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Silk fibroin (SF) is a natural protein largely used in the textile industry with
applications in bio-medicine, catalysis as well as in sensing materials. SF is a
fiber material which is bio-compatible, biodegradable, and possesses high tensile
strength. The incorporation of nanosized particles into SF allows the development
of a variety of composites with tailored properties and functions. Silk and its
composites are being explored for a wide range of sensing applications like strain,
proximity, humidity, glucose, pH and hazardous/toxic gases. Most studies aim at
improving the mechanical strength of SF by preparing hybrids with metal-based
nanoparticles, polymers and 2D materials. Studies have been conducted by
introducing semiconducting metal oxides into SF to tailor its properties like
conductivity for use as a gas sensing material, where SF acts as a conductive
path as well as a substrate for the incorporated nanoparticles. We have reviewed
gas and humidity sensing properties of silk, silk with 0D (i.e., metal oxide), 2D (e.g.,
graphene, MXenes) composites. The nanostructured metal oxides are generally
used in sensing applications, which use its semiconducting properties to show
variation in the measured properties (e.g., resistivity, impedance) due to analyte
gas adsorption on its surface. For example, vanadium oxides (i.e., V2O5) have been
shown as candidates for sensing nitrogen containing gases and doped vanadium
oxides for sensing CO gas. In this review article we provide latest and important
results in the gas and humidity sensing of SF and its composites.
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1 Introduction

Sensors are devices that produce a response to any change in the various environmental
stimuli, like touch, light, pressure, temperature, presence of gases, to name a few. These
sensors are indispensable components of all the instruments/gadgets around us. Our
handheld smartphones have a collection of sensors, ranging from capacitive touch
sensors to proximity sensors to light sensors. The elevators use touch-sensitive tactile
sensors for input. Further, the self-driving car is one of the major innovations currently, and
it relies on the input from a horde of sensors like the infrared light sensor to plot a 3D view of
the surrounding, radio wave sensor to determine the surrounding objects’ positioning, and
velocity, sonar sound sensors to resolve the distance of objects, among many others. The
sensors are mainly manufactured with metal oxide semiconductors, although various other
materials, like polymers and biomaterials, are being tested nowadays. Based on the input
parameter, we have different classes of sensors. Temperature sensors produce a variation in
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the potential difference between two metals, which is measured
across the diode in response to changes in environmental
temperature. Proximity sensors indicate the presence of objects
nearby without contact. Touch sensors produce an electric signal
due to the closure of the electric circuit on contact. The color sensor
checks the wavelength of input light and produces an output to
match it. Gas sensors display a change in the resistance or the
capacitance, conditional on the presence of target gases. A sub-
category in this, the humidity sensor monitors the concentration of
water vapor in the surroundings. Most commercial humidity sensors
also contain a temperature sensor since they measure relative
humidity, which is dependent on the temperature. Another sub-
category is the alcohol sensor that is used by law enforcement to
check the alcohol level in the system. Generally, the response could
be shown in an analog meter, such as electric meters, thermometers,
or vacuum gauges, or the response could be on a digital display, like
most of the modern sensors (e.g., temperature controllers, digital
accelerometers, proximity sensors, light sensors or gas sensors).
These are a few important sensors available, and in this review, we
have focused on gas sensors and humidity sensors.

In order to facilitate a cleaner and better environment for a
healthier future, the use of dangerous substances, toxic and
combustible gases and pollutants are to be monitored. The
detection techniques which are used include: spectrophotometry
(Bricker and Johnson, 1945), chromatographic analysis (Beasley
et al., 1980), electrochemical analysis (Herschkovitz et al., 2000),
catalytic luminescence analysis (Zhou et al., 2006) and gas sensors
(Zhang Y. M. et al., 2014). Quick detection with high accuracy is the
advantage of the first four techniques mentioned, while portability,
cost of measurement, costly instrumentation, and large volume
hinder its extensive widespread usage. Therefore, gas sensors
which have high sensitivity and facile operation, are used as an
alternative technique to detect these dangerous pollutants. Gas
sensors are miniature devices available at low cost, suitable for
identifying and real-timemonitoring of gases suitable for indoor and
outdoor applications with high sensitivity and facile operation. The
working principle of these gas sensors is based on changes in
properties like conductivity, capacitance, impedance, mass, and
refractive index of gas-sensing material after interacting
(adsorption or absorption) with analyte gases, which is a
proportional measure of the concentration of the gases. A strong
influence of structure, grain size, morphology, and surface area on
the quantity of adsorbed analyte molecules is well known (Song
et al., 2012; Wang et al., 2012; Kalantar-zadeh et al., 2016; Gao R.
et al., 2018; Ding et al., 2018).

Human activity in the name of evolution and modernization is
affecting the ecosystem/nature adversely. To mitigate this, the use of
biocompatible or biodegradable materials is stressed in all fields of
research. Two ways to approach this are (a) synthetic production of
such materials in the laboratory or (b) modifying naturally available
materials. Synthetic production requires extensive research on the
procedure for preparations and control over the possible harmful
by-products during the synthesis, while the naturally available
sources need to be modified to some extent for fine-tuning of the
properties to overcome drawbacks. Both approaches are being
explored by researchers (Ammala et al., 2011). Biomaterials are
increasing the quality of electronic devices and paving roads to
integrating them deeper into our lives. Some materials, like silk,

cellulose, and chitin have been inspected more than others, with
each having its advantages and disadvantages (Badawy et al., 2021).
Among them, silk is a highly desired material to produce owing to its
mass production capabilities with applicability in bio-friendly
flexible electronic devices (Gupta et al., 2010; Hu et al., 2012a;
Gao R. et al., 2018), due to its excellent mechanical properties,
optical properties, and in biomedicine (Wenk et al., 2011; Tsioris
et al., 2012; DeMuth et al., 2014; Di Buduo et al., 2015; Holland et al.,
2019), biophotonics (Shimanovich et al., 2018) due to
biodegradability, biocompatibility, and implantability (Vollrath
and Knight, 2001; Du et al., 2006; Jiang et al., 2007; Gupta et al.,
2010).

Silk is being explored in diverse fields. To state a few are as
follows. Jung et al. (2014) used soft lithographic patterning to
fabricate graphene-based flexible devices using surface energy
modification for high-performance graphene-based flexible
devices such as transistors, chemical sensors, and devices with SF
as substrate. Xie’s group fabricated nacre-mimetic nano-hybrid,
which provides hybridized dynamic feedback using alternating
diverse mechanical properties of nanoscale graphitic oxide (GOx)
and SF materials composites (Xie et al., 2018).

Reizabal et al. (2022) showed SF nanohybrids with 10 wt%
Indium Tin Oxide (ITO) can be used for capacitive touch
sensing applications. Abadi et al. (2021) developed excellent
piezoresistive pressure-sensing devices as well as sorbents for oil/
water separation with electrically conductive and mechanically
flexible MXene-SF composite foams, which were nacre-mimetic.
For the application in hydrogen peroxide identification from a non-
enzymatic electrochemical method, Au-ZnO nanocomposites with
SF template were shown by Chen and coworkers (Chen et al., 2018).

Li et al. (2012) fabricated disposable amperometric α-fetoprotein
(68 kDa) electrochemical immuno-sensor films using SF protein
membrane, Prussian blue, and gold nanoparticles. Genovese et al.
(2017) prepared light-responsive silk nanofiber composites by
doping photo-chromic spiropyran to silk fibroin poly(ethylene
oxide) nanofibers.

Sericulture (i.e., the cultivation of silkworms) is carried out in
many countries, and India is the second largest silk producer, with
China claiming the top spot (Anitha, 2011). India produced a total of
33,739 metric tons (MT) of raw silk in 2020–2021, having mainly
four varieties, Muga, Eri, Mulberry, and Tusar (Government of
India, 2023).

2 Silk structure and processing

2.1 Structure

Raw silk is obtained from silkworms. Silkworms consume
mulberry leaves for 20–35 days, increasing their size by about
3–5 inches. While forming a cocoon, they start moving their
bodies in the shape of the number eight around 3 × 105 times,
which takes 3–8 days to form a cocoon. In Figure 1A, we have
shown the silkworm feeding on mulberry leaves, the formation of
a cocoon, and the structure of silk fibers. Each silk cocoon
consists of strands of fibroins which are 100 m long fibers,
clung together by a protein gum called sericin (Mondal et al.,
2007; Babu, 2020). The cocoon consists of 70%–80% silk fibroins
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(SF) which are hydrophobic, 20%–30% of hydrophilic sericin,
0.4%–0.8% of wax, and 0.2% natural colour.

