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Enzymatic, de novo XNA synthesis represents an alternative method for the
production of long oligonucleotides containing chemical modifications at
distinct locations. While such an approach is currently developed for DNA,
controlled enzymatic synthesis of XNA remains at a relative state of infancy. In
order to protect the masking groups of 3′-O-modified LNA and DNA nucleotides
against removal caused by phosphatase and esterase activities of polymerases, we
report the synthesis and biochemical characterization of nucleotides equipped
with ether and robust ester moieties. While the resulting ester-modified
nucleotides appear to be poor substrates for polymerases, ether-blocked LNA
and DNA nucleotides are readily incorporated into DNA. However, removal of the
protecting groups and modest incorporation yields represent obstacles for LNA
synthesis via this route. On the other hand, we have also shown that the template-
independent RNA polymerase PUP represents a valid alternative to the TdT andwe
have also explored the possibility of using engineered DNA polymerases to
increase substrate tolerance for such heavily modified nucleotide analogs.
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1 Introduction

Synthetic oligonucleotides play essential roles in an increasing number of applications
including storage of digital information in DNA (Lee et al., 2019; Doricchi et al., 2022), drug
discovery (Lindenburg et al., 2020; Vummidi et al., 2022), and the development of mRNA
vaccines (Jackson et al., 2020; Chaudhary et al., 2021). Besides the need for production of
larger numbers of sequences and scaling up to kilograms, demands vary widely in terms of
size and also in sequence and chemical composition. For instance, antisense oligonucleotides
consist of short, fully-modified sequences and the de novo genome synthesis requires the
error-free assembly of massive amounts of shorter stretches of unmodified DNA (Masaki
et al., 2022; Matthey-Doret et al., 2022). On the other end of the spectrum, mRNA vaccines
require the production of long (several thousands of nucleotides) oligonucleotides
containing modified residues such as N1-methyl-pseudouridine (Nance and Meier, 2021;
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Dousis et al., 2022) while studies aiming at understanding the
mechanisms and functions of larger RNAs such as long non-
coding RNAs or mRNA call in for the synthesis of long, heavily
modified sequences (Zuckerman et al., 2020; Statello et al., 2021; Liu
and Wang, 2022).

The main approach for the synthesis of oligonucleotides
relies on the iterative addition of phosphoramidite-based
building blocks on immobilized nucleic acid sequences
(Beaucage and Caruthers, 1981; Caruthers, 1985). While this
method has met undeniable success, there are still inherently
limiting factors. For instance, sequences longer than
200 nucleotides cannot be obtained by this solid-phase
synthetic approach. In addition, the sustainability (Andrews
et al., 2021) as well as the scalability (Molina and Sanghvi,
2019) of phosphorous (III)-based oligonucleotide synthesis are
limited which negatively impacts scalable manufacturing (Van
Giesen et al., 2023). Hence, various enzymatic methods are
currently developed to alleviate the shortcomings of solid-
phase synthesis of nucleic acids. In this context, controlled
enzymatic synthesis represents a promising approach where
temporarily blocked nucleoside triphosphates are incorporated
sequentially into DNA mainly by template-independent
polymerases such as the terminal deoxynucleotidyl transferase
(TdT) (Jensen and Davis, 2018; Lee et al., 2019; Sarac and
Hollenstein, 2019; Doricchi et al., 2022; Lu et al., 2022; Wang
et al., 2022; Ashley et al., 2023; Hoose et al., 2023; Van Giesen
et al., 2023). The blocking groups can be affixed either at the 3′-
hydroxyl moiety to prevent further nucleophilic attack on the α-
phosphorous of incoming nucleoside triphosphates (Bollum,
1962; Mackey and Gilham, 1971; Chen et al., 2010; Hutter
et al., 2010; Gardner et al., 2012; Chen et al., 2013; Mathews
et al., 2016; Jang et al., 2019) or on the nucleobase which then act
as inhibitors of polymerases (Bowers et al., 2009; Palluk et al.,
2018). While robust protocols have been established for DNA
(Palluk et al., 2018; Lee et al., 2019; Jung et al., 2022; Venter et al.,
2022; Wang et al., 2022), changing the sugar chemistry to ribose
(RNA) or to more complex modification patterns deviating from
natural systems (xenonucleic acids, XNAs(Chaput and
Herdewijn, 2019; Chaput et al., 2020)) raises yet unmet
challenges.

