
OpenCL-accelerated
first-principles calculations of
all-electron quantum
perturbations on HPC resources

Zhikun Wu, Honghui Shang*, Yangjun Wu, Zhongcheng Zhang,
Ying Liu*, Yuyang Zhang, Yucheng Ouyang, Huimin Cui and
Xiaobing Feng

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Wehave proposed, for the first time, anOpenCL implementation for the all-electron
density-functional perturbation theory (DFPT) calculations in FHI-aims, which can
effectively compute all its time-consuming simulation stages, i.e., the real-space
integration of the response density, the Poisson solver for the calculation of the
electrostatic potential, and the response Hamiltonian matrix, by utilizing various
heterogeneous accelerators. Furthermore, to fully exploit the massively parallel
computing capabilities, we have performed a series of general-purpose graphics
processing unit (GPGPU)-targeted optimizations that significantly improved the
execution efficiency by reducing register requirements, branch divergence, and
memory transactions. Evaluations on the Sugon supercomputer have shown that
notable speedups can be achieved across various materials.

KEYWORDS

OpenCL, DFPT, GPU, optimization, heterogeneous

1 Introduction

Density-functional perturbation theory (DFPT) allows for the study of a large variety of
physical observables; for example, it can solve the physical response properties of Raman
strength, polarization, and dielectric constants with high precision. The theory is widely used
in molecular and materials simulations (Baroni et al., 1987a; 1987b; de Gironcoli et al., 1989;
de Gironcoli, 1995; Giannozzi et al., 1991; Gonze, 1997; Gonze and Lee, 1997).

FHI-aims is an all-electron electronic structure code based on numerical atom-centered
orbitals (Blum et al., 2009). It enables first-principle simulations with very high numerical
accuracy for production calculations and is a popular implementation of DFPT (Shang et al.,
2017; 2018). Recently, the DFPT part of FHI-aims has been implemented on the new
generation Sunway supercomputer, which increases the simulation scale by several orders of
magnitude (Shang et al., 2021). In particular, all of its time-consuming simulation stages
have been offloaded to the heterogeneous many-core accelerators and accelerated by a set of
optimizations targeting the Sunway architecture, such as utilizing the DMAmechanism and
exploiting SIMD shuffling. At the same time, heterogeneous accelerators have been the focus
of more and more scientific simulations for their massive computational capabilities.
However, to the best of our knowledge, FHI-aims has not yet been implemented and
accelerated on more general heterogeneous architectures, such as general-purpose graphics
processing units (GPGPUs), making it difficult for scientists to leverage powerful computing
capabilities on modern supercomputers.

OPEN ACCESS

EDITED BY

Phanish Suryanarayana,
Georgia Institute of Technology,
United States

REVIEWED BY

Hsin-Yu Ko,
Cornell University, United States
Igor Ying Zhang,
Fudan University, China

*CORRESPONDENCE

Honghui Shang,
shanghui.ustc@gmail.com

Ying Liu,
liuying2007@ict.ac.cn

RECEIVED 02 February 2023
ACCEPTED 12 May 2023
PUBLISHED 26 May 2023

CITATION

Wu Z, Shang H, Wu Y, Zhang Z, Liu Y,
Zhang Y, Ouyang Y, Cui H and Feng X
(2023), OpenCL-accelerated first-
principles calculations of all-electron
quantum perturbations on
HPC resources.
Front. Chem. 11:1156891.
doi: 10.3389/fchem.2023.1156891

COPYRIGHT

© 2023 Wu, Shang, Wu, Zhang, Liu,
Zhang, Ouyang, Cui and Feng. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 26 May 2023
DOI 10.3389/fchem.2023.1156891

https://www.frontiersin.org/articles/10.3389/fchem.2023.1156891/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1156891/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1156891/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1156891/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2023.1156891&domain=pdf&date_stamp=2023-05-26
mailto:shanghui.ustc@gmail.com
mailto:shanghui.ustc@gmail.com
mailto:liuying2007@ict.ac.cn
mailto:liuying2007@ict.ac.cn
https://doi.org/10.3389/fchem.2023.1156891
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2023.1156891

In this paper, we proposed an OpenCL implementation of
FHI-aims, together with efficient optimizations targeting
GPGPUs. This implementation makes the following
contributions:

• An OpenCL implementation of FHI-aims. The three time-
consuming stages of FHI-aims, i.e., real-space integration of
the response density, Poisson solver for the electrostatic
potential, and calculation of the response Hamiltonian
matrix, were implemented in OpenCL, allowing the end-to-
end simulation with FHI-aims to be accelerated across
different accelerators. As a result, FHI-aims could be
utilized more extensively for more scientific findings.

• Fine-grained parallelism exploited for GPGPUs. Radial
spherical grid points centered on the geometric
coordinates of the nucleus were processed in fine-grained
parallelism; that is, several grid points were mapped to one
thread rather than several batches (typically including
hundreds to thousands of grid points) being mapped to
one thread on Sunway. The explicitly expressed fine-
grained parallelism provided abundant parallelism for
GPGPUs, allowing FHI-aims to fully utilize their
massively parallel computing capabilities.

• Efficient data placement strategy targeting GPGPUs.
Intermediate computing results, such as relevant numbers
of a density matrix, were placed into different memory
regions according to their access patterns to fully exploit
the complex memory hierarchy on GPGPUs. Data
placement strategies were determined to minimize data
movement across different memory regions under the
capacity constraint of each memory region. In particular,
data were placed into optimal storage on GPGPUs,
including the register files, on-chip SPM, and off-chip
memory that can be cached.

• Highly convergent control flow designed for GPGPUs.
Existing branches in FHI-aims, for example, branches
caused by different cases of Fp-functions for periodic
systems, were statically or dynamically eliminated to avoid
useless computations on GPGPUs. In particular, we statically
resolved some control flows in OpenCL kernels by
synthesizing information from the OpenCL host codes
and hoisting it to CPU to prevent GPGPUs from
executing divergent control flows. Furthermore, we
dynamically resolved some control flows by passing
information collected during the execution of OpenCL
host codes to the kernel to effectively eliminate branch
divergence.

• Experimental results. We evaluated our optimized OpenCL
implementation of FHI-aims on the Sugon supercomputer,
and the results indicate that the performances of all three
time-consuming stages improved by up to 5.3× on a
Sugon node.

2 Background

This section introduces the DFPT method, the OpenCL
programming framework, and the Hygon GPU architecture.

2.1 The density-functional perturbation

The quantum response/perturbation theory is the way to obtain
the physical properties of the system that can be calculated within
the uniform quantum mechanical framework by means of density-
functional perturbation theory (DFPT) (Baroni et al., 1987a; 1987b;
de Gironcoli et al., 1989; de Gironcoli, 1995; Giannozzi et al., 1991;
Gonze, 1997; Gonze and Lee, 1997; Baroni et al., 2001).

To theoretically determine the properties mentioned above,
numerical solutions for the quantum perturbation form of the
Schrödinger equation are required. Initially, a single-particle
approximation is employed to simplify the complex many-body
problem. Subsequently, the single-particle wave functions are
represented as a linear combination of predetermined basis
functions. This allows us to formulate a matrix equation that can
be solved numerically. The specific numerical method chosen
depends on the form of the basis function, resulting in varying
outcomes.