Sericin is a water-soluble globular protein made of side chains
containing polar entities like amino, hydroxyl, and carboxyl
functional groups. It is present as a tube-like enclosure over
the silk fibroin as shown in SEM Figure 1B (Pérez-Rigueiro et al.,
2002), with molecular weight distribution varying between
10 and 400 kDa (Matsuhira and Osaki, 2015; Eshchanov et al.,
2021). Sericin has exclusive functionalities due to its molecular
structure. Properties like hygroscopy and biological activities,
which include tyrosinase activity inhibition, antioxidation, and
anticancer activity, are seen in sericin (Kato et al., 1998; Aramwit
and Sangcakul, 2007). It is a readily available bio-compatible
renewable resource.

SF is made of amorphous domains and β-sheet crystallites. The
presence of hydrogen bonds between adjacent peptide blocks or in a
single block gives the β-sheet conformation its crystallite structure
as shown in Figure 1C (Takahashi et al., 1999). The linear sequence
of amino acids in SF protein influences the dominant β-sheet
secondary structure. The repetition in the amino acid
arrangement in the crystalline domain leads to inter-unit
hydrogen bonds and causes the development of a two-
dimensional folded chain, which is aligned anti-parallel to the β-
sheet conformation. This is seen in Figure 1D (Marsh et al., 1955).
3D nano-crystals are formed due to van der Waals interactions
between stacked sheets facilitated by small side chains of amino
acids like glycine and aniline (Hardy et al., 2008). SFs are composed
of β-sheet crystallite, which is a rectangular lattice. Its 3D structure
is defined with amino acid side chains along the x-axis, hydrogen
bonds along the y-axis, and peptide bonds along the z-axis. The
calculated lattice parameters are a = 0.938 nm, b = 0.949 nm, and

c = 0.698 nm (Karakutuk et al., 2012). SF acts as a competent and
low-cost substrate due to the availability of multiple electron
offering groups on its surface where metallic ions can attach
(Kundu et al., 2008).

SFs are a good candidate for flexible miniature sensor
devices due to their tough mechanical nature and compatible
fibroin diameter ~10 μm making them a substrate where active
sensing materials can be coated (Hu et al., 2012b; Sheng et al.,
2017; Shi et al., 2018; Won et al., 2020). Also, functional groups
like amide and hydroxyl help in binding polymers and organic
moieties through hydrogen bonding. SF is a highly ordered
semi-crystalline polypeptide fiber with a refractive index of
~1.54, mechanical characteristic with toughness value of
70–78 MJ/m3 and Young’s modulus of 15–17 GPa (Gosline
et al., 1999; Pérez-Rigueiro et al., 2000), with considerable
moisture affinity. So SFs mainly act as substrate materials
with good tensile strength, surface area, and ease of
processing with different materials.

2.2 Processing of silk

Degumming is a process of removing sericin from silk. Various
techniques are employed in degumming, such as extracting with
water, boiling off in soap, using alkali/organic acids or amines, or by
ultrasonication (Gulrajani, 1992; Sothornvit et al., 2010; Choudhury
and Devi, 2016; Oduor et al., 2020). The water extraction method is
preferred since it is cost-friendly and chemical-free. The
hydrothermal method of degumming takes the least amount of
time. The effect of temperature on the degumming ratio is listed in
Table 1. A consistent temperature should be maintained for the

FIGURE 1
(A) Silkworm feeding onmulberry leaves and formation of cocoon (B) SEM image showing structure of sericin on partially degummed silk Reprinted
with permission from (Pérez-Rigueiro et al., 2002). Copyright 2002 John Wiley and Sons (C) Structure of silk; left—amorphous domains, right—β-sheet
crystallites Reprinted with permission from (Takahashi et al., 1999). Copyright 1999 Elsevier (D) Alignment of silk in β-sheet structure showing the inter-
unit H bond Reprinted with permission from (Marsh et al., 1955). Copyright 1955 Elsevier.
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hydrothermal treatment to ensure a constant degumming ratio.
Later, the fibroins are rinsed with DI water and collected. The SFs
will have a rough texture if the degumming ratio drops below 26%,
and it gains a yellowish hue if the temperature exceeds 120°C. Sericin
can be re-extracted from the solution using dialysis.

Annealing silk in an inert atmosphere introduces structural
changes with drastic variations in the properties. The silk
proteins are transformed into a carbonaceous solid, called
pyroproteins, on heating over 350°C where the β-sheet structure
of proteins transforms into sp2-hybridized carbon in hexagonal
structure (Cho et al., 2015). Protein in SF is related to a char-
type polymeric precursor that will not melt on annealing. Having no
aromatic backbone or cross-linked structures, β-sheet-rich proteins
of SF undergo restructuring to form a conjugated molecule on
pyrolysis.

3 Sensing application

Presently, the use and mass production of precarious materials,
especially combustible and toxic gases, in industries have become
extensive. Any accidental escape of these gases to the atmosphere
could be a potential hazard. The concept of gas sensing is thus
implemented to avoid such situations. There is extensive use of gas
sensors in many areas, including medical institutions, research
organizations (environmental and scientific), electronic
manufacturing plants, food, and agricultural processing, etc. Gas
sensors are becoming widely beneficial, as displayed in Table 2. The
use of these gas sensors in households leads to the uplifting of the
quality of life of the public, as shown by the cartoon illustration in
Figure 2A (Korotčenkov, 2013). Moreover, these devices are also
shown to complement the functioning of fire sensors by detecting

TABLE 1 Details of effect of temperature and water ratio on silk degumming in hydrothermal method.

Sl.No Ratio (silk:water) w/w Temperature (°C) Degumming ratio (%)

1 1:40 120 ~26

2 1:40 110 ~23

3 1:40 100–105 ~14–16

4 1:40 150–160 ~29

5 1:40 130–140 ~23–24

6 1:50 130–140 ~23–24

TABLE 2 Examples of gas sensor applications Korotčenkov (2013).

Field of application Function Detected gases

Environment Atmospheric toxic gases due to industrial emissions CO, CH4, humidity, CO2, O3, NOx, volatile organic compounds
(VOCs), SOx, HCs, NH3, H2S

Safety at work Air quality factories combustible gases, O2

Domestic safety Poisonous gases leak detection and air purifier Humidity, CO2, VOCs, CO, CH4

Car safety Ventilation, gasoline vapour, breath test CO2, O3, NOx, VOCs, LPG, CH4

Public Health Air quality and Safety checks Flammable gases, explosives, Toxic gases

Hospitals Diagnosis (breath analyzer) and drug monitoring O2, NH3, NOx, CO2, H2S, H2, Cl2, anesthesia gas

Agriculture Flora/fauna diagnostics; water and soil examination; poultry/
animal inspection; sewage waste supervision

amines, NH3, humidity, CO2

Culinary quality Identification of molecules which are let out by rotting substances Humidity, CO2, NH3, etc.

Combustion Engines Control of the amount of the gases in the engine and gas boiler for
efficienct combustion process (in power plants, automotive
industry)

O2, CO, HCs, NOx, SOx, CO2, H2

Industry: Petrochemical, Steel Water
treatment, Semiconductor

Quality control; Course monitoring; Workplace monitoring; waste
monitoring; leakage alarms

HCs, conventional pollutants, O2, H2, CO, HCl, Cl2, CO2, H2S,
CO, H2, AsH3, O3, H2, Cl2, TEOS, Si, C4F6, BCl3, C5F8, HF, GeH4,
CO, NH3, PH3, NO2

Defense/military Detection of toxins, biological and chemical warfare agents Agents, explosives, propellants

Aerospace Measuring of oxygen and toxic and flammable gases in
atmosphere

H2, O2, CO2, humidity

Traffic/tunnels/car parks Traffic management and control; air quality control in tunnels and
car parks

CO, O3, NOx, SO2, CH4, LPG
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the presence of gases in smoke and are also being used in electronic
noses for quality control in various industries. A typical sensing
setup to test materials for gas sensing applications can be seen in
Figure 2B.