We have recently explored the possibility of using phosphate
(Flamme et al., 2022a) or robust ester functionalities (Flamme et al.,
2022b) as prosthetic 3′-O-protecting groups for controlled
enzymatic synthesis of locked nucleic acids (LNAs). While some
of these temporarily blocked XNA nucleotides are tolerated by
various polymerases including TdT, intrinsic esterase (Canard
et al., 1995; LinWu et al., 2019; LinWu et al., 2020) and
phosphatase (Krayevsky et al., 2000; Flamme et al., 2022a)
activities of polymerases precludes their use for the crafting of
oligonucleotides. Here, we have explored i) the possibility of
using yet more robust protecting groups designed to resist
esterase and phosphatase activity for DNA and XNA synthesis
with template-dependent and independent polymerases, ii)
whether other template-independent polymerases than the TdT
could be harnessed for de novo DNA and LNA synthesis, and iii)
the use of engineered, template-dependent polymerases more
tolerant to LNA nucleotides.

2 Results and discussion

2.1 Design and synthesis of blockedDNA and
LNA nucleotides

Benzoyl-protected LNA nucleotides were rather well-tolerated
by a number of DNA polymerases and displayed an important
resistance against hydrolytic removal (Flamme et al., 2022b).
Despite these favorable assets, some polymerases including
Kf(exo−), Bst or Therminator were capable of abstracting the
benzoyl masking group by their moonlighting esterase activity
leading to multiple incorporation events. Substitution of the
aromatic moiety of benzoates with methyl groups not only
decreases the rate of hydrolysis under mild acidic conditions
compared to the unsubstituted parent compound but also to a
change from an A-2 (Watson) mechanism involving a water
molecule in the transition state to an A-1 (Ingold) mechanism
that proceeds via the formation of an acylium ion (Chmiel and
Long, 1956; Shi et al., 2015; Pengthong et al., 2023). Based on this
rationale, we deemed that the esterase activity of polymerases might
be reduced by replacing a benzoyl- with a mesitoyl units on
incoming nucleotides 1 and 2 (Figure 1).

Etherases catalyzing the hydrolysis of C-O bonds are quite
rare in nature and essentially hydrolyze aryl ether bonds in lignin
(Picart et al., 2015), uncommon vinyl ethers (Parsons et al.,
2003), or lactyl ethers of MurNAc and related derivatives.
This scarcity of naturally existing enzymes capable of
hydrolyzing ether linkages is mainly due to the
thermodynamic stability of C-O bonds (Jaeger et al., 2005).
This feature has already been exploited in nucleic acid
chemistry to develop blocked nucleotides for sequencing
purposes (Ruparel et al., 2005; Ju et al., 2006; Wu et al., 2007;
Guo et al., 2008; Keller et al., 2009; Knapp et al., 2011; Palla et al.,
2014; Choi et al., 2022). Based on these considerations, we
explored the possibility of using LNA nucleotides equipped
with 3′-O-allyl (nucleotide 4), 3′-O-methyl (nucleotide 6), and
3′-O-azidomethyl (nucleotide 7) protecting groups in controlled
enzymatic XNA synthesis. In addition, docking experiments
performed with nucleotide 7 and the TdT polymerase
suggested that the modified nucleotide is rather well tolerated
within the active site of the enzyme (Supplementary Figure S1).

In order to establish adequate control reactions, we also
synthesized the known 3′-O-allyl- and 3′-O-azidomethyl-dTTP
protected analogs (nucleotides 3 (Wu et al., 2007) and 5 (Guo
et al., 2008), respectively).