Various types of basis sets can be utilized in different
computational codes. These basis sets can include plane-waves
[QUANTUM ESPRESSO (Giannozzi et al., 2009), VASP (Kresse and
Hafner, 1993), and QBOX (Gygi, 2008)], uniform real-space grids
[OCTOPUS (Andrade et al., 2015)], periodic sinc functions [ONETEP
(Skylaris et al., 2005)], b-spline functions [CONQUEST (Bowler et al.,
2006)], finite elements [DFT-FE (Das et al., 2019)], and wavelets
[BIGDFT (Mohr et al., 2014)]. Although these basis sets can be
systematically converged, the computation required to accurately
represent the oscillatory behavior near the atomic nucleus can be
prohibitively heavy. For instance, 105 plane waves may be necessary
to represent one core orbital.

As a result, when using the above basis sets, the pseudization
methods (Lejaeghere et al., 2016) using pseudo-potentials or
projector-augmented wave (PAW) have been introduced, in
which the core potential has been replaced with a ‘fake’ one.
Although the pseudo-potentials have been carefully constructed
to keep the valence part to be consistent with the all-electron
method, the information of the core shells is still missing. In
order to consider the core and valence states on the equal
footing, the all-electron approaches have been developed, e.g.
linearized augmented plane wave (LAPW) (Madsen et al., 2001),
linear muffin-tin orbital (LMTO) (Methfessel et al., 1989) methods
and all-electron numerical atomic orbitals method (Delley, 1990;
Blum et al., 2009)). Such all-electron methods can achieve better
precision compared with the pseudization method (Lejaeghere et al.,
2016).

In this work, the all-electron approach with the numerical
atomic basis functions was used to achieve high-precision results,
especially for the prediction of physical properties with the DFPT
method. In this scheme, the all-electron atomic orbitals were
discretized using the atom-centered grid (Becke, 1988) to treat
the all-electron full-potential systems where the integrand is
dominated by cusps at the atomic nuclei. In fact, the
pseudopotential-based method could affect the results for the
materials containing d electrons because the nonlinear core
corrections in the pseudopotentials could influence the final
high-frequency dielectric constants. For example, the difference
between with and without nonlinear core corrections in the
dielectric constant calculation of gallium antimonide (GaSb) is

Frontiers in Chemistry frontiersin.org02

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

approximately 6%. Such nonlinear core correction pseudopotentials
must be adopted to obtain the correct values. Our all-electron value
(16.0) (Shang et al., 2018) is in good agreement with that of Dal
Corso et al. (16.7), which adopted such nonlinear core corrections
pseudopotentials. We found that the significantly larger value of
Giannozzi et al. (18.1) was related to a smaller k-point grid used in
their calculation, and no nonlinear core corrections were considered
in their pseudopotentials.

The DFPT approach was implemented in a few computational
packages, such as Quantum ESPRESSO (Giannozzi et al., 2009),
Crystal (Maschio et al., 2012), and FHI-aims (Shang et al., 2017). To
the best of our knowledge, their maximum parallel scale is thousands
of cores on x86 platforms.

For codes using localized atomic orbitals, such as a Gaussian
basis set, the DFPT was mainly implemented to treat finite,
isolated systems (Pople et al., 1979; Frisch et al., 1990). Only a
few literature reports exist on the treatment of periodic boundary
conditions with such basis sets (Izmaylov and Scuseria, 2007),
with only the perturbations corresponding to the unit cell (Γ-
point perturbations). In fact, for periodic systems, the linear
algebra operations are different between DFT and DFPT for the
following two reasons: 1) the DFT calculations involve eigenvalue
solving problems (AX = bX), whereas the DFPT calculations
solve linear equations (AX = B). 2) Because the perturbations in
DFPT destroy the boundary conditions of periodic systems and
the atomic displacements cause a change in the entire basis set,
the construction of the related matrix elements is complex and
not as straightforward as expected. Therefore, compared to DFT,
the parallelization and the corresponding optimizations are
much more complicated.

Due to the complexity of the DFPT formula, the
implementations of DFPT using an all-electrons scheme for both
the finite (molecules) and extended (periodic) systems are rare and
lack subsequent optimization; for example, the implementations
using linear muffin-tin orbitals (Savrasov and Savrasov, 1996),
linearized augmented plane waves (Yu and Krakauer, 1994;
Kouba et al., 2001), or a Gaussian basis set for only the electric
field perturbation (Maschio et al., 2012) have not been reported to
scale to massive MPI processes.

The first-principles perturbation calculation is key to
determining the response’s physical properties. Here, we only
briefly summarized the first-principles quantum perturbation
approach. Throughout the text, we used spin-unpolarized
notation for the sake of simplicity, but a formal generalization to
collinear (scalar) spin treatment is straightforward. In the following
chapters, we will use subscripts i, j for occupied KS orbitals; a for the
corresponding unoccupied (virtual) KS orbitals; p, q for the entire set
of KS orbitals; and μ,] for the atomic basis sets. In DFT, the total-
energy functional is given as

EKS � Ts n[] + Eext n[] + EH n[] + Exc n[] + Enuc−nuc. (1)
Here, n(r) is the electron density and Ts is the kinetic energy of
non-interacting electrons, while Eext is external energy stemming
from the electron-nuclear attraction, EH is the Hartree energy,
Exc is the exchange-correlation energy, and Enuc-nuc is the
nucleus–nucleus repulsion energy. The ground state electron
density n0(r) (and the associated ground state total energy) is

obtained by variationally minimizing Eq. 1 under the constraint
that the number of electrons Ne is conserved. This yields the
chemical potential μ = δEKS/δn of the electrons and the
Kohn–Sham single particle equations,

ĥKSψp � t̂s + vext r() + vH + vxc[]ψp � ϵpψp (2)

for the Kohn–ShamHamiltonian ĥKS. In Eq. 2, t̂s denotes the kinetic
energy operator; vext is the external potential; vH is the Hartree
potential; and vxc is the exchange-correlation potential. Solving Eq. 2
yields the Kohn–Sham single particle states ψp and their eigen
energies ϵp. The single-particle states determine the electron
density via

n r() � ∑
i

fi|ψi|2, (3)

in which fi denotes the Fermi–Dirac distribution function.
To solve Eq. 2 in numerical implementations, the Kohn–Sham

states are expanded into a finite basis set χμ(r)

ψp r() � ∑
μ

Cμp χμ r(), (4)

with the expansion coefficients Cμp. In this basis set, Eq. 2 becomes a
generalized eigenvalue problem:

∑
]
Hμ]C]p � ϵp ∑

]
Sμ]C]p. (5)

Using the bra-ket notation 〈.|.〉 for the inner product in Hilbert
space, Hμ] denotes the elements 〈χμ|ĥKS|χ]〉 of the Hamiltonian
matrix, and Sμ] denotes the elements 〈χμ|χ]〉 of the overlap matrix.
Using the basis set representation, we get the density matrix for the
ground state,

Pμ] � ∑
i

fiCμiC]i* . (6)

The first step in the DFPT self-consistency cycle is to calculate the
response of the density matrix using the given expansion coefficients
C and C(1).