For any sensor fabrication, their sensing parameters, including
response/recovery times, flexibility, reproducibility, selectivity, and
long-term stability, are investigated. For a certain amount of given
gas, the time taken to reach the steady state corresponds to the
response time of the sensor. Many articles report response time
being the time required for the signal value to get to 90% of its
response value (Rg) in the test gas. Recovery time is the time needed
for getting back the signal values to 90% of its baseline value (Ra). It
is to be noted that in many cases, after each test, the initial signal may
not maintain its original value, and the sensor response is calculated
using the function of Response% shown in Eq. 1.

Response% � |Rg − Ra|
Ra

× 100% (1)

3.1 Sensor classification

Based on the operation principles, gas sensors are categorized
into gravimetric which includes surface acoustic waves (SAW) and
Quartz Crystal Microbalance (QCM), resistive, capacitive,
semiconductor and optical.

3.1.1 Gravimetric sensors
In gravimetric sensors, the variation in frequency due to change

in mass caused by adsorption of analyte molecule gives the
measurement of analyte gas concentration (Korotčenkov, 2013).
The sensitivity of the SAW apparatus to minute variations in surface
mass (100 pg/cm2) acts as the principle of these gas sensors. The
chemical selectivity of these sensors suffers a blow due to the
fractional monolayer mass sensitivity. A response is observed
irrespective of the moiety adsorbed. One of the ways to
overcome this is by using a pair of SAW devices, where the
surface of one is altered by a chemically particular interface
material based on the interested analyte(s), while the second is

chemically passivated or left uncoated. This leads to a similar
response by both universally, while the altered material
contributes added specific response to the interested analyte(s)
(Hoyt et al., 1998). In Quartz Crystal Microbalance (QCM)
devices, the change in surface mass (in ng) due to the interaction
of sensor material with selective gases causes a change in the
frequency of oscillating quartz crystals. The mass of the analyte
adsorbed can be determined based on a change of frequency using
the Sauerbrey Eq. 2,

△m � −C ×△f (2)
△m represents the change in mass, △f is the resonant

frequency of the crystal, while C is a constant for a particular
sensor, dependent on sensor specifications (Sauerbrey, 1959;
Kumar Vashist and Priya, 2011). QCM sensors operate at a
5–20 MHz frequency, while SAW sensors operate at
40–200 MHz. The sensing mechanism is through surface
waves in SAW, while in QCM, bulk waves are employed
(Mohibul Kabir et al., 2014). The sensing material is coated
on one of the surfaces of the crystal in SAW sensors for sensing
action, while QCM has electrodes on both sides of the crystal for
the purpose as seen in Figures 3A, B respectively (Mohibul Kabir
et al., 2014). These differences make SAW sensors a more
sensitive type of gravimetric gas sensor.

3.1.2 Resistive sensor
In resistive sensors, changes in the electrical resistance of the

sensing layer caused by the interaction with analyte species are
usually measured through changes in its resistance or impedance
(Korotčenkov, 2013). The changes are dependent on the type of
material and the type of analyte, and its concentration. These
changes are the consequences of adsorption, chemical reactions,
diffusion, catalysis, or swelling on the sensing material due to
interactions with a gas analyte. Possible interactions are shown in
Figure 3C (Göpel and Dieter Schierbaum, 1995). For example, RH
surge usually declines the resistance or impedance of the resistive-
type humidity sensor. Grotthuss mechanism is used to explain the
typical resistive-type humidity sensor (Chen and Lu, 2005).
Molecules of water get chemically adsorbed on an active surface

FIGURE 2
(A) Gas sensor variations for use at a modern home (Korotčenkov, 2013) (B) Schematic representation of setup used in gas sensing measurements.
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of the sensor, forming a complex that subsequently transforms to
surface hydroxyl groups seen in Figure 3D (Zheng et al., 2021).
Additional water molecules get adsorbed through hydrogen bonding
on the two neighboring hydroxyl groups. The top molecule of
condensed water cannot move readily due to the constraint of
hydrogen bonding. Thus this physically adsorbed first layer is
stagnant, and there are no hydrogen bonds formed between the
water molecules in this layer. Hence, no H+ conduction at this
step. Upon further condensation, additional layers are formed on
top of the first physically adsorbed layer, which is barely ordered. As
more layers condense, the orderly nature gradually disappears, and
protons obtain more and more freedom to navigate inside the
condensed water via the Grotthuss mechanism. From this, it can
be pointed out that pure water-phase protonic conduction is not
sensitive at low humidity, at which vapors of water could barely form
continuous mobile layers on the sensor material surface. This is
referred to as ionic conduction. Conduction through electronic
tunneling is attributed to the donation of electrons from the
chemically adsorbed water molecules to the surface, which
introduces donor surface states near the Fermi level. The surface
anions add donor energy levels and serve in conduction. It was
proposed that molecules of water substitute the adsorbed ionized

oxygen moieties (O−, O2−, etc.) and thus causing them to release the
electrons. Moreover, it was also proposed that due to the polarity of
water, the adsorbed water moieties could attract the electrons to the
surface, causing an increase in the conductivity. Both mechanism are
shown in Figure 3E (Chen and Lu, 2005). This type of sensing is known
as the “electronic type” since the conductivity stems from the surface
concentration of electrons. The induced energy by the surface anions
and the tunneling effect aid surface electron hopping in the immobile
layers, thereby assisting in the conductivity.

Although the mainstream resistive gas sensors utilize metal
oxides or conductive polymer as sensing materials, various other
compounds have been proposed for the fabrication of resistive gas
sensors (Neri, 2015). Some of those are:

→ Metal oxides
→ Conducting polymers
→ 2D metal chalcogenides
→ Graphene, CNTs and their derivatives
→ Composite hybrid materials

Of these materials, we have gone into more detail about the
working of metal oxide semiconductor.

FIGURE 3
Sensor assembly of (A) SAW devices (B)QCMdevices Reprinted with permission from (Mohibul Kabir et al., 2014) (C) The effect of 1) Surface, 2) Bulk,
3) Three-phase boundary, and 4) Grain Boundary towards electrical conduction in a sensor Reprinted with permission from (Göpel and Dieter
Schierbaum, 1995). Copyright 1995 Elsevier (D) Grotthuss mechanism Reprinted with permission from (Zheng et al., 2021). Copyright 2021 John Wiley
and Sons (E) Possible mechanism for Resistive humidity sensor Reprinted with permission from (Chen and Lu, 2005). Copyright 2005 American
Scientific Publishers.
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3.1.2.1 Semiconductor sensor
Semiconductor materials are applied in sensor devices at the

active materials for detecting reducing gases such as H2, CO, VOCs,
and other hydrocarbons (Korotčenkov, 2013). This type of
semiconductor plays an important role in the sensing application
depending on the doping, i.e., p-type and n-type. The distinct
sensing mechanism between the two is understood based on the
major charge carriers. The surface of the sensors contains adsorbed
oxygen shown in Figure 4A, causing a decrease in the electron
concentration leading to high resistance in n-type semiconductors
(WO3, SnO2, TiO2, In2O3, ZnO) while instigating a surge in the hole
concentration leading to low resistance in p-type semiconductors
(Cr2O3, NiO, CoO, MnO2, CuO) (Barsan et al., 2010). This
phenomenon is represented in Eq. 3 (Kim and Lee, 2014).

O2 gas + Sads#O2 ads + 2e− ↔ 2O −
ads (3)

On an n-type semiconductor surface, ionic oxygen species
contribute to the creation of a depletion layer. The depletion
layer is the region where an isolated charge has been developed
due to electron drain by oxygen species, inhibiting the flow of
electrons and leading to increased resistance. The same reaction
causes an increase in the concentration of majority charge carriers
(holes) in p-type semiconductors, leading to decreased resistance.
The presence of reducing gas in the atmosphere produces a counter-
reaction shown in Eq. 4.

R + O −
ads → RO + Sads + e− (4)

Since the electron gets freed up, the resistance is lowered in n-type,
which can be envisioned from Figure 4B (a) (Kim and Lee, 2014).
This results in a massive response to minor variations in the
amounts of different reducing gases in an n-type semiconducting
gas sensor as reported (Firooz et al., 2009; Seo et al., 2011; Singh
et al., 2011; Zeng et al., 2011; Xu et al., 2013). Whereas, with the
release of electrons, the hole population decreases because of
electron-hole recombination in a p-type material as illustrated in

Figure 4B (b) (Kim and Lee, 2014). The resistance thus increases in
response to reducing gases. Hübner et al. (2011) gave the relation
between the gas response of p-type (Sp) and n-type (Sn)
semiconducting sensors with similar morphologies as given in
Eq. 5 (Takahashi et al., 1999).

