

To further demonstrate the synthetic utility of this hydrogen
bond donor catalytic strategy, Forbes and Jacobsen have achieved
three-step synthesis of the utrophin modulator (+)-SMT022332
(31) and formal synthesis of a matrix metalloproteinase (MMP)
inhibitor (37) (Supplementary Scheme S8). The subjection of
phosphonic dichloride 28 to the optimized conditions for
catalytic enantioselective substitution produced
phosphonamidate 29 (68% yield; 95% ee). After sequential
methanolysis and phenol displacement, phosphonamidate 30
was converted to (+)-SMT022332 (31) with 94% ee, 100% es,
and 43% overall yield over the three steps. In the formal synthesis
of the inhibitor (37), N-allyl
benzylamine (33) was used in the substitution reaction of

matrix metalloproteinase

phosphonic dichloride 32 under modified conditions, with
high enantioselectivity obtained as well. The subsequent ring
closing-metathesis and related transformations generated the
target MMP inhibitor (37). It is anticipated that N-allyl
benzylamine’s versatility as a masked “-NH,” equivalent may
enable access to a wide variety of other phosphonamidate targets.

Asymmetric kinetic resolution strategies

The catalytic kinetic resolution of racemic P-stereogenic
compounds represents a practical and efficient approach in the
preparation of enantio-enriched P-stereogenic compounds,
especially when racemic forms are readily available whereas
enantiopure forms are not. Compared to desymmetrization
strategies, catalytic kinetic resolution protocols are less developed
for accessing P-stereogenic chirality.

In 2009, Tan and co-workers reported a pioneering work, in which
a chiral guanidinium salt (C9)-catalyzed phospha-Mannich reaction
of imine (39) with secondary phosphine oxides or H-phosphinates
producing P-stereogenic a-amino phosphinates was reported (Fu
et al, 2009). With the use of 3.0 equiv. racemic H-phosphinates
(rac-38) as nucleophiles, the reaction realized an enantioselective
construction of P-stereogenic a-amino phosphinates (40) with
and  diastereo-selectivities  as
Figure 2H and

Supplementary Scheme S9a. When using 1.0 equiv. H-phosphinate

good to excellent enantio-

representative  examples, as shown in
rac-38a as a nucleophile, the Mannich reaction with imine 39a
resulted in the kinetic resolution of H-phosphinate rac-38a,

producing enantio-enriched H-phosphinate (S)-38a (32% yield;
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87% ee) and a-amino phosphinate 40f (syn and anti, 52% yield, 1.6:
1 dr, and 50% ee) (Figure 2H; Supplementary Scheme S9b).

In 2012, Zhang and co-workers reported chiral bicyclic imidazole
C10-catalyzed kinetic resolution of phosphorochloridothioate to
generate P-stereogenic phosphoramides (Liu et al, 2012). As
shown in Figure 2 and Supplementary Scheme S10, under the
catalytic O-ethyl  S-propyl
phosphorochloridothioate (EPPC, 41) with amides or amines gave

system, the reaction of
rise to the corresponding phosphoramides with P-chirality, although
both the conversion rate and enantioselectivity were poor. It was
speculated that the catalytic process involved (1) the selective
formation of two diastereoisomers of ammonium intermediates
via the reaction of phosphoryl chloride 41 and the chiral catalyst
C10, and (2) diastereoselective attack of the amino compound 42 on
these two active intermediates (44 and epi-44) producing the
optically enriched product 43, with the release of the catalyst.
The second step was rate-determining, and both steps contributed
to the enantioselectivity of the products.

Secondary phosphine oxides are electron-rich in the “P”
center and are usually used as nucleophiles and ligands in
synthetic chemistry (Shaikh et al., 2012). In 2020, Zhang and
co-workers reported Le-Phos (C11)-catalyzed kinetic resolution
of secondary phosphine oxides (rac-45) via the asymmetric
allylation reaction with Morita-Baylis-Hillman carbonates
(Figure 2J; Supplementary Scheme S11) (Qiu et al., 2020). A
variety of optically pure secondary phosphine oxides (R)-45
(47)
prepared utilizing this method with good yields and high
this  reaction could be

without the loss of
enantioselectivity. The resulting P-stereogenic products were
further
P-stereogenic catalysts and ligands (Supplementary Scheme
S11b).

and tertiary P-stereogenic phosphine oxides were

enantioselectivities. =~ Moreover,
performed on a gram-scale

suitable for transformations to obtain optimal

Asymmetric dynamic kinetic resolution
strategies

Although the kinetic resolution strategy can provide optically pure
products, it is limited to a maximum theoretical yield of 50%. Thus,
dynamic kinetic resolution (DKR) has drawn more attention for
preparing P-stereogenic phosphorus compounds as the yield can be
theoretically increased to as much as 100%.