P 1()
μ] � ∑

i

fi C
1()
μi C]i* + CμiC

1()*
]i(). (7)

Then, using the density matrix formalization, we get the response of
the electronic density,

n 1() r() � ∑
μ,]

P 1()
μ,] χμ r()χ] r(). (8)

Furthermore, we can get the response of the total electrostatic
potential with response density,

v 1()
es,tot r() � ∫ n 1() r()

|r − r′| dr′. (9)

Using the response potential, we get the response of the
Kohn–Sham Hamiltonian matrix,

H 1()
μ] � ∫ χμĥ

1()
KS χ] r()dr(). (10)

Here, ĥ
(1)
KS is the response of the Hamiltonian operator under the

homogeneous external electrical field perturbation with strength ξ
along coordinate direction J.

Frontiers in Chemistry frontiersin.org03

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

ĥ
1()
KS � d ĥKS + ĥE()

dξJ
� v 1()

ext + v 1()
H + v 1()

xc − rJ, (11)

where the response of the total electrostatic potential is v(1)es,tot

discussed in the previous paragraph, and the response of the
exchange-correlation potential is v(1)xc . In the case of the LDA
functional, the exchange-correlation energy can be written as
Exc = ∫fxc(n(r))dr. Evaluating the functional derivative in the
latter term yields simply

v 1()
xc n r()[] � z2fxc

znzn
n 1() r() � zvxc n r()[]

zn r() n 1() r(). (12)

In turn, all these components then allow the Sternheimer equation
(Shang et al., 2017; 2018), to be set up, the solution of which allows
the response of the expansion coefficients C(1) to be updated. We
iteratively restart the DFPT loop until self-consistency is reached,
i.e., until the changes in C(1) become smaller than a user-given
threshold. The polarizability and dielectric constants are computed
in the final steps.

αIJ � zμI
zξJ

� ∫ rI
zn r()
zξJ

dr. (13)

2.2 OpenCL

Open Computing Language (OpenCL) is a unified parallel
programming framework for heterogeneous processing platforms,
taking full advantage of CPUs, GPUs, and other computing devices.
The OpenCL architecture is abstracted into platform models,
memory models, and execution models.

The platform model consists of a host connected to one or more
OpenCL devices. More specifically, each OpenCL device consists of
one or more compute units (CUs) that further consist of one or more
processing elements (PEs). An OpenCL application is divided into
host code and device code. The host code runs on the host and
submits device code to OpenCL devices that execute the
computation of device code on processing elements.

The execution model is defined in terms of two units of execution,
that is, kernels and a host program. The former executes on one or
more OpenCL devices, while the latter executes on the host platform.
Before a kernel is submitted for execution, an index space, NDRange,
is defined. Each point in NDRange is called a work-item, which
executes kernel functions on PE. Work-items are assembled into
work-groups allocated to CUs for execution.

The memory model includes two fundamental memory regions:
host memory and device memory. Host memory is exclusively
available for direct access by the host. Device memory consists of
global memory, constant memory, local memory, and private
memory. Of these, global/constant memory is shared between the
host and device; local memory is shared within a work-group on the
CU; and private memory is private to the work-item.

2.3 Hygon GPU

A GPGPU is a graphics processing unit (GPU) processor used
for purposes other than rendering graphics. A GPGPU has powerful

parallel computing ability and plays an important role in scientific
computing, AI, cryptography, and other fields. NVIDIA and AMD
GPUs are the most popular GPGPUs.

Similar to AMD GCN devices, a Hygon GPU is equipped with
64 compute units, an L2 cache, and 16 GB of global memory. Each
compute unit is composed of one scalar unit and four-vector
(SIMD) units, while each SIMD consists of 16 vector arithmetic
logic units (VALUs) representing 16 processing elements. on the
on-chip memory for each compute unit includes 64 KB local data
share (LDS), 16 KB of L1 cache, and a 64 KB vector general-
purpose registers (VGPRs) file of 32-bit registers located on
each SIMD.

Work-groups allocated to a single compute unit are divided into
as many as 40 wavefronts following the mapping based on a linear
order of work-items. For each SIMD, 16 processing elements allow a
wavefront with up to 64 work-items running in parallel. In terms of
memory usage, a wavefront can utilize up to 256 VGPRs for each
work-item; a work-group can utilize up to a maximum of 32 KB
memory of 64 KB LDS.

3 Implementation overview

We implemented and accelerated DFPT by first rewriting the
three time-consuming simulation stages of the FHI-aims package in
OpenCL and then performing a set of optimizations targeting
GPGPUs.

When implementing the DFPT work-flow in Figure 1, there
exist three extremely time-consuming stages in FHI-aims, as
annotated: the real-space integration of the response density
(denoted as rho); the Poisson solver for the electrostatic
potential (denoted as sum_up); and the calculation of the
response Hamiltonian matrix (denoted as H).

As shown in Figure 2, FHI-aims first generated a set of grid
points that are non-uniform radial spherical (Blum et al., 2009;
Delley, 1996; Baker et al., 1994) for more accurate numerical
integration. Those grid points were further partitioned into

FIGURE 1
Flowchart for the calculation of density-functional perturbation
theory.

Frontiers in Chemistry frontiersin.org04

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

batches following Havu et al. (2009), with each batch containing
100–300 grid points. A set of batches was assigned to an
accelerator for processing; typically, each GPGPU would be
responsible for hundreds of batches. To improve simulation
efficiency, we first eliminated branch divergences by excluding
grid points located far from all nuclei before they were sent to
the GPGPUs. After that, we improved parallelism from
hundreds to tens of thousands by making batches implicit
and directly mapping grid points to threads. At the same
time, we minimized data transfer among various memory
regions to improve memory efficiency by letting frequently
used data reside in on-chip memories and trading
computations for storage.

4 Optimizations on the Hygon GPU

This section states the architectural challenges for application
optimizations on the Hygon GPU and then suggests three effective
optimizations: eliminating branch divergence, improving
parallelism, and optimizing data placement.

4.1 Challenges

In general, there exist three main challenges for application
optimizations on a Hygon GPU that have been introduced by its
micro-architectural features: abundant parallelism, careful data
placement, and convergent control flow.

• Abundant parallelism. First, applications are required to
provide abundant parallelism to hide long memory access
latencies. Once the pipelines of a group (wavefront) of threads
are stalled waiting for registers to be ready, they would be
swapped out by the GPU hardware. In this case, the
application must provide sufficient parallelism so that
another group (wavefront) of threads is ready to be
swapped in to keep the pipelines busy. As a result,
applications that lack parallelism would lead to frequent
pipeline stalls and ultimately unsatisfactory performance.

• Careful data placement. Second, applications are required to
carefully place data in various types of on-chip and off-chip
memory to exploit the complex memory hierarchy. Typically,
GPUs contain various types of memories with different
accessing modes and delays; for example, global memory
that can be accessed by all threads with long latency,
shared memory that can be accessed by a group of threads
with less delay but limited capacity, and registers that are
private to a single thread with minimal latency. Furthermore,
data movements between different types of memory would
lead to various forms of overhead. As a result, it is non-trivial
to determine where to place the data because it has a huge
impact on program performance in terms of data locality and
inter-thread communication.