Sp �
��
Sn

√
(5)

This indicates that although p-type semiconducting sensors are
more sensitive, it is very challenging to design a sensor using
these materials due to significantly low response% and hence not
many p-type gas sensors are available commercially.

These devices also include a heater to maintain a temperature
between 200°C and 500°C, depending on the sensor material, for
optimum performance. This limits high-temperature sensors’ use in
the detection of flammable, explosive, and toxic gas (Tang and
Wang, 2015a; Xing et al., 2017; Dey, 2018). As a workaround, UV
(λ = 365 nm) illumination is being used to lower the operating
temperature. Various reports have shown that UV illumination
could boost the sensing activity of semi-conducting oxides (Lu
et al., 2012; Luís et al., 2017; Meng et al., 2018). Also, UV-
photogenerated electrons present on the sample surface increases
its conductivity (Gao Z. et al., 2018). Among many kinds of gas
sensors, these are mainstream products since neither environmental
temperature nor humidity interferes with their working.
Semiconductor gas sensor has seen extensive backing for the past
20 years due to their high sensitivity, steady performance, low price,
small size, facile use, etc.

3.1.3 Capacitive sensor
Capacitive sensors work on the concept of change in capacitance

(Korotčenkov, 2013) due to change in relative dielectric permittivity
(ϵr), electrode surface area (A), or the separation between the
electrodes (d) (Kummer et al., 2004). In regards to the
capacitive-type sensor, the variation in the capacitance is
attributed to the modification in the relative permittivity of the

FIGURE 4
(A) Difference in the core of the two types of semiconductors (B) Gas sensing in (a) n-type semiconductor and (b) p-type semiconductor Reprinted
with permission from (Kim and Lee, 2014). Copyright 2014 Elsevier.
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dielectric medium due to the adsorption or absorption of the
molecule of interest into the pores. A surge in the dielectric
constant of this system is noticed since most analyte molecules
have a large dielectric constant (compared to the dielectric constant
of air being 1). The capacitance of the system will vary in accordance
with the amount of analyte molecule that has replaced air. In the case
of humidity sensors, higher the RH value, higher the capacitance will
be due to a higher value of ϵr. Capacitive sensors for humidity
detection are of two types in general a) sandwich type, where the
sensing material is sandwiched between two electrode plates. b)
Interdigitated type, where the sensing ceramic layer is placed above
the printed interdigitated electrode. Sandwich types typically have
fewer parasitic capacitance and higher sensitivity but prolonged
response time due to water molecules’ diffusion via the electrodes to
reach the sensing layer. The interdigital type has a brief response
time because of water molecules’ direct reach to the sensing ceramic
surface. Also, because of its high intrinsic resistance at low humidity,
it has low sensitivity.

3.2 Gas sensors

Lightweight, simple to design, and economical and bio-friendly
materials are a few of the challenges scientists aspire to meet in the
sensor field. Sensing applications like Triboelectric nanogenerators
as self-sustaining sensors (i.e., Conversion of mechanical energy
from physical movements of the wearer to electrical current through
electrostatic induction and coupling effects), optical sensors
(i.e., converts light rays into an electronic signal), pressure
sensors (i.e., measure pressure and transduce it into an electric
signal where the amount is proportional to the pressure applied)
have inculcated SF material. Silk-based sensors have been reviewed
(Badawy et al., 2021).

3.2.1 NOx (NO, NO2)
Nitrogen oxides (NOx) are produced during high-temperature

fossil-fuels combustions (Katsouyanni, 2003). Nitric oxide (NO) is
transformed to nitrogen dioxide (NO2) by oxidation, and NO2 in
reaction with aerosols produce secondary gases. NO2 affects the
human air tract causing asthma and inhaled allergen response
(Bernstein et al., 2004; Kampa and Elias, 2008).

An encouraging viewpoint for graphene-based electronics is the
control of the type and density of charge carriers by doping (Zhi and
Müllen, 2008; Henry et al., 2011). Adsorption of extrinsic atoms or
molecules on the graphene surface produces a doped two-
dimensional material. Drastic changes in the magnetic and
electronic properties of graphene due to adsorbed species are
noticed, helping in the fabrication of extremely sensitive gas
sensors (Zhi and Müllen, 2008; Zhang X. et al., 2014; Shim et al.,
2015). This is especially seen in the case of exposure to reducing
gases. Graphene oxide (GO), a derivative of graphene, can be
produced on a large scale using Hummers’ method and has been
used for a variety of applications because of the characteristics of the
oxygen functional groups (Hummers and Offeman, 1958). Upon
removal of some of these through a chemical or thermal reduction
process, they can be used for chemo-resistive sensor applications
(Won et al., 2021). Based on first-principles calculations, the charge
transfer between gas molecules (H2O, NH3, CO, NO2, and NO) and

the graphene surface along with energies, position, and orientation
of adsorbed gases have been studied (Leenaerts et al., 2008).
Adsorbate-induced doping of graphene was investigated using a
combination of first-principles calculations, and transport
measurements (To et al., 2008). The residual oxygen functional
groups produced during the reduction process of GOx provide
defective centers, which are active analyte adsorption spots.
These adsorption spots boost the interaction of NO2 with rGO
and offset the gains in sensitivity against the fast decline in
conductivity, which improves the sensor activity (Robinson et al.,
2008; Dan et al., 2009; JesseFowler et al., 2009).

Won et al. (2020) fabricated electronic textile (e-textile) for the
detection of NO2 gas using GOx and commercial silk fabric (CSF).
The e-textiles were fabricated by soaking the silk fiber into a GOx

solution followed by thermal reduction at 400°C without any
chemical treatment. On adsorption of NO2 gas over reduced
graphene oxide (rGO), the former acts as the electron acceptor,
while rGO becomes the donor resulting in a hole generation in rGO.
This leads to a decline in the electrical resistance of rGO. As NO2

interacts with sp2-carbon via the weak dispersive force with low
binding energy, a quick response is observed (Tang and Cao, 2011).
On the interaction between oxygen functional groups andNO2 gas, a
delayed response is seen after the above quick one due to the higher
binding energy between them.

It has been previously reported that embedding rGO with ZnO
and SnO2 enhanced its NO2 sensing behavior, but ZnO and SnO2

implanted in rGO-CSF e-textiles were found to have reduced gas
sensing activity compared to rGO-CSF. The reason given was that
the Zn and Sn ions interact with the functional groups of GOx during
the synthesis, passivating it. The prepared e-textile annealed at 400°C
showed a response to 1 ppmNO2 and the best response amongst the
rGO-CSFs composites with 24%when it was brought in contact with
10 ppm NO2 at ambient temperature and dry conditions.

The highly porous structure with a high surface area of SF makes
it a very suitable substrate for the coating of rGO, and its interactions
with rGO prompt it as a good sensing device. The textile has also
been annealed to 400°C leading to the carbonization of silk (Cho
et al., 2015), which results in better conductivity and connectivity
due to an increase in the sp2-hybridized carbon. This could also
result in a better response to the gas.

3.2.2 Hydrogen chloride (HCl)
Hydrogen chloride is a very corrosive acidic gas with a pungent

smell that causes severe burns to the skin and serious damage to the
eyes on exposure. Inhaling the gas leads to severe burns on the throat
and mouth. It reacts with the mucous lining present in the
respiratory system and the digestive system leading to possible
perforation of the esophagus and stomach. Symptoms of
inhalation of HCl gas include cough, shortness of breath, and
mucosal irritation while causing respiratory tract damage at a
higher concentration. It is also very corrosive/reactive to any
metallic objects exposed.

Carbon nanotube (CNT), with its large surface area, is explored
as a chemical sensor due to its susceptibility to the chemical
environment resulting in variation in conductivity (Frank et al.,
1998; Hu et al., 2010; Wang et al., 2017). Conducting polymers like
polyaniline (PANI), polypyrrole (PPy), and polythiophene are a few
good candidates for sensor applications due to changes in their
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doping extent, free charge mobility, or the density of free charge
carriers on interaction with chemical molecules (Janata and
Josowicz, 2003; Zhang et al., 2008).