Based on this design, we first synthesized 3′-O-protected DNA
and LNA nucleoside analogs starting either from 5′-O-DMTr- (for
nucleotides 1-4 and 6) or 5′-O-TBDMS-protected starting
nucleosides (for nucleotides 5 and 7) using protocols as described
in detail in the supporting information and the literature (Obika
et al., 1998; Singh et al., 1998; Christensen et al., 2001). After
installation of the 3′-O-masking groups, the trityl and silyl
protecting groups were removed under mild conditions. Finally,
nucleoside triphosphates 1–7 were obtained in moderate yields
(10%–26%) by application of the one-pot-three-steps protocol
developed by Ludwig and Eckstein (Ludwig and Eckstein, 1989)
(Figure 2).
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2.2 Template independent synthesis

With blocked nucleotides 1–7 at hand, we sought to explore the
possibility of constructing modified and natural oligonucleotides
using controlled enzymatic synthesis. In this context, template-
independent DNA polymerases such as the terminal
deoxynucleotidyl transferase (TdT) (Sarac and Hollenstein, 2019;
Ashley et al., 2023) are often considered as prime candidates for de
novo synthesis of single-stranded DNA oligonucleotides (Lee et al.,
2019; Jung et al., 2022; Lu et al., 2022; Wang et al., 2022). While the
TdT polymerase is rather tolerant to a broad array of structurally
modified nucleotides, it catalyzes the incorporation of single LNA
nucleotides which then act as chain terminators even in the absence
of 3′-O-blocking groups (Kuwahara et al., 2009; Kasahara et al.,
2010; Flamme et al., 2021). Nonetheless, extension reactions with the
TdT and 3′-O-blocked LNA nucleotides allow to rapidly gauge the
substrate tolerance of a DNA polymerase for such modified analogs.

Therefore, we first evaluated whether nucleotides 1–7 could act
as substrates for the TdT. To do so, we incubated the modified
nucleotides together with TdT, reaction buffer, various cofactors
(Co2+, Mn2+, or Mg2+), and a 19 nucleotide long, 5′-FAM-labelled
DNA primer for various reaction times (Figure 3; Supplementary
Figure S2). Azidomethyl-protected nucleotide 7 displayed the best
substrate tolerance by the TdT of all investigated nucleotides since
conversion to the expected N+1 product could be achieved in near
quantitative yields after 12 h of reaction with Mn2+ as cofactor. In
addition to nucleotide 7, 3′-O-allyl-blocked LNA analog 4 was also
recognized as a substrate by the TdT albeit with lower efficiency

(~50% yield of conversion to N+1 product). Surprisingly, the
corresponding DNA counterparts 3 and 5 were not well
recognized by the TdT and significant amounts of further
extended products could be detected by gel electrophoresis
analysis. Analog 6 equipped with a 3′-O-methyl group was
incorporated into DNA by the TdT with moderate efficiency
(~30% of conversion), while nucleotides 1 and 2 were not
recognized as substrates. It is noteworthy mentioning that of all
the conditions tested, the highest incorporation efficiencies were
obtained, irrespective of the nature of the modified nucleotide, when
Mn2+ was used as cofactor along with 200 µM triphosphate
concentration and 5 h or 12 h of reaction time (Figure 3;
Supplementary Figure S2). This is in contrast with 3′-O-benzoyl
and 3′-O-pivaloyl-protected LNA-TTPs which displayed a marked
preference for Co2+ overMn2+ (Flamme et al., 2022b). The rather low
yields observed with nucleotides 1, 2, 3, and 5might also be partially
ascribed to the sequence bias of the TdT polymerase since 3′-
terminal cytosine nucleotides on initiators are known to
negatively impact the processivity of this enzyme (Schaudy et al.,
2021).

We then subjected the reaction products obtained with
nucleotides 4, 6, and 7 and the TdT to an LC-MS analysis (see
Supplementary Information for experimental details). When
methylated LNA-TTP 6 was engaged in the reaction mixture, the
expected N+1 product could be detected by this analysis (m/z calcd.:
6588,1676; observed: 6,588,1960; see Supplementary Table S1). On
the other hand, the 3′-allyl and 3′-azidomethyl moieties of the
detected N+1 products obtained with nucleotides 4 and 7 are clearly

FIGURE 1
Structures of designed DNA and LNA nucleotides one to seven bearing 3′-O-blocking groups.