• Convergent control flow. Third, applications are required
to converge their control flow to avoid wasting
computational resources on useless work. GPUs perform
computations following the same instruction multiple
threads (SIMT) execution model, in which the resolution

FIGURE 2
Implementation of FHI-aims.

Frontiers in Chemistry frontiersin.org05

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

of control-flow divergence is delayed until the point when
computed results must be stored in the main memory. In
this case, once a control-flow path has been taken by a
thread, it would be also executed in other threads, even if
their results were discarded. That is, control-flow
divergence would lead to a waste of computational
resources doing useless work, which can greatly reduce
the performance of the application.

4.2 Improving parallelism

As noted in Section 3, FHI-aims exposes multi-granularity
parallelism that resides between several sets of batches, several
batches, and several grid points in a batch.

Typically, FHI-aims would assign hundreds of batches to each
GPGPU, with each batch containing hundreds of grid points.
Therefore, fine-grained parallelism, i.e., among grid points, must
be exposed for effective GPGPU execution, which generally favors
104 threads or more. We adopted two different strategies to improve
the parallelism in the three time-consuming stages based on their
data access patterns.

For sum_up, there are no inter-grid-point shared data, which
indicates that all grid points could be processed independently.
Therefore, we first make batches implicit, allowing grid points to be
mapped onto OpenCL work-items, and allowing an individual batch
to be processed by different OpenCL work-groups, as shown in
Figure 3A. As a result, the fine-grained parallelism in FHI-aims has
been exposed to its upper limit.

However, it is not trivial to achieve this upper-limit parallelism
by simply making batches implicit. This is because memory
capacity in each region would be exceeded with an increased
number of work-items or an extended scale of the system,
making further parallelism improvement impossible, making
the upper limit unreachable, or causing speed to drop. As
shown in Figure 3B, in sum_up, each thread uses a temporal

matrix with a space complexity of O(n2) to keep its
intermediate results, for example, it requires 1 KB storage for
each work-item in case SI2. With an enlarged local_size or n,
the matrix will overflow from the on-chip cache to the off-chip
global memory, leading to a speed drop. To handle this, we choose
to keep two vectors in memory, that is, the coordc and the Fp, and
delay the calculation of coord_mat and rest_mat until the program
point at which their values are used. In this way, the space
complexity requirements of each work-item would be reduced
from O(n2) to O(n), enabling local_size to be increased and
relevant data to be moved to private memory in Section 4.4 for
further performance improvement.

Alternatively, for rho and H, which read and write the
Hamiltonian matrix, respectively, grid points could not be
processed fully independently because grid points belonging to
the same batch would access the same elements in the matrix. In
this case, we first made batches explicit and mapped each of them to
an OpenCL work-group, and then tried to maximize local_size
(i.e., 256 on the Hygon GPU), making each work-group expose
as much parallelism as possible.

4.3 Eliminating branch divergence

In general, two types of major control flows exist that could be
eliminated in FHI-aims, static or dynamic.

4.3.1 Static branch divergence elimination
We eliminated some kernel branches by hoisting them to CPU

and simplifying the control flows.
Hoisting kernel branches to the host. Some grid points that are

outside a certain distance threshold of any nucleus should be
excluded from processing. Originally, this was determined in the
loop iterations over all grid points in a batch; thus, a major branch
exists in the OpenCL kernel, as shown in Figure 4. We hoisted this
branch from the kernel to the host so that the kernel could load only

FIGURE 3
Methods used to improve parallelism. (A) Making batches implicit. (B) Reducing storage requirements.

Frontiers in Chemistry frontiersin.org06

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

valid grid points for further processing. As a result, this type of
branch could be handled statically with the help of OpenCL host
codes, leading to convergent control flows in the kernel for effective
GPGPU execution.

Simplifying kernel control flows. In FHI-aims, there may exist
some identical operations in different paths of a complex control
flow, and Figure 5 gives such an example in sum_up. In the naive
implementation shown in Figure 5A, function far_distance_
hartree_fp_periodic_single_atom (function F) could be called in
both paths with different arguments, regardless of whether Hartree
potential components came from closed atoms or far away atoms.
However, function F could not be executed with all SIMD lanes
fully exploited if atoms are closed in some lanes but not in others,
as shown in Figure 5B. To deal with this, we simplified the control
flow by merging identical operations from different paths to make
function F called in the same path independent of the distance of
the atoms, as shown in Figure 5C. As a result, all SIMD lanes could
be fully exploited when executing function F, as shown in
Figure 5D.

4.3.2 Dynamic branch divergence elimination
Some operations are carried out only for some types. This

indicates that, given an input, a certain path in the control flow
would not be taken for all grid points; thus, the entire path could
be eliminated in this case. However, it is not trivial to do this
because different inputs require different paths, and
furthermore, this is not statically deterministic. We delayed
this specialization to the runtime of the OpenCL host code, as
shown in Figure 6, eliminating this type of branch divergence
dynamically.

To be specific, we leveraged the runtime compilation scheme in
OpenCL to achieve this. OpenCL embeds the compilation of kernel
codes in its host code by invoking the clBuildProgram API, as

shown in line 8 of the host code. Compiler options are allowed to be
passed via this API to compile kernel codes. Based on this, we first
specified whether a control-flow path would be taken for a certain
type of input by annotating the OpenCL kernel codes with macros,
as shown in the kernel code in Figure 6. After that, we inserted codes
in the OpenCL host code to obtain the current input type when
executing, as shown in lines 1–4 of the host code. Finally, we applied
compiler options indicating the obtained input type to
clBuildProgram, as shown in -DHARTREE_FP_

FUNCTION_SPLINES at line 6 of the host code. This instructs
the compiler to ignore the entire path at lines 7–11 or lines 20–24.

4.4 Data placement

Abundant data elements were accessed in FHI-aims, and we
placed them into various OpenCL memory regions based on their
access pattern to minimize data movement between different levels
of the hierarchical memory in the Hygon GPU.

In particular, OpenCL partitions the device memory into four
distinct memory regions.

1. Global memory. Data elements can be placed into this memory
region using the __global qualifier. The memory region can be
accessed (read and written) by all work-items in the kernel and by
the host.

2. Constant memory. Data elements can be placed into this
memory region using the __const qualifier. The memory
region is a part of global memory used to store constant
variables; that is, it can be read by all work-items in the
kernel and by the host.

3. Local memory. Data elements can be placed into this memory
region using the __local qualifier. The memory region is shared

FIGURE 4
Pseudocode for static elimination of branch divergence.

Frontiers in Chemistry frontiersin.org07

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

by all work-items in a work-group and cannot be read or written
by work-items in other work-groups or by the host.

4. Private memory. Data elements can be placed into this memory
region using the __private qualifier. The memory region is
private to a work-item and cannot be read or written by other
work-items or by the host.