Sheng et al. (2017) have studied CNT/SF/PANI composites as a
sensor for HCl. Composites are prepared using two types of CNTs,
i.e., vertically aligned CNT (prepared on a SiO2 substrate) and
commercially bought random CNT powder. Fibroin solution
(prepared by dissolving fibroin threads in CaCl2, deionized water,
and alcohol) was used to composite with CNT, which led to the
formation of microscale porous material. The addition of fibroin
solution leads to the direct removal of CNT from the SiO2 substrate
without any further rigorous acid or sonication treatment. PANI was
coated electrochemically (Wang et al., 1987).

Of the two prepared CNT and fibroin composites (CNT-SF), the
one with array CNT (CNTA) outperformed with respect to
sensitivity, which has been attributed to the high graphitic nature
of CNTA. A proportional relationship between the relative
sensitivity and the amount of analyte was noticed in CNTA. A
distinct response of PANI-functioned CNTA-SF to HCl vapor is
seen from CNTA-SF. On exposure to HCl vapors, the resistance of
the PANI-functionalized CNT array decreased, while that of pristine
CNTA-SF samples increased (with a 400 ppm detection level). The
results are tabulated in Table 3.

The reduced resistance in PANI-functioned CNTA on
exposure to HCl vapor is a result of the protonic acid doping
activity of PANI, leading to a decline in resistance in PANI
(Puthirath et al., 2016). Here the fibroin solution is mainly used
to hold the CNTs together and ease their removal from the SiO2

substrate.

3.2.3 Ammonia (NH3)
The source of Ammonia (NH3) gas pollution is attributed to

agricultural areas, automobile, fertilizer, pharmaceutical, and
synthetic fiber industries. Most significant places are associated
with high-density animal farming, and industrial fertilizer
production (Van Damme et al., 2018). Excessive inhalation of
NH3 gas can poison the human body, which leads to pharyngitis,
hoarseness of voice, breathing difficulties, and even block trachea
(Metin and Metin, 2010). A large amount of NH3 in the
environment contributes to the acidification and eutrophication
of ecosystems (Roland et al., 2010; Paerl et al., 2014). The human
detection levels for NH3 gases are above 5 ppm, and the
recommended exposure limit is 25 ppm.

Pristine and CNTA show high sensitivity for NH3 with a
detection limit of 50 ppm in comparison with randomly
distributed commercially obtained CNTs with a 400 ppm
detection level (Sheng et al., 2017). The fabricated CNT/fibroin/
PANI composite showed sensitivity to NH3 with a detection limit of
50 ppm with 2.9% relative sensitivity. The results are tabulated in
Table 3. A better microsensor based on PANI/TiO2 on silk fibroin
was built by Shi and co-workers to track the freshness of pork by
detecting NH3 generation. It was reported with a good response time
of 10 s for a concentration of 100 ppm of ammonia with a response
of 0.82 (Shi et al., 2018).

The traditional sensor-supporting materials, such as Si (Pal and
Jacob, 2004; Chartuprayoon et al., 2010; Hu, 2021), Interdigital
Electrodes (IDEs) (Mazlan et al., 2017; Tang et al., 2020), Indium
Tin Oxide and glass (Tiwari et al., 2015; Shankar et al., 2022) are
limited in some applications which have terrible flexibility and
adaption to complex environments. To achieve good flexibility,
various substrates emerged over time, which include polyethylene
terephthalate (PET), polydimethylsiloxane (PDMS), polyester (PE),
polyimide (PI), and polycarbonate (PC). Silk fibroin is exploited as a
possible flexible substrate. She et al. (2021) fabricated flexible PPy@
silk-fiber and PPy@sponge sensors for detecting ammonia with
silica nanospheres (NS) as a template while silk and sponge
acting as a substrate in a facile insitu chemical oxidation
polymerization method. Degummed silk is mainly used due to its
ordered nature compared to raw silk with sericin. The PPy/NS@silk-
fiber sensor possessed a lower base resistance, with a response of
2–5 times better than that of the PPy/NS@sponge sensor for
1–225 ppm NH3 at room temperature. PPy/NS@sponge sensor
failed in detecting NH3 with less than 5 ppm concentration,
while PPy/NS@silk-fiber gave a response. The resistance
increased by 4% after 50 stretching cycles, while 200 cycles led to
a decrease in response by 10.61%with hardly any change in response
time. These results indicate that the PPy/NS@silk-fiber sensor
possesses satisfactory mechanical stability for application as a
wearable sensor. Several common VOCs, including acetone, N,N-
Dimethylformamide (DMF), cyclohexane, ethanediol, ethanol,
ether, toluene, acetylacetone, and NO2 were studied, and no
considerable response was exhibited as shown in Figure 5A.
Short response time (24 s) and recovery time (69 s) towards
100 ppm NH3 at ambient temperature indicating that the PPy/
NS@silk-fiber sensor has good selectivity in differentiating NH3

from the concerned interfering gases and vapors.

TABLE 3 HCl and NH3 sensitivity and detection limit of CNT-SF-PANI composites Adapted with permission from Sheng et al. (2017). Copyright 2017 IOP Publishing.

Vapour Sample Relative sensitivity % Detection limit (ppm)

HCl CNT powder 0.11 400

CNTA 0.83 200

CNTA/PANI (6.7 min) 2.3 200

CNTA/PANI (20 min) 4.1 200

NH3 CNTA 0.69 50

CNTA/PANI (6.7 min) 1.6 50

CNTA/PANI (20 min) 2.9 50
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The interaction between ammonia molecules and p-doped PPy
is considered due to the compensation effect (Gustafsson et al.,
1989). NH3 is an electron donating molecule, behaving as an n-type
dopant, while the PPy layer acts as a p-type semiconductor
(Bazzaoui et al., 2007; Šetka et al., 2017). Herein, adsorption of
NH3 onto the PPy surface causes a decrease in the doping level,
compensating for the effect of PPy. This induces electron transfer
from NH3 molecules to the PPy main chains, causing a loss of the
hole concentration and raising the electrical resistance (Joulazadeh
and Navarchian, 2015; She et al., 2021). This can be explained in
terms of ionization potentials of NH3 and the polymer (Yoshino and
Gu, 1986).

3.2.4 Hydrogen (H2)
Hydrogen is a non-toxic gas with no health hazards, but high

concentrations in a closed environment cause asphyxiation due
to the absence of oxygen. It has very low ignition energy and a
wide range of combustible air mixtures, making it a very
dangerous gas (starting from concentrations as low as 4%). A
minute spark can lead to ignition, burning with a nearly invisible
flame and having no odor, making its sensing an important aspect

at the site of its storage. Its strong reducing activity causes some
metals to become brittle, which could also be dangerous due to
loss of structural integrity.

Chuang et al. (2017) fabricated zinc oxide nanorods coated with
sericin (S-ZNR) for the detection of H2 gas. The S-ZNR was
fabricated from sericin solution using an economical
solvothermal method. Figure 5B (x) shows energy band diagrams
for the response of (a) pristine and (b) S-ZNR to hydrogen
adsorption (Chuang et al., 2017). Increased oxygen vacancies in
S-ZNR compared to ZNR is profitable as it enhances the electrostatic
interaction between the analyte gas molecules and the surface of the
nanorods (Zeng et al., 2009). 100 ppm of H2 gave a sensitivity of
17.8% in S-ZNR while that of as-grown ZNR showed just ~6.8%.
Removal of adsorbed oxygen by reduction of sericin surface and
chemisorbed oxygen moieties by H2 molecules leads to the release of
trapped electrons into the sample, causing an increase in
conductance. As shown in the SEM Figure 5B (y), sericin
molecules get coated on the ZNR surface by the formation of
complex ionized electronic states via weak electrostatic force.
This may cause a surge in the electrostatic interaction between
the functional groups of sericin and ZnO, boosting the number of

FIGURE 5
(A) Selectivity of the PPy/NS@silk-fiber sensor towards different test gases at the same concentration Reprinted with permission from (She et al.,
2021). Copyright 2021 Elsevier (B) (x) Representational energy band diagrams in a H2 sensor in (a) pristine ZNR and (b) sericin-coated ZNR (y) (a) FESEM (b)
HRTEM images showing the presence of sericin on ZNR Reprinted with permission from (Chuang et al., 2017). Copyright 2017 American Chemical
Society.
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oxygen moieties on the ZNR surface and, thus, the electronic
transportation for sensor applications. The response and recovery
time was observed to be better in S-ZNR, along with better
sensitivity.