Phosphoramidate prodrugs (mostly containing P-stereogenic
centers) are a key component of pronucleotide (ProTide) therapies
for the treatment of viral diseases and cancer. In 2017, DiRocco and
co-workers reported a bicyclic imidazole-derived multifunctional
catalyst (C12) and applied it to the synthesis of ProTide MK-3682
(54a), which is in late-stage clinical trials for the treatment of HCV
disease (DiRocco et al, 2017). As shown in Figure 2K and
Supplementary Scheme S12, C12 mimicked the complex function
of enzyme catalysis via a distinctive activation mode. In the catalytic
system, chlorophosphoramidate (52) is in rapid equilibrium with
activated species 55a and 55b, and P-O bond formation is the
turnover-limiting step. Despite the fact that the catalyst was
designed for preparing MK-3682 (54a), the catalytic system was
suitable for asymmetric phosphoramidation of multiple nucleoside
analogs.
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Dynamic kinetic asymmetric transformation (DyKAT)
showed its potential in the synthesis of the anti-SARS-CoV-
2 drug remdesivir. Shortly after the breakout of COVID-19,
Wang et al (2020b) responded rapidly to report a chiral
bicyclic imidazole (C13)-catalyzed coupling of P-racemic
phosphoryl chloride (56), with a protected nucleoside GS-
441524 (57), which promoted asymmetric access to the
(Figure 2L;
Supplementary Scheme S13). This process involves a smoothly

P-stereogenic  structure  of  remdesivir
dynamic kinetic asymmetric transformation (DyKAT) with high
reactivity and excellent stereoselectivity (96% conv., 22:1 Sp:Rp).

Gannedi et al. (2021) have also reported chiral bicyclic imidazole
(C14)-catalyzed asymmetric (S)-P-phosphoramidation for the
synthesis of remdesivir (Figure 2M; Supplementary Scheme S14).
Under optimized reaction conditions, the desired (S)-P-
phosphoramidate 60 was obtained with 73% yield and a 99.4:0.6 dr
ratio (after recrystallization), when 20 mol% of the catalyst C14 was
employed as a catalyst. Furthermore, a 10-g-scale one-pot synthesis
via a combination of (S)-P-phosphoramidation and protecting group
removal, followed by one-step recrystallization, produced remdesivir
with a 70% yield and 99.3:0.7 dr.

Additionally, chiral bicyclic imidazole-catalyzed asymmetric
P-phosphoramidation was applied in the total synthesis of the
antiviral agent uprifosbuvir by Klapars et al. (2021). A five-step
synthesis of uprifosbuvir with 50% overall yield, from readily
available uridine (61), was reported (Figure 2N; Supplementary
Scheme S15). The synthetic route features the following: (1)
complexation-driven selective acyl migration/oxidation; (2)
BSA-mediated cyclization to anhydrouridine; (3)
hydrochlorination using FeCl;/TMDSO; and (4) dynamic
stereoselective P-phosphoramidation. The key stereoselective
alcohol 65 with
chlorophosphoramidate 52 employed only 3 mol% loading of

P-phosphoramidation of

the bicyclic imidazole catalyst C15, providing uprifosbuvir (66)
with a ratio of 97:3 dr, 94% assay yield, and 88% isolated yield of

This
achieved a

uprifosbuvir  after  crystallization. asymmetric

50-fold
improvement in the overall yield of uprifosbuvir over the

P-phosphoramidation-based  route
previous manufacturing process.

In addition to the aforementioned bicyclic imidazole-type
catalysts, chiral phosphoric acid has also emerged as a powerful
catalyst for constructing P-stereogenic molecules. Recently,
Featherston et al. (2021) demonstrated the chiral phosphoric acid
(CPA)-catalyzed formation of stereogenic phosphorous centers
during phosphoramidite transfer (Figure 20; Supplementary
Scheme S16). Both peptide-embedded phosphothreonine-derived
CPAs (C18) and C2-symmetric BINOL-derived CPAs (C16-C17)
were investigated in the study, which gave rise to unprecedented levels
of diastereodivergence, enabling access to either phosphite
diastereomers. Diastereodivergent catalysis can be applied to other
nucleobase pairs, demonstrating the broad fundamental significance

and utility.

Conclusion and outlook

Organocatalytic methods to access P-stereogenic scaffolds
have made great progress during the last decade. Strategies
based on desymmetrization and (dynamic) kinetic resolution
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have attracted most of the work and are still mainstreamed in the
development. Multiple catalytic systems were developed, with
numerous optically enriched P-stereogenic molecules prepared.

Nevertheless, investigations on new catalytic modes and

diversified substrates are still highly demanded. In the coming
years, we expect to see an expansion in new-type organocatalytic
methodologies and applications of these strategies in the creation

of medicines, natural products, and other functional

P-stereogenic molecules.
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