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A self-assembled tetrahedral cage results from two C3-symmetry building blocks,
namely, homooxacalix[3]arene tricarboxylate and uranyl cation, as demonstrated
by X-ray crystallography. In the cage, four metals coordinate at the lower rim with
the phenolic and ether oxygen atoms to shape the macrocycle with appropriate
dihedral angles for tetrahedron formation, whereas four additional uranyl cations
further coordinate at the upper-rim carboxylates to finalize the assembly.
Counterions dictate the filling and porosity of the aggregates, whereas
potassium induces highly porous structures, and tetrabutylammonium yields
compact, densely packed frameworks. The tetrahedron metallo-cage
complements our previous report (Pasquale et al., Nat. Commun., 2012, 3, 785)
on uranyl–organic frameworks (UOFs) from calix[4]arene and calix[5]arene
carboxylates (octahedral/cubic and icosahedral/dodecahedral giant cages,
respectively) and completes the assembly of all five Platonic solids from just
two chemical components.
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Introduction

Metals have been key players since the birth of supramolecular chemistry, not only for
their role as templates in the generation of macrocyclic compounds