On the Hygon GPU, both global memory and constant
memory are mapped to off-chip DRAM, with constant
memory cached on the chip and global memory not cached.
As a result, for multiple-accessed data, the access latency could be
significantly reduced if the data residing in constant memory
were compared with global memory if it has been cached.
Alternatively, the local memory is mapped to LDS, that is, on-
chip storage that could be accessed much faster than off-chip
DRAM. In particular, LDS has similar latency when accessed as a
cache, but LDS must be explicitly managed by the application.

The private memory is mapped to the vector general-purpose
registers (VGPRs) file, which has the lowest memory access
latency and smallest capacity.

We effectively exploited the on-chip memory by choosing
appropriate data to be placed into constant/local/private memory
to reduce the data traffic from/to off-chip memory. In general, data
that were highly reused were considered candidates for placement,
and the placement strategy was determined based on how the data
were shared and accessed.

In particular, the data placement problem extensively exists
in modern processors because they typically adopt a multi-level
memory hierarchy, with those levels varying in both capacity and
latency. Thus, determining into which levels data should be
placed is a common and important decision for all
applications, including DFPT and DFT. Therefore, the
following principles of optimization could be applied to a set
of applications for a set of processors.

FIGURE 5
Pseudocode for simplifying kernel control flows. (A)Code of the naive version. (B) Execution of the naive version. (C)Code of the optimized version.
(D) Execution of the optimized version.

Frontiers in Chemistry frontiersin.org08

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

4.4.1 Constant memory data placement
For constant memory, we chose data using the following three

criteria: first, the data should be read-only because it is illegal to
update elements residing in constant memory; second, the data
should be shared by all work-items in the same work-group because
constant memory is cached in the private cache of each compute
unit, on which the entire work-group is executed; third, the data
should be reused with small reuse distances to avoid being evicted
from the cache. In particular, reuse distance is defined as the number
of distinct data elements accessed between two consecutive
references to the same element (Ding and Zhong, 2003),
indicating that data with a small reuse distance could reside in

the cache as long as it is alive. For example, the array index_cc was
placed onto constant memory by suffixing its declaration with
__constant in sum_up.

4.4.2 Local memory data placement
For localmemory, we chose highly reused data that were shared

by all work-items in the same work-group, with no restrictions on
their reuse distance. That is because local memory is mapped
onto LDS, which is managed explicitly by the application and
thus would not evict any data element implicitly. Figure 7 shows
an example in rho, with each work-group accessing some
discrete data elements of the Hamiltonian sparse matrix

FIGURE 6
Pseudocode for dynamic elimination of branch divergence.

FIGURE 7
Preloading data from global memory to local memory.

Frontiers in Chemistry frontiersin.org09

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

first_order_density_matrix_sparse, and those data
elements are selected as subscripts determined by the matrix
dense_from_sparse. We placed the accessed data elements of
first_order_density_matrix_sparse into local memory
because they are highly reused but difficult to keep residing in
the cache due to the longer reuse distance. Typically, a work-group
would access data elements up to 3.32 MB on Si2, which exceeds the
capacity of the LDS. Therefore, we further performed loop tiling to
handle this with a tile size of 32. In particular, in each tile, we let each
work-item fetch a set of distinct data elements to avoid bank conflict

in the LDS and make the fetched data elements visible to all work-
items in the work-group by inserting a work-group barrier.

We also utilized two optimizations to further reduce the data
traffic to/from localmemory. First, we let data shared across various
kernel launches reside in local memory by allocating them as kernel
arguments with a __local qualifier. Second, we fused several loop
nests to reduce intermediate data, and Figure 8 shows an example
from sum_up. In the naive implementation, a two-dimensional
array coord_mat and rest_mat was used to keep intermediate
results between loops Loop1 and Loop2, consuming up to 20.25 KB

FIGURE 8
Pseudocode for loop fusion and memory usage reduction.

FIGURE 9
Molecular structure of the test cases. (A) Si2. (B) Si16. (C) HIV. (D) Polypeptide. (E) RBD.

Frontiers in Chemistry frontiersin.org10

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

of LDS capacity. After optimization, loops Loop1 and Loop2 were
fused, making it sufficient to use the one-dimensional array
coord_c to keep intermediate results; thus, the LDS capacity
consumption was reduced to no more than 6.75 KB.

4.4.3 Private memory data placement
For private memory, we chose highly reused data that were

private to each work-item under its capacity constraint. In
particular, if the chosen data element is an element of an
array, its subscript should be statically known. For example,
we placed the two arrays, wavei and wavej in sum_up, into
private memory by declaring them with the qualifier __private.
Accesses to wavei and wavej were enclosed in a two-depth
nested loop, with each element of wavei reused in the inner loop
and wavej reused in the outer loop. Therefore, putting them in
private memory could significantly reduce the amount of data
taken out of registers.

4.5 Portability among various HPC systems

Our OpenCL implementation (Section 3) and its proposed
optimizations (Sections 4.2–4.4) are easily portable among
various HPC systems.

Functional portability is achieved by re-writing FHI-aims with
the OpenCL programming interface, which is a cross-platform
unified framework supported on a large set of accelerators, for
example, Nvidia GPU, AMD GPU, and SW39010. Therefore, it
could be executed across various HPC systems and yield correct
simulation results without any extra effort.

Performance portability could be expected among various GPUs
because our optimizations are designed based on typical GPU
architectures. In addition, accelerators with specific target
architectures (e.g., software-managed on-chip memory) could
also benefit from a part of those optimizations (e.g., the memory
placement strategies described in Section 4.4), but only with some
detailed parameters tuned (e.g., the size of its on-chip memory). We
have included some brief but in-depth analyses in the following.

First, parallelism optimizations can improve performance on
accelerators that equip a large set of fine-grained parallel to compute
units, with parallelism improved and fine-grained load balancing.
This architecture is typical of modern GPUs; the Nvidia GPU has
CUDA cores, while the AMD GPU has computing units that yield
significant performance benefits by not allowing their compute units
to be idle. However, this may not be profitable on processors
exploiting a few coarse-grained parallels compute units, such as
the A64FX (ARM64 on Fukagu), which includes 48 cores.

Second, control flow optimizations can improve performance on
accelerators with parallel compute units that work in a single
instruction multiple data (SIMD) or SIMT way, which are
common on modern GPUs. In such architectures, severe
performance penalties occur when two parallel compute units
must execute different instructions, i.e., control flow divergence.
However, this may not be profitable on multiple instructions, and
multiple data (MIMD) processors (e.g., SW39010) because each
compute unit has its PC for execution.

Third, memory optimizations apply to a large set of accelerators,
especially those with software-managed on-chip memories. Modern

architectures feature a multiple-level memory system, including a set
of memories with various latencies and capacities, for example,
most-fast-but-rare registers and fast on-chip caches. A common
principle of memory optimization that was implemented in our
work is to minimize cross-level data movements. Based on this
principle, when ported to other accelerators, performance profits
could be expected with just a few tunings.

5 Evaluation

We evaluated our proposed OpenCL-accelerated FHI-aims on a
Sugon supercomputer equipped with Hygon GPUs as
heterogeneous accelerators. In particular, each node on the Sugon
consists of one Hygon C86 7185 processor and four Hygon GPUs,
and the Hygon C86 7185 processor has 32 CPU cores, with each
running at 2.00 GHz and connected with 128 GB of memory. FHI-
aims is compiled using GCC 7.3 and profiled using AMD rcprof.