FIGURE 2
Synthesis of (A)DNA and (B) LNA nucleoside triphosphates one to seven bearing 3′-O-blocking groups. Reagents and conditions: 1) 2-chloro-1,3,2-
benzodioxaphosphorin-4-one, pyridine, dioxane, rt, 1h; 2) (nBu3NH)2H2P2O7, DMF, nBu3N, rt, 1h; 3) I2, pyridine, H2O, rt, 30 min.
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absent. The main reaction products detected in these reactions was
the N+1 product with 3′-OH moiety (m/z calcd.: 6574,1519;
observed: 6,574,1834; see Supplementary Table S1). Collectively,
these results suggest the possibility that under longer reaction times
and in the presence of Mn2+ cofactor, ether protecting groups can be
removed either as a consequence of the experimental conditions or
through the effect of the TdT polymerase.

Poly(U) polymerases (PUPs) are another class of template-
independent polymerase that catalyze the addition of rUMP
residues at the 3′-termini of ssRNA in a mechanism reminiscent
of that of the TdT (Kwak and Wickens, 2007; Munoz-Tello et al.,
2012). PUPs have been employed for the terminal labelling of RNA
oligonucleotides and shown a relative tolerance for sugar- and base-
modified nucleotides (Winz et al., 2012; George et al., 2020; Vo et al.,

FIGURE 3
Gel image (PAGE 20%) of TdT-mediated tailing reactions with 3′-O-protected dN*TPs 1–7. First from the left (+)—positive control using dTTP,
second from the left (+)—positive control using 3′-OH-LNA-dN*TP, (−)—negative control in the absence of TdT.

FIGURE 4
Gel image (PAGE 20%) of PUP-mediated tailing reactions with 3′-O-protected dN*TPs 1–7. First from the left (+)—positive control using rUTP,
second from the left (+)—positive control using 3′-OH-LNA-dN*TP, (−)—negative control in the absence of PUP.
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2021; Gupta et al., 2022). Surprisingly, PUPs have not been
considered for de novo synthesis of RNA or XNA
oligonucleotides despite these favorable assets. We thus evaluated
the possibility of using PUPs to incorporate blocked and unmodified
LNA-TTP nucleotides into RNA given the structural preference of
locked nucleic acids for an A-type conformation (Eichert et al., 2010;
Campbell and Wengel, 2011).

To do so, we incubated an 18 nucleotide long, 5′-FAM-labelled
RNA primer with LNA-TTP and nucleotides 1–7with commercially
available PUP under various experimental conditions including
different cofactors, reaction times, and nucleotide concentrations
(Figure 4; Supplementary Figure S3). With the exception of
nucleotides 1 and 2 equipped with 3′-O-mesitoyl groups, the
RNA polymerase PUP produced extended RNA primers with
high efficiency (80%–95% yields of conversion to N+1 product)
regardless of the nature of the nucleotide and the presence of
blocking groups (see Figure 4). While PUP incorporated a single,
unblocked LNA-TTP with a similar efficiency as TdT on DNA
primers (Kuwahara et al., 2009; Flamme et al., 2021), this RNA
polymerase appears to be much more tolerant to the presence of 3′-
O-blocking groups than TdT. Indeed, DNA and LNA nucleotides
equipped with 3′-O-methyl-, 3′-O-allyl-, and 3′-O-azidomethyl-
protecting groups were equally well tolerated by PUP and
successfully incorporated into RNA. Surprisingly, when the
reaction product of 3′-OH-LNA-TTP was fed with UTP or
increased concentrations of LNA-TTP no additional
incorporation events could be observed (data not shown). Hence,
LNA acts as a chain terminator in TdT-as well as in PUP-catalyzed
reactions even in the absence of blocking groups.

In addition, we have analyzed the reaction products by
LCMS to evaluate the nature of the products obtained by
PUP-mediated catalysis. To do so, we subjected the reaction
products obtained with nucleotides 3–7 and the PUP to an
LCMS analysis (see Supplementary Information for
experimental details). Unlike what has been observed with
the TdT, the expected N+1 products still equipped with their
respective protecting groups formed with nucleotides 3–6 (see
Supplementary Table S2). On the other hand, the product
obtained with nucleotide 7 corresponds to the primer
extended by a single LNA-T nucleotide without any masking
group at the 3′-end (m/z calcd: 6636,9811; observed: 6637,0165;
see Supplementary Table S2). Clearly, reactions catalyzed by the
PUP lead to the expected products with little or no removal of
the masking groups.