3.2.5 Methanol (CH3OH)
At low concentrations, methanol vapors can be digested by the

human system and exhaled through breath or urine. Methanol is
always present in the environment at low concentrations as a by-
product of the fermentation of plants, and no harmful effects have
been observed. But, at high concentrations, due to its low flash point,
a spark or even hot surfaces would cause ignition. It also has adverse
effects on plastics and rubber in the surrounding. Inhalation of
methanol vapors (200–375 mg/L) causes dizziness, drowsiness,

blurred vision, and nausea. Chronic exposure (800–3,000 mg/L)
could result in temporary or permanent blindness. At high
concentrations, it can lead to inebriation, causing a vegetative
state and finally leading to death. It can remain in the
atmosphere for 18 days before either dissolving in water or
eventually breaking down. Gas sensors detecting methanol are
very much important to workers who are exposed to methanol
vapors or are in a high-risk environment surrounding methanol
storage containers.

Ag-LaFeO3 Molecular Imprinted Polymers (ALMIPs) fibers
with recognition centers are investigated as highly selective
methanol sensors (Qian et al., 2017). Good surface area, thermal
stability, rich active oxygen lattice, structure tunability, and strong
reducibility have unfolded Ag-LaFeO3 (AL) as a potential material

FIGURE 6
(A) Responses in ALMFs based gas sensors (a) ALMFs-1 (b) ALMFs-2 (c) ALMFs-3 towards various test gases at 5 ppm concentration (B) (a–c)
Response% variation with concentration of methanol for ALMFs-1, 2, and 3, respectively (d–f) Response-Recovery time representation at various
concentrations of CH3OH vapor (g–i) Dynamic response of this sensor at increasing concentrations of CH3OH Reprinted with permission from (Qian
et al., 2017). Copyright 2017 Springer Nature.
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for gas sensing (Traversa et al., 1995). Molecularly Imprinted
Technology (MIT) is used to produce polymers that provide the
active binding site for the analyte molecules by matching space
structures. These host polymers show high molecular recognition of
the selected template molecule. Briefly, a sol of AL was prepared
using their elemental nitrates, [AgNO3, LaNO3.6H2O,
Fe(NO3)3.9H2O] and mixed with citric acid and polyethylene
glycol and then used as cross-linker in the MIT. Methacrylate
(MAA) was used as a functional monomer, AL was used for
cross-linking, and methanol was used as a molecular template for
recognition sites to fabricate a highly selective methanol analyte-
sensing material. Different templates like silk, filter paper, and
carbon fibers were used to obtain high surface areas and
analyzed for gas sensing. These templates were burnt out in the
air at 800°C for 2 h to obtain ALMIPs fibers and ALMFs. Various
templates make fibers acquire distinct exposed facets (Gao et al.,
2008; Tang and Wang, 2015b), and various neighboring lattice has
an impact on obtaining diverse properties. The surface areas of
ALMFs were in the order filter paper (ALMFs-1) > silk (ALMFs-2) >
carbon (ALMFs-3). ALMFs-1 showed 23.5% (at 175°C) response
while ALMFs-2 showed 19.67% (at 175°C) and ALMFs-3 showed
17.59% (at 125°C). Here ALMFs were also investigated for other
organic vapors, formaldehyde, acetone, ethanol, ammonia, gasoline,
and benzene. ALMFs-1, ALMFs-2 and ALMFs-3 have shown lower
responses <10, <3, and <2 respectively for organic vapours shown in
Figure 6A. Also, the response relationship at various amounts of
CH3OH, response recovery time, and dynamic response is shown in
Figure 6B.

ALMFs sensing mechanism is similar to LaFeO3, which is a
typical p-type semiconductor, exhibiting variation in resistance
prior to and after exposure to the analyte gas (Haupt, 2011).
Calcining at elevated temperatures creates lanthanum vacancies
at the crank points of the cell, and the resistance variation is
seen as a result of ionization of lanthanum vacancies (Mizusaki
et al., 1983; Liu et al., 2011). O2 gets adsorbed on LaFeO3 surface on
exposure to air and captures free electrons of the LaFeO3 particles as
a result of greater oxygen electronegativity forming chemisorbed
oxygen ionic species resulting in an increase in the number of
positive charge carriers (holes) in the valence band and increase in
conductivity of materials due to higher available carriers (Niu et al.,
2004). CH3OH reacts with the ionized oxygen species on the
material to form Carbon dioxide and water, releasing the trapped
electrons and causing a widening of the space-charge layer leading to
the increased potential barrier and hence, the resistance.

3.2.6 Humidity
Moisture is a vital moiety of our environment with significant

influence on living and non-living matter. This leads to necessary
regulations in a multitude of manufacturing industries and for
improvement of quality of life for humans in fields such as
control of living environments in buildings, in hospitals to
monitor respiratory equipment, in agricultural irrigation to
control the amount of H2O to name a few. Relative Humidity
(RH) of air can be measured by humidity sensors, which use
materials to sense the concentration of water vapor in air or pure
gas and display it (Rajkumar and Kumar, 2019).

Sensing humidity exploits the water adsorption and desorption
process of a few materials. The commonly used measurement units

in humidity sensors are Relative Humidity (RH), Dew/Frost Point
(D/F PT), and Parts Per Million (PPM). RH is the ratio of the partial
pressure of water vapor present in a gas to the saturation vapor
pressure of the gas at a given temperature, making it a function of
temperature (thus relative). It is a unitless quantity and written as a
percentage value. The dew point is the temperature below which the
water vapor in a gas starts condensing into liquid. At dew point, the
RH is deemed to be 100%. Similarly, the frost point is the
temperature at which the vapor begins to freeze over ice or
exposed cold surface. D/F PT is an absolute humidity unit. PPM
is the water vapor concentration in mg/L of air or gas. PPM, similar
to D/F PT, is also an absolute measurement. Although this unit can
be hard to comprehend, it is used extensively in industries for trace
measurements (Chen and Lu, 2005).

Silk fibroin (SF) inverse opals were considered for the
synthesis of humidity-responsive photonic crystals (Diao et al.,
2013). The cyclic contraction property of silk fibroins due to
changes in humidity and the ability to alter the structural
parameters of inverse silk opals make them the best material
for this application (Agnarsson et al., 2009; Fu et al., 2009).
Briefly, a 2% w/v aqueous solution of SF was prepared (Sah and
Pramanik, 2010) and fabricated into inverse opals using 3D
colloidal crystal templates and then coated with polystyrene to
obtain Silk Photonic Crystals (PCs). A high RH causes the
adsorption of water to the irregular coils in the amorphous
region of molecules in silk fibers, causing a disruption of the
weak hydrogen bonds. This induces a drop in the stress–strain
curve due to the relaxation of silk, as shown in Figure 7A
(Agnarsson et al., 2009). On drying, H2O molecules evaporate
from the irregular coil region, reforming the hydrogen bonds and
causing immobilization of silk molecules, contracting the fibers.
After 6,500 s or 3 rounds of repetitions of the tension, not much
variation was observed in the measurements, making it a suitable
candidate for precise control of their optical property. It was
observed that at a high RH value, the visible 350 nm reflection
peak undergoes a redshift due to the swelling of SF shells by water
adsorption causing changes in its refractive index. However, the
reflection peak of the SF inverse opal shows a blueshift (towards a
lower wavelength) with a decrease in the RH level. The sensor was
shown to be responsive between 30% and 80% RH. Figure 7B
(Diao et al., 2013) shows the color change of PCs to change in RH
and the dependence of reflection peak on humidity. The elastic
nature of SF (Nakamae et al., 1989) keeps the inverse opals crack-
free.