5.1 Test case information

Table 1 lists some information about the test cases used in our
evaluation. In this paper, we focus on the performance of the Hygon
GPU on a Sugon supercomputer that is equipped with a 32-core
CPU and four GPUs for each node. We performed evaluations
across various materials shown in Figure 9, including a crystal
system such as a Si atomcase and molecule systems such as the
HIV (ligand for HIV-1), polypeptide (C100H144N31O26), and RBD
(receptor-binding domain on the spike protein of SARS-CoV-2)
cases. The number of MPI tasks may be limited by the scale of the
case, so we adjusted it to match the case.

5.2 Simulation validation

As shown in the rightmost column of Table 1, we obtained
almost identical results for the simulations compared to the
simulations conducted on the original Fortran version of FHI-
aims running on x86 CPUs. The errors were the L2 distances of
the DFPT result vectors (DFPT for polarizability or dielectric_
constant). The absolute errors of Si, HIV, polypeptide, and RBD
were no more than 2e−11 on the Hygon GPU compared with the
x86 CPUs. Our results were in good agreement with machine
precision, illustrating that realistic problems of scientific
investigation can be handled correctly by using GPUs.

5.3 Overall performance

Figure 10 illustrates the overall speedup using the Hygon GPU
across all test cases. Results show that, compared with using only
CPU cores in each node, FHI-aims could be significantly end-to-end
accelerated utilizing the Hygon GPU.

For small systems using one MPI process, our OpenCL version
achieved end-to-end speedups of up to 15.6× by utilizing one Hygon
GPU together with one CPU core compared to using only one CPU
core. Among the three time-consuming stages, rho and sum_up were

Frontiers in Chemistry frontiersin.org11

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

significantly accelerated by 23.4–100.6× and 16.9–82.9×. In
comparison, the speedups on H were less impressive (up to 3.4×)
because our support for H in DFPT dielectric was not comprehensive.

For a medium system using eight MPI processes, our OpenCL
version achieved an end-to-end speedup of 5.3× by utilizing one
Hygon GPU together with eight CPU cores, compared to using only
eight CPU cores. In particular, the three time-consuming stages of
rho, sum_up, and H were accelerated by 1.7×, 14.4×, and 2.7×,
respectively, with the time percentages changing from 10.8%/74.8%/
14.4%–38.2%/30.6%/31.2%.

For a large system using 32 MPI processes, our OpenCL version
achieved an end-to-end speedup of 4.2× by utilizing four Hygon GPUs
together with 32 CPU cores, compared to using only 32 CPU cores. In
particular, the three time-consuming stages of rho, sum_up, and H

were accelerated by 1.9×, 14.1×, and 3.0×, respectively, with the time
percentages changing from 7.6%/84.1%/8.3%–31.7%/46.4%/21.8%.

In addition, their energy efficiencies were also analyzed, with the
32-core CPU consuming 180 W and the GPU consuming 300 W. We
noted that up to 2.66× of energy-efficiency improvement was obtained
by using GPUs to calculate sum_up. However, end-to-end energy
efficiencies are not currently satisfactory due to relatively low speedups
on rho and H, inspiring us to investigate further optimizations.

5.4 Performance breakdown

Figure 11 shows the performance breakdown for the most time-
consuming stage, that is, sum_up, compared with the CPU version. In
the figure, relative speedups of the OpenCL version over the x86 version
are given, with “Naive” representing a baseline OpenCL
implementation described in Section 3, and Parallelism, Control
Flow, and Memory Placement denoting three optimizations

TABLE 1 Case information and errors.

Case name Grid n_atoms n_basis n_centers max batch size MPI task GPU(s) Error

Si-2 #1 56,860 2 50 4394 113 1 1 5.22e−13

#2 35,836 2 36 4394 72 1 1 3.12e−13

#3 35,836 2 72 4394 72 1 1 7.08e−13

#4 35,836 2 36 4394 142 1 1 5.69e−13

#5 35,836 2 36 4394 282 1 1 6.74e−14

Si-16 #1 454,880 16 144 5488 114 1 1 4.50e−14

#2 286,688 16 144 5488 73 1 1 9.99e−14

#3 286,688 16 288 5488 73 1 1 7.23e−14

#4 286,688 16 288 5488 143 1 1 1.17e−13

#5 286,688 16 288 5488 283 1 1 1.89e−12

HIV 265,842 49 1,359 49 132 1 1 5.83e−13

Polypeptide 1,673,454 312 940 312 105 8 1 3.21e−11

RBD 16,182,074 3,006 9210 3,006 103 32 4 1.36e−11

FIGURE 10
Speedup of the OpenCL version over the CPU version. When computed with oneMPI process, the two versions use one core and one GPU, and one
CPU core, respectively. When computed with eight MPI processes, the two versions use eight cores and one GPU, and eight CPU cores, respectively.
When computed with 32 MPI processes, the two versions use 32 cores and four GPUs and 32 cores, respectively.

Frontiers in Chemistry frontiersin.org12

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

introduced in Sections 4.2–4.4, respectively. Figure 11A shows the case
of polypeptide, for which we first applied a baseline OpenCL
implementation and contributedto15% of the total speedup of 14.4×
(with the CPU version executing for 16.61 s and the baseline OpenCL
implementation executing for 4.89 s). Based on this naive OpenCL
implementation, we performed three further types of optimizations,
including improving parallelism, optimizing data placement, and
simplifying control flows, contributing to 11%, 56%, and 18% of
total speedup (with execution time reduced from the baseline by
4.89 s–4.09 s, 1.69 s, and 1.05 s, respectively). With optimizations in
“Memory Placement,” the percentage of the timememory unit stalled in
the kernel execution time was reduced from 14.03% to 1.84%. Similarly,
Figure 11B shows the case of RBD, for which simply involving the GPU
leads to 12% of the total speedup of 14.1× (with the CPU version
executing for 276.55 s and the baseline OpenCL implementation
executing for 105.33 s), and the three optimizations of parallelism/
data placement/control flows contributed 3%, 47%, and 38% of the total
speedup (with execution time reduced from the baseline by
105.3 s–93.695 s, 38.62 s, and 19.56 s, respectively).

Performance breakdown results show that, although simply
utilizing the GPU could bring some speedups, most performance
improvements came from our intensive optimizations. This
indicates that significant extra effort is required to exploit the

massively parallel computing capabilities of heterogeneous
accelerators. Parallelism optimizations showed little contribution
because they were used first and did not affect the key factors that
restricted performance. However, they provided the possibility for
subsequent optimizations. Also, of all the optimizations, data
placement, which benefits the memory subsystem, was the most
profitable because sum_up is a memory-intensive stage.

5.4.1 Case study
This section examines the data placement optimization for

polypeptide to demonstrate how our optimization successfully
exploited the hardware resources in a Hygon GPU.