2.3 Template dependent synthesis

While most efforts to improve the efficiency of de novo DNA
synthesis are centered around TdT-mediated, template
independent oligonucleotide production, template-dependent
approaches are also emerging (Hoff et al., 2020; Hoose et al.,
2023; Van Giesen et al., 2023). A main advantage of template-
dependent synthesis is the plethora of polymerases that have been
engineered to display very lax substrate requirements and which
might be capable of incorporating blocked nucleotides. On the other
hand, template-dependent synthesis leads to the formation of
dsDNA rather than ssDNA products but this can be

circumvented by immobilizing products on solid-support or to
an extent by using universal templates (Hoff et al., 2020; Flamme
et al., 2022b). Consequently, we set out to evaluate whether
nucleotides 1–7 are compatible with enzymatic synthesis with
template-dependent polymerases. To do so, we performed primer
extension (PEX) reactions using a 15-mer, 5′-FAM-labelled primer
and a 22-nucleotide long template equipped with a terminal poly
(dA) stretch (Figure 5). We then evaluated the capacity of a small
subset of polymerases (spanning over three families (A, B, and Y):
Hemo KlenTaq, Bst, Vent (exo−), Sulfolobus DNA polymerase IV,
(Dpo4), Deep Vent, and Kf (exo−)) at accepting nucleotides 1–7 as
substrates and extending the primer by one nucleotide (Figure 5;
Supplementary Figures S4A–C).

This analysis revealed that nucleotides 4 3′-O-allyl-LNA-TTP, 6
3′-O-methyl-LNA-TTP and 7 3′-O-azidomethyl-LNA-TTP
performed best of all evaluated analogs with over 50% of
conversion of the primer to the expected N+1 product under
optimized conditions. However, when higher dN*TP
concentrations were employed, N+2 product formation was
observed suggesting partial removal of the blocking group
(Supplementary Figures S4A–C). An increase in dN*TP
concentration was also accompanied by faster running bands
which stem from hydrolytic degradation of the primer as
observed with other modified nucleotides (Vastmans et al., 2001;
Kuwahara et al., 2008; Flamme et al., 2022b). On the other hand,
increasing the reaction time to 12 h led to a near completion of the
primer and exclusive formation of the N+1 product (Supplementary
Figure S4D). Nucleotides 3 and 4 equipped with 3′-O-allyl groups
were tolerated by polymerases such as Kf (exo−) but led to lower
conversion yields (30%–40% of N+1 product formation).
Interestingly, nucleotides 1 and 2 equipped with bulky ester
groups were incorporated to a certain extent by the Taq and Bst
polymerases under PEX reaction conditions unlike what had been
observed with both the TdT and the PUP polymerases. Even though
yields remained modest (~20%), these incorporation events
highlight the difference in substrate tolerance at the level of
position 3′ of the deoxyribose sugar between template-dependent
and template-independent polymerases. Lastly, reactions carried out
with DNA nucleotide 5 (3′-O-azidomethyl-dTTP) led to the
formation of a product distribution unlike those performed
with the corresponding LNA analog. Overall, incorporation
efficiencies in PEX reactions were comparable to those
observed for related nucleotides blocked with ester moieties
(Flamme et al., 2022b) and nucleotide 7 appeared to be the
most promising candidate.

As for reactions catalyzed by template-independent
polymerases, we subjected the resulting PEX reaction products to
a thorough LCMS analysis to i) verify whether expected products
were formed and ii) shed light into the product distribution observed
with nucleotide 5 as well as the nature of the N+2 products. Analysis
of the reaction products of nucleotides 3 and 4 obtained with Kf
(exo−) clearly highlights formation of the expected N+1 but without
the 3′-O-allyl groups in both cases (Supplementary Table S3). While
the removal of an allyl ether groups was not expected, these results
are similar to those obtained with the TdT polymerase with these
blocked nucleotides. Unfortunately, no product other than
phosphorylated template could be observed in the reaction
mixtures with nucleotides 1, 2, and 6. Intrigued by these results,
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we tried to rationalize the loss of protecting groups observed by gel
electrophoresis and LCMS analysis.