Fan et al. (2019) fabricated a similar humidity sensor making
use of the excellent optical property of SF where Rhodamine 6G
(R6G) was doped on silk, coupling its fluorescence emission with
the inverse opal PC. The silk PC films are highlighted to
transform into a “self-collimator” by enhancing fluorescence
emission or by improving fluorescence detection. The R6G
moieties were evenly distributed throughout SF films due to
hydrogen bonding between silk fibroin and Rhodamine 6G
molecules. This interaction happens in the mesoscopic scale
(Lin et al., 2016). The sensing activity was measured from
37% to 74% RH and showed a sensitivity of 28.5%. Similar to
the previous sensor, humidity variation caused cyclic
contractions in SF, leading to the changes in the lattice
parameter value (Agnarsson et al., 2009). The SF inflammation
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due to high RH causes the expansion of silk shells, leading to a
redshift (towards higher λ) in the reflection peak. Contrarily,
when the RH decreases, the silk shells contracted due to SF
deflation leading to an increase of fluorescence emission of the
silk PC due to blueshift (towards higher λ) in the Photonic Band-
Gap (PBG) as seen in Figure 8A (Fan et al., 2019).

The optical property of SF (Perry et al., 2008; Bucciarelli et al.,
2018) was also used for the fabrication of optical humidity
sensors (Heah et al., 2021), where absorption of a large
volume of water vapor causes a slight variation in the
refractive index and optical path length, maintaining
comprehensive morphology and optical connection of the
device. A modified mini-emulsion method was used for SF
microspheres fabrication and then stained with AR52 to
harness its photoluminescence (PL) property. DMF is used to
swell the microspheres for easy diffusion of dye into them. The
doped microsphere has a pale red appearance and emits
orange–red PL. The humidity sensor has been tested for the
values of 24%–95% RH, and a sensitivity of 187 pm/% was
observed. The effect of humidity was studied using μ-PL
spectroscopy experiments. When RH increased, the resonant
peaks were observed to recede toward a longer wavelength

while advancing toward a shorter wavelength when RH was
lowered. The microspheres absorbed moisture leading to
radius enlargement, which is reflected in the peak shift shown
in Figure 8B. This microsphere is claimed to respond to the
humidity change within 1 min, surpassing a commercial
humidity sensor that took 5 min to reach a stable state.

A resistive humidity sensor was assembled by Liu et al. (2019)
through a vacuum-assisted layer-by-layer assembly approach. Silver
1D Nanowires (Ag-NWs) and MXene 2D nanosheets have been
incorporated into SF, producing high conductivity, bio-mimetic,
and leaf-like nanomaterials as seen in Figure 9 (Liu et al., 2019),
exhibiting intriguing properties like highly sensitive RH response,
EMI shielding, and superhydrophobicity. SF was given an oxygen
plasma treatment, followed by soaking in polyethyleneimine to add
polar groups for efficient loading of MXenes and Ag-NWs
alternatively to produce a highly conductive network. This
method of preparation ensures the retention of permeability of
textile substrate and its porosity.

When water molecules get adsorbed between the interlayers,
MXenes exhibit hydration/dehydration behavior due to the surface
interaction and charge transfer processes (Ghidiu et al., 2016;
EricMuckley et al., 2017; Muckley et al., 2018). This behavior and

FIGURE 7
(A) Time vs. Stress curve for differing values of humidity Reprinted with permission from (Agnarsson et al., 2009). Copyright 2009 The Company of
Biologists (B) (a) The color of Silk PCs characterized through optical microscopy shows a transition from orange at 80% RH to yellow at 30% RH, showing
the biomimicking beetle’s humidity response (b) Proportional relationship between RH value and reflection peaks Reprinted with permission from (Diao
et al., 2013). Copyright 2013 John Wiley and Sons.
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FIGURE 8
(A) (a) Plot of fluorescence intensity to show Photonic Band-Gap shift (red) as a result of humidity variations. Optimized photonic crystal structure
(“Ex”—blue) and silk photonic crystals (“Em”—green) improved intensity multiple times for same incident light compared to that of the control (black). Inset:
Changes in silk fibroin shells (b) Trend forecast of the fluorescence intensity of silk photonic crystal with varied stopbands. The enhancement factor
indicates the ratio of fluorescence intensity of silk photonic crystal films to that of the control. The stopbands of silk photonic crystal films are
situated at 560, 628, 641, and 659 nm. Inset: representation of a humidity-controlled chamber (c) Fluorescence emission at varied humidity levels
compared between pristine fluorescent silk film (black) and PC fluorescent silk film (green) with 1 s integral time d) Fluorescence measurement with
integral time of 0.5 s of the biocompatible humidity sensor with rapid variations in humidity. (i) RH value compared with fluorescence shifts in (ii) PC
fluorescent silk (green) and (iii) pristine fluorescent silk film (black) Reprinted with permission from (Fan et al., 2019). Copyright 2019 John Wiley and Sons
(B) Photo-luminescence spectra showing humidity-dependence of an excited single SF microsphere with a continuous wave laser (λex = 450 nm)
Reprinted with permission from (Heah et al., 2021). Copyright 2021 Royal Society of Chemistry.

FIGURE 9
(A) Illustration showing approach to fabrication (B) Leaf picture (C) biomimicking leaf network with 2D MXene nano-sheets and 1D Ag-NWs on silk
substrate (D) Fabricated sensor sensing human sweating Reprinted with permission from (Liu et al., 2019). Copyright 2019 John Wiley and Sons.
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the presence of pores propel this material for potential humidity
sensor application. The coated silk showed stable and reproducible
resistance changes within the cyclic testing in a range of RH (~0%–

85%), indicating stability and durability to moisture, possibly as a
result of the superhydrophobicity preventing the potential
degradation of MXenes due to accumulation of water. The sensor
featured a response time of 5 s and a recovery time of 80 s, which is
comparable to a commercial humidity sensor.

Zheng et al. (2021) have used SF as an active sensing material
for humidity sensors with non-contact sensing action, and high
sensitivity. An aqueous solution of degummed SF (Sah and
Pramanik, 2010) was deposited on a PET substrate with
interdigitated Ag electrodes. With an increase in the RH, the
sensor shows an increase in the current with the amount of gain
relative to the RH percentage. The response/recovery duration
interval of the sensor is shown to be 100 s with a sensitivity of
≈750% at 85% RH while it was characterized at RH values
between 43% and 95%. The sensor is also depicted to
differentiate spoken syllables associated with the moisture
changes in speech. In the non-contact sensing action, the
moisture around the fingertips was captured and led to an
increase in the current with a decrease in the distance between
the fingertip and the sensor, both of which are shown in
Figure 10A (Zheng et al., 2021). The SF films were also
observed to change color in response to changes in RH from
pale yellow to blue [Figure 10B (Zheng et al., 2021)]. These
features show the possible applications in human activity
identification, anti-counterfeiting, human–machine
interactions, and optical humidity sensors.

Composites of SF with rGO have been prepared to improve the
electrical conductance of the silk materials for their operation in the
biosensors field. Zhang et al. (2019) have composited SF with
graphene to fabricate flexible and wearable electronics with good
skin comfort. Aqueous silk solution (Sah and Pramanik, 2010) was
mixed with butanediol, followed by a uniform mixture with a
dispersion of graphene and PVA (PolyVinyl Alcohol), and
dropped on a PDMS template. Water content had an influence
on the mass swelling rate, which caused a proportional change in the
sheet resistance of the film. When the RH value was increased from
0% to 100%, the resistance was observed to increase by 200 times. In
both wet and dry conditions, great repeatability and excellent
mechanical properties were observed, and this has been proposed
for use in biomedical materials, wearable sensors, and implantable
internal sensors.

Using SF as the substrate, nickel interdigital electrodes were
prepared by electroless coating (Jiang et al., 2008) and GOx

suspension was spray-coated over it to produce humidity sensing
layers (Li et al., 2018). Integration into a face mask of a healthy
volunteer for real-time tracking of respiratory profiles was carried
out. The increase in humidity leads to an enhancement in the
current due to a decline in the resistance and vice versa. The
differences between deep and fast breathing were easily
differentiated due to different humidity production. The device
was also shown to endure 2,500 recurrences of bending and
twisting without affecting its performance, and repeated usage of
the device did not have much influence on the sensor. Thus, a
respiration-sensing device based on SF is proposed for application
prospects in monitoring the basic human health status.