Table 2 lists some events collected by the Radeon Compute
Profiler (rcprof) at the sum_up stage, a memory-bound stage, for
the naive and optimized OpenCL versions. Results show that we
improved the efficiency of the memory subsystem in two ways. First,
the data volume of intermediate results was reduced by loop fusion,
resulting in notable decreases of FetchSize and WriteSize, which
reduced the number of data access requests. Second, the data layouts
of frequently reused arrays were reorganized to improve data
locality, leading to a significant increase in L1CacheHit, which
reduced the latencies of data fetching. By utilizing these
optimizations, the compute unit spent less time waiting for data

FIGURE 11
Performance breakdown for sum_up. (A) Polypeptide. (B) RBD.

TABLE 2 Profiling data of sum_up on the case Polypeptide.

Performance counter Description Naive Optimized

VGPRs Number of general-purpose vector registers used by the kernel 163 102

SGPRs Number of general-purpose scalar registers used by the kernel 108 108

VALUUtilization Percentage of active vector ALU threads in a wave 79.22 89.85

VALUBusy Percentage of GPUTime vector; ALU instructions are processed 8.03 20.73

SALUBusy Percentage of GPUTime scalar; ALU instructions are processed 3.47 18.39

FetchSize Total kilobytes fetched from the video memory 47,021,333.38 4,195,676.44

WriteSize Total kilobytes written to the video memory 44,166,940.47 8,058,666.25

L1CacheHit Percentage of instructions that hit the data in the L1 cache 22.13 80.15

L2CacheHit Percentage of instructions that hit the data in the L2 cache 91.14 84.54

MemUnitBusy Percentage of GPUTime; the memory unit is active 36.33 61.00

MemUnitStalled Percentage of GPUTime; the memory unit is stalled 14.03 2.85

Frontiers in Chemistry frontiersin.org13

Wu et al. 10.3389/fchem.2023.1156891

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

access and was more efficient; it was busy 20% of the time, compared
to 8% in the naive version.

6 Conclusions

In this paper, we proposed an OpenCL implementation for
calculating all-electron density-functional perturbation theory
(DFPT) in FHI-aims, which allowed all its time-consuming
simulation stages to be effectively computed by utilizing different
heterogeneous accelerators. In addition, we also performed a variety
of GPGPU-targeted optimizations to improve its parallelism, reduce
its branch divergence, and exploit its memory efficiency. Evaluations
on the Sugon supercomputer showed that notable speedups can be
achieved on various materials.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding authors.

Author contributions

ZW, HS, YW, and YL contributed to the conception and design
of the study. ZW designed and optimized the GPU OpenCL version

of FHI-aims. HS and YW optimized the Fortran part. YL wrote the
first draft of the manuscript. ZW, HS, YW, YL, ZZ, YZ, and YO
wrote sections of the manuscript. All authors listed have made
substantial, direct, and intellectual contributions to the work and
have approved it for publication.

Funding

This work was supported by the National Natural Science
Foundation of China (62232015, 62090024, 22003073, T2222026).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Andrade, X., Strubbe, D., De Giovannini, U., Larsen, A. H., Oliveira, M. J. T., Alberdi-
Rodriguez, J., et al. (2015). Real-space grids and the octopus code as tools for the
development of new simulation approaches for electronic systems. Phys. Chem. Chem.
Phys. 17, 31371–31396. doi:10.1039/C5CP00351B

Baker, J., Andzelm, J., Scheiner, A., and Delley, B. (1994). The effect of grid quality and
weight derivatives in density functional calculations. J. Chem. Phys. 101, 8894–8902.
doi:10.1063/1.468081

Baroni, S., de Gironcoli, S., Dal Corso, A., and Giannozzi, P. (2001). Phonons and
related crystal properties from density-functional perturbation theory. Rev. Mod. Phys.
73, 515–562. doi:10.1103/RevModPhys.73.515

Baroni, S., Giannozzi, P., and Testa, A. (1987a). Elastic constants of crystals from linear-
response theory. Phys. Rev. Lett. 59 (23), 2662–2665. doi:10.1103/PhysRevLett.59.2662

Baroni, S., Giannozzi, P., and Testa, A. (1987b). Green’s-function approach to linear
response in solids. Phys. Rev. Lett. 58 (18), 1861–1864. doi:10.1103/PhysRevLett.58.1861

Becke, A. D. (1988). A multicenter numerical integration scheme for polyatomic
molecules. J. Chem. Phys. 88, 2547–2553. doi:10.1063/1.454033

Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., et al. (2009). Ab initio
molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun.
180, 2175–2196. doi:10.1016/j.cpc.2009.06.022

Bowler, D. R., Choudhury, R., Gillan, M. J., and Miyazaki, T. (2006). Recent progress
with large-scale ab initio calculations: The conquest code. Phys. status solidi (b) 243,
989–1000. doi:10.1002/pssb.200541386

Das, S., Motamarri, P., Gavini, V., Turcksin, B., Li, Y. W., and Leback, B. (2019). “Fast,
scalable and accurate finite-element based ab initio calculations using mixed precision
computing: 46 pflops simulation of a metallic dislocation system,” in Proceedings of the
international conference for high performance computing, networking, storage and
analysis (New York, NY, USA: Association for Computing Machinery). SC ’19.
doi:10.1145/3295500.3357157

de Gironcoli, S. (1995). Lattice dynamics of metals from density-functional
perturbation theory. Phys. Rev. B Condens. Matter 51 (10), 6773–6776. doi:10.1103/
physrevb.51.6773

de Gironcoli, S., Baroni, S., and Resta, R. (1989). Piezoelectric properties of III-V
semiconductors from first-principles linear-response theory. Phys. Rev. Lett. 62 (24),
2853–2856. doi:10.1103/PhysRevLett.62.2853

Delley, B. (1990). An all-electron numerical method for solving the local density
functional for polyatomic molecules. J. Chem. Phys. 92, 508–517. doi:10.1063/1.458452

Delley, B. (1996). Fast calculation of electrostatics in crystals and large molecules.
J. Phys. Chem. 100, 6107–6110. doi:10.1021/jp952713n

Ding, C., and Zhong, Y. (2003). “Predicting whole-program locality through reuse
distance analysis,” in Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation (New York, NY, USA:
Association for Computing Machinery), 245–257.

Frisch, M., Head-Gordon, M., and Pople, J. (1990). Direct analytic scf second
derivatives and electric field properties. Chem. Phys. 141, 189–196. doi:10.1016/
0301-0104(90)87055-G

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al. (2009).
Quantum espresso: A modular and open-source software project for quantum
simulations of materials. J. Phys. Condens. Matter 21, 395502 doi:10.1088/0953-
8984/21/39/395502

Giannozzi, P., de Gironcoli, S., Pavone, P., and Baroni, S. (1991). Ab initio calculation
of phonon dispersions in semiconductors. Phys. Rev. B Condens. Matter 43 (9),
7231–7242. doi:10.1103/physrevb.43.7231

Gonze, X. (1997). First-principles responses of solids to atomic displacements and
homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys.
Rev. B 55, 10337–10354. doi:10.1103/PhysRevB.55.10337

Gonze, X., and Lee, C. (1997). Dynamical matrices, born effective charges,
dielectric permittivity tensors, and interatomic force constants from density-
functional perturbation theory. Phys. Rev. B 55, 10355–10368. doi:10.1103/
PhysRevB.55.10355