Concerning the azidomethyl protecting group, we believed this
to arise due to the presence of the reducing agent dithiothreitol
(DTT) both in the reaction and storage buffers of polymerases.
Reducing agents convert azides to amines via a Staudinger reaction
and the resulting aminomethyl moiety is then prone to hydrolysis as
reported for blocked DNA nucleotides (Guo et al., 2008). In order to
suppress this potential reduction event, we performed a PEX
reaction with nucleotide 7 and Kf (exo−) purchased without DTT
in the storage buffer and in a reactionmixture devoid of the reducing
agent (Supplementary Figure S4E). However, gel electrophoresis of
the reaction product obtained after 12 h also showed the formation
of the N+2 product. Addition of dTTP to the reaction mixture led to
the formation of a product distribution thus suggesting partial
removal of the protecting group. Lastly, treatment of the reaction
mixture with potassium carbonate (1M, 3 h, RT) followed by
incubation with canonical dTTP led to the same outcome.
Overall, LCMS analysis combined with additional PEX reactions

revealed that ether-blocked nucleotides were incorporated into
DNA by polymerases but that the blocking groups were
abstracted during the reactions.

In order to improve the yield of N+1 product formation, we
considered generating a mutant of the KOD polymerase that would
tolerate LNA nucleotides additionally modified at position 3’ of the
sugar moiety. We thus considered engineering a KOD polymerase
variant that contained one point mutation at the level of the
exonuclease domain (P179S) and one in the thumb section
(L650R). Point mutations were introduced at these sites because
these have been recognized as facilitating the incorporation of sugar-
modified nucleotides (Bergen et al., 2013; Larsen et al., 2016;
Hoshino et al., 2020; Hajjar et al., 2022) and KOD was chosen
given its tolerance for LNA nucleotides (Veedu et al., 2010). With
this KODmutant HP1.C2 at hand (courtesy from Roche), we carried
out PEX reactions with blocked nucleotides 1–7 as well as unblocked
LNA-TTP using similar conditions as described above.

First, we carried out PEX reactions with LNA-TTP and
canonical dTTP to evaluate the proficiency of KOD mutant

FIGURE 5
Gel image (PAGE 20%) of PEX reactions with 3′-O-protected dN*TPs 1–7. First from the left (+)—positive control using dTTP, second from the left
(+)—positive control using 3′-OH-LNA-dN*TP, (−)—negative control in the absence of polymerase.
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HP1.C2. Gel electrophoretic analysis revealed that the polymerase
was capable of fully extending the primer with dTTP resulting in an
N+8 product (which corresponds to full length product with an
additional, untemplated addition). On the other hand, LNA-TTP
was accepted as a substrate however only three nucleotides were
incorporated into the primer (Supplementary Figure S4C). Similar
efficiencies have been observed with other DNA polymerases
(Flamme et al., 2021). We then extended our study to blocked
nucleotides and gel electrophoretic analysis of the reaction products
revealed that nucleotides 1, 2, 3, and 6 were not tolerated at all by
this polymerase since no or very little (<10% conversion of the
primer) extended product could be observed (Supplementary
Figures S4A, C). On the other hand, LNA nucleotide 4 was
readily incorporated into DNA by the mutant polymerase but a
lower running band suggested that undesired N+2 product formed
while a faster running band suggested some partial hydrolytic
degradation of the primer. Similarly, PEX reaction with DNA
nucleotide 5 was readily incorporated and led to a distribution of
N+1 and N+2 but no hydrolytic degradation of the primer. As
noticed for other polymerases, nucleotide 7 acted as an excellent
substrate for KODmutant HP1.C2, since primer was fully converted
(Supplementary Figure S4C). However, the main product stemming
from this reaction was that corresponding to a double incorporation
event (N+2) suggesting an abstraction of the protecting group
during the reaction.