FIGURE 10
(A) (a) Current variation of humidity sensor against time for different words, such as “Speak,” “Silk,” and “Hello.” (b) Relative humidity of fingertip
change with respect to distance. (c) Recurrent response curves of the non-contact sensor (1 mm, 2 mm and 3 mm) (B) Color change between humidity
levels of 40%–90% Reprinted with permission from (Zheng et al., 2021). Copyright 2021 John Wiley and Sons.
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Silk fibroins have been explored for capacitive humidity
measurements as well. SF is a dielectric material with
outstanding electric field insulation and tends to vary its
dielectric constants with changes in humidity hence the
capacitance. SF has alternating hydrophobic crystallite regions,
and hydrophilic amorphous blocks (Taketani et al., 2005). An
aqueous solution of SF was blade-coated on an interdigital
electrode of Ag-NWs and SU8 photoresist blade-coated over
PET substrate shown in Figure 11A (Luo et al., 2020). A higher
proportion of hydrophobic β-sheets is preferred as it prefers the
water adsorbed to be unbound without breaking any H-bonds.
This leads to a better response rate as it escapes easily. In the case of
random coils, bound water is formed due to the evolution of
H-bonds between water and polymer. This brings about an
increase in response time, which is not beneficial. By sticking a
sensor on the skin between the nose and lips of a volunteer,
breathing assessment tests were carried out. The capacitance
readings were stable when measured in the same mode, and the
variations in the breathing resulted in noticeable changes. The
variation in the capacitance value was also measured between 40%
and 95% RH values with excellent sensitivity. This method of
fabrication was proposed to be economical and durable without
any degradation due to moisture.

SF coated with GOxmaterials was investigated for wearable, flexible
applications, where quantity and quality of the GOx were regulated by
variation in electrification force on silk fibroins (In Han et al., 2017).
Also of interest was the adhesive-free coating of GOx on silk. SF was
rubbed against a few test materials to control the amount of positive
charge accumulation on silk and then coatedwithGOdispersion, which
contains negatively charged functional groups. Latex gloves-rubbed SF
carried the maximum charge leading to the best coating shown in
Figure 11B (a) (In Han et al., 2017), giving it maximum conductivity as
well. This material was used for sensor fabrication by embedding it
between two copper plates as seen in Figure 11B (b) (InHan et al., 2017)
for capacitive measurements. Good response-recovery behavior with
high repeatability in the RH range of 20%–90% at ambient temperature
was noticed in the sensor. Van der Waals, forces between oxygen
functional groups of GOx and H2O, is ascribed as the reason for
remarkable sensing capability. Authors have anticipated that this
approach will facilitate the manufacture of flexible, low-energy
consumption devices at cheaper rates.

A humidity sensor was also made by incorporating silk into
metamaterials operating at THz frequency and detecting humidity
based on the change in resonant frequency due to change in
permittivity of gap area (Park et al., 2014; Park et al., 2016),
which is occupied by silk fibroin (Kim et al., 2018). The aqueous

FIGURE 11
(A) Silk fibroin film-based humidity sensor fabrication procedure Reprinted with permission from (Luo et al., 2020). Copyright 2020 Elsevier (B) (a)
Different GOx coated Silk fibroin, and Scanning Electron Microscopy image of SW and SL (scale—10 μm) SW—SF submerged in DI water only; SF rubbed
with a glass bar—SG, nothing (control)—SS, aluminum foil—SA, and latex gloves—SL (b) (x) Representative picture of capacitive humidity sensor where
GOx coated SF was used (y) The capacitance and derivative capacitance curve of sensor for 20%–90% RH values Reprinted with permission from (In
Han et al., 2017). Copyright 2017 MDPI.
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solution of SF (Sah and Pramanik, 2010) was coated over a THz
metamaterial made from Cr/Au (Figure 12A). Metamaterials show a
gap structure that induces capacitive nature by charge aggregation
when a circular current is produced by the incident wave leading to
LC (Inductive-Capacitive) resonance. Changes in the permittivity of
the silk due to the effect of humidity change the LC resonance, thus
modifying the resonant frequency. As RH increases, the resonant
frequency shifts toward red, indicating an increase in dielectric
constant (Figure 12B). Humidity showed no deterioration in the
silk film over the course of measurements. When water is absorbed
into silk, hydrogen bonds between SF proteins are broken. However,
water evaporation shows no variation in the molecular structure of
the proteins. The sensor measurements were performed for RH
values of 12.5%–78% with a variation of 2.3% in RH detectable
having a response% of 0.22 GHz/%. The film thickness regulates the
recovery time, with a display of a recovery time of 10 s. Further
research is needed to optimize the devices by introducing an
improved metamaterial with enhanced-Q factors, high-speed THz
measurement tools, and potential by modifying the chemical
properties of SF.

4 Outlook

In the literature discussed here, most groups have used SF as a
substrate rather than an active material. Metal oxides/polymers,
which are already widely considered sensor materials, are coated
on the SF material. The main application one can see the
connectivity imparted by SF as a substrate in gas sensors or as
a gel that binds different materials in a hybrid while imparting

changes in properties on the metal oxide semiconductors. The
different conductivity ranges that a carbonized SF can impart on
the hybrid material is to be exploited. Even though many carbon
materials (e.g., carbon nanotubes, and graphene) can be used for
conductivity and connectivity reasons but they are cost-ineffective,
also functionalization is needed prior to hybridization. SF has
highly repeated amide functional groups, intermolecular hydrogen
bonds, and are assembled due to van der Waals interactions. These
structural properties help in anchoring them to the polymers and
metal oxides without any severe treatments. These SF can also be
dissolved and used in solution form for obtaining printed film
sensors through soft lithography, contact printing, inkjet printing,
spin coating, stenciling, and nano imprinting if not directly as
substrates.

Even with these advantages and its easy availability, silk has not
been explored for active gas sensing materials. A few paths that
researchers can look into are the coating of different transitional
metal oxides on the fibroin substrate, controlling the carbonization
levels of silk for tuning their electrical properties, and using the
dielectric property of these highly functional materials in sensing.
The changes in the dielectric and optical properties of the fibroin
films are explored for the humidity sensors. Further tuning of these
sensors can be done by the introduction of metal nanoclusters,
nanoparticles to control the photo-luminescent properties. Upon
interaction analyte gas molecules with these hybrids shows
characteristic changes in luminescence properties which can be
used for sensing applications. The inclusion of additives in the diet
of the silkworms along with the mulberry leaves leads to desirable
changes in the structure and properties of the silk material
obtained, on which further research is required. Wireless
passive antennas on silk substrates across multiple regions
(MHz, GHz, THz) of the electromagnetic spectrum are one
concept that can detect the changes in resonant responses on
interaction with analyte gas. The very important advantages of silk
commercialization are their easy processability in device
fabrication, large-scale silk production with minimum lab
facilities, and semi-skilled labor.

5 Conclusion

We have reviewed the processing of SF and its structural
properties for an investigation into their effect on gas sensing
applications. The different types of sensors based on their
working principles have also been briefed. Silk-based sensors
have been shown to be applied for sensing different gases, with
each of them being selective. The synergistic effect of silk and
metal oxides towards selective sensing application has been
observed in the case of ZnO, SnO2. SF has also been used as a
template in the case of LaFeO3 sensor. Sensors of polymers have
been fabricated with SF as the substrate. They show good
response and selectivity due to SF’s electronic properties
leading to better response to gas adsorption. Humidity sensors
fabricated using silk have also been designed on the principle of
shifting the photoluminescent peak due to changes in silk
structure on interaction with humidity. It was observed to
have a redshift at a higher RH and a blue shift at a lower
value. It has also been shown to change the resistance and

FIGURE 12
(A) Illustration of the hybrid THz humidity sensors. The SF film
was coated on the THz metamaterials (B) (a) Transmission amplitude
for various RH between 12.5%–78% (b) Frequency shift dependence
on humidity, obtained from (a) Reprinted with permission from
(Kim et al., 2018). Copyright 2018 Optica Publishing Group.
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capacitance values during sensing, as seen in the devices. It has
also been incorporated into metamaterials to exploit its behavior
on exposure to humidity. As observed, SF has been applied in
sensor fabrication as both the substrate and the active material.
The porosity of SF also provides cave-like space for optimum gas
adsorption. There is scope for exploring the different 0D (metal
oxides), 1D (nanowires/rods), and 2D (inorganic graphene
analogs)-SF sensors for industrial sensor fabrications and the
incorporation of sericin for sensor devices.
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