Gygi, F. (2008). Architecture of qbox: A scalable first-principles molecular dynamics
code. IBM J. Res. Dev. 52, 137–144. doi:10.1147/rd.521.0137

Havu, V., Blum, V., Havu, P., and Scheffler, M. (2009). Efficient integration for all-
electron electronic structure calculation using numeric basis functions. J. Comput. Phys.
228, 8367–8379. doi:10.1016/j.jcp.2009.08.008

Izmaylov, A. F., and Scuseria, G. E. (2007). Efficient evaluation of analytic
vibrational frequencies in Hartree-Fock and density functional theory for
periodic nonconducting systems. J. Chem. Phys. 127, 144106. doi:10.1063/1.
2790024

Frontiers in Chemistry frontiersin.org14

Wu et al. 10.3389/fchem.2023.1156891

https://doi.org/10.1039/C5CP00351B
https://doi.org/10.1063/1.468081
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/PhysRevLett.59.2662
https://doi.org/10.1103/PhysRevLett.58.1861
https://doi.org/10.1063/1.454033
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1002/pssb.200541386
https://doi.org/10.1145/3295500.3357157
https://doi.org/10.1103/physrevb.51.6773
https://doi.org/10.1103/physrevb.51.6773
https://doi.org/10.1103/PhysRevLett.62.2853
https://doi.org/10.1063/1.458452
https://doi.org/10.1021/jp952713n
https://doi.org/10.1016/0301-0104(90)87055-G
https://doi.org/10.1016/0301-0104(90)87055-G
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/physrevb.43.7231
https://doi.org/10.1103/PhysRevB.55.10337
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1147/rd.521.0137
https://doi.org/10.1016/j.jcp.2009.08.008
https://doi.org/10.1063/1.2790024
https://doi.org/10.1063/1.2790024
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

Kouba, R., Taga, A., Ambrosch-Draxl, C., Nordström, L., and Johansson, B. (2001).
Phonons and electron-phonon interaction by linear-response theory within the lapw
method. Phys. Rev. B 64, 184306. doi:10.1103/PhysRevB.64.184306

Kresse, G., andHafner, J. (1993).Ab initiomolecular dynamics for liquid metals. Phys.
Rev. B 47, 558–561. doi:10.1103/PhysRevB.47.558

Lejaeghere, K., Bihlmayer, G., Bjorkman, T., Blaha, P., Blugel, S., Blum, V., et al.
(2016). Reproducibility in density functional theory calculations of solids. Science 351,
aad3000. doi:10.1126/science.aad3000

Madsen, G. K. H., Blaha, P., Schwarz, K., Sjöstedt, E., and Nordström, L. (2001).
Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134.
doi:10.1103/PhysRevB.64.195134

Maschio, L., Kirtman, B., Orlando, R., and Rèrat, M. (2012). Ab initio
analytical infrared intensities for periodic systems through a coupled
perturbed Hartree-Fock/Kohn-Sham method. J. Chem. Phys. 137, 204113.
doi:10.1063/1.4767438

Methfessel, M., Rodriguez, C. O., and Andersen, O. K. (1989). Fast full-potential
calculations with a converged basis of atom-centered linear muffin-tin orbitals:
Structural and dynamic properties of silicon. Phys. Rev. B 40, 2009–2012. doi:10.
1103/PhysRevB.40.2009

Mohr, S., Ratcliff, L. E., Boulanger, P., Genovese, L., Caliste, D., Deutsch, T., et al.
(2014). Daubechies wavelets for linear scaling density functional theory. J. Chem. Phys.
140, 204110. doi:10.1063/1.4871876

Pople, J. A., Krishnan, R., Schlegel, H. B., and Binkley, J. S. (1979). Derivative studies
in Hartree-Fock and Møller-Plesset theories. Int. J. Quantum Chem. 16, 225–241.
doi:10.1002/qua.560160825

Savrasov, S., and Savrasov, D. (1996). Electron-phonon interactions and related
physical properties of metals from linear-response theory. Phys. Rev. B 54,
16487–16501. doi:10.1103/physrevb.54.16487

Shang, H., Carbogno, C., Rinke, P., and Scheffler, M. (2017). Lattice dynamics
calculations based on density-functional perturbation theory in real space. Comput.
Phys. Commun. 215, 26–46. doi:10.1016/j.cpc.2017.02.001

Shang,H., Li, F., Zhang, Y., Liu, Y., Zhang, L.,Wu,M., et al. (2021). “Accelerating all-electron
ab initio simulation of Raman spectra for biological systems,” inProceedings of the international
conference for high performance computing, networking, storage and analysis (New York, NY,
USA: Association for Computing Machinery). SC ’21. doi:10.1145/3458817.3476160

Shang, H., Raimbault, N., Rinke, P., Scheffler, M., Rossi, M., and Carbogno, C. (2018).
All-electron, real-space perturbation theory for homogeneous electric fields: Theory,
implementation, and application within DFT. New J. Phys. 20, 073040. doi:10.1088/
1367-2630/aace6d

Skylaris, C.-K., Haynes, P. D., Mostofi, A. A., and Payne, M. C. (2005). Introducing
onetep: Linear-scaling density functional simulations on parallel computers. J. Chem.
Phys. 122, 084119. doi:10.1063/1.1839852

Yu, R., and Krakauer, H. (1994). Linear-response calculations within the linearized
augmented plane-wavemethod. Phys. Rev. B 49, 4467–4477. doi:10.1103/PhysRevB.49.4467

Frontiers in Chemistry frontiersin.org15

Wu et al. 10.3389/fchem.2023.1156891

https://doi.org/10.1103/PhysRevB.64.184306
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1126/science.aad3000
https://doi.org/10.1103/PhysRevB.64.195134
https://doi.org/10.1063/1.4767438
https://doi.org/10.1103/PhysRevB.40.2009
https://doi.org/10.1103/PhysRevB.40.2009
https://doi.org/10.1063/1.4871876
https://doi.org/10.1002/qua.560160825
https://doi.org/10.1103/physrevb.54.16487
https://doi.org/10.1016/j.cpc.2017.02.001
https://doi.org/10.1145/3458817.3476160
https://doi.org/10.1088/1367-2630/aace6d
https://doi.org/10.1088/1367-2630/aace6d
https://doi.org/10.1063/1.1839852
https://doi.org/10.1103/PhysRevB.49.4467
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1156891

	OpenCL-accelerated first-principles calculations of all-electron quantum perturbations on HPC resources
	1 Introduction
	2 Background
	2.1 The density-functional perturbation
	2.2 OpenCL
	2.3 Hygon GPU

	3 Implementation overview
	4 Optimizations on the Hygon GPU
	4.1 Challenges
	4.2 Improving parallelism
	4.3 Eliminating branch divergence
	4.3.1 Static branch divergence elimination
	4.3.2 Dynamic branch divergence elimination

	4.4 Data placement
	4.4.1 Constant memory data placement
	4.4.2 Local memory data placement
	4.4.3 Private memory data placement

	4.5 Portability among various HPC systems

	5 Evaluation
	5.1 Test case information
	5.2 Simulation validation
	5.3 Overall performance
	5.4 Performance breakdown
	5.4.1 Case study

	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