3 Discussion

Chemical synthesis of XNAs is particularly efficient for the
development of potent therapeutic oligonucleotides (mainly
antisense and siRNA) (McKenzie et al., 2021) but is more
challenging for longer (>50 nucleotide-long) sequences
(Taylor et al., 2016). On the other hand, polymerase-mediated
synthesis grants access to very long sequences (Hoshino et al.,
2020) but control of the localization of the modified nucleotides
within the sequence is limited. The combination of both methods
appears to be a potential strategy for the preparation of long
oligonucleotides with modifications present at user defined
positions. However, to reach these aims polymerases need to
circumvent multiple hurdles in XNA de novo synthesis. Indeed,
polymerases need to cope with modifications present at both the
level of the sugar and the 3′-position. In addition, the masking
group needs to be stable for longer time storage but
concomitantly should be removable under mild conditions
that would not affect the integrity of DNA and XNA
oligonucleotides. Lastly, both incorporation of the blocked
nucleotides and removal of the masking groups need to be
high yielding and fast to be considered for the synthesis of
longer oligonucleotides. In order to unravel such a potential
protecting group candidate, we have focused on the de novo
synthesis of LNA-containing oligonucleotides due to the
relevance of this type of chemical modification in the context
of therapeutic oligonucleotides (Campbell and Wengel, 2011;
Hagedorn et al., 2018). In addition, LNA-TTP appears to be a
more difficult substrate for polymerases since the presence of
such a modification often induces rather high error-rates
(Pinheiro et al., 2012; Hoshino et al., 2020).

So far, we have synthesized LNA nucleoside triphosphates
equipped with a variety of 3′-O-blocking groups including
phosphate, esters, and ethers. Nucleotides equipped with 3′-
O-phosphate units suffer from poor polymerase acceptance due
to the increased negative charge and relative bulkiness of the
modification but also from rapid removal by the inherent
phosphatase activity of polymerases (Flamme et al., 2022a).
Ester protecting groups are better tolerated by polymerases
but a fine balance between removal by the esterase capacity of
polymerases and efficient incorporation needs to be evaluated in
a case to case manner (Flamme et al., 2022b). Here, we have
extended this approach to ether protecting groups and we have
found that these nucleotides could be incorporated into DNA by
template-independent and template-dependent reactions using
DNA polymerases. However, incorporation efficiencies for
N+1 product formation rarely exceed 60%–70% which is
clearly unpractical for de novo XNA synthesis. In addition,
removal of most of the 3′-O-ether protecting groups was
observed and clearly results from an abstraction event during
enzymatic reactions. The reasons for these unexpected ablations
of the protecting groups remain unknown and might include
reduction by DTT or other reagents, combined presence of
divalent metal cations and long reaction times, or an etherase
activity of polymerases. Interestingly, the RNA polymerase PUP
incorporates only single LNA nucleotides which then act as
chain terminators but unlike the TdT which displays a similar
behaviour, the PUP is much more tolerant to the presence of 3′-
modifications. Understanding the reason why LNA nucleotides
act as chain terminators for reactions catalyzed by the TdT and
the PUP polymerases would allow to engineer mutant enzymes
that would be ideal candidates for de novo LNA and potentially
XNA synthesis.

4 Conclusion

Here, we report the synthesis of various DNA and LNA
nucleotides blocked with 3′-O-ether and more robust 3′-O-
ester protecting groups, and their further biochemical
evaluation in enzymatic reactions. We have shown that
nucleotides equipped with ether linkages were tolerated by
DNA and RNA polymerases while the ester moieties
precluded incorporation into oligonucleotides presumably due
to the increased bulkiness of the blocking group. We have also
shown that the PUP polymerase readily tolerates 3′-O-masked
LNA nucleotides as substrates and thus represents a valid
alternative polymerase to be considered for de novo synthesis
of XNA oligonucleotides. Similarly, we have evaluated the
possibility of using an engineered DNA polymerase to increase
product formation. Surprisingly, LCMS and gel electrophoresis
analysis revealed that most ether linkages were abstracted
during the enzymatic reactions. Hence, future directions for
improving XNA de novo synthesis will include the
evaluation of other protecting groups, engineered versions of
the TdT and PUP polymerases, and potentially considering
polymerases with the capacity to catalyze the formation of
other linkages such as phosphoramidate bonds (Aggarwal
et al., 2022).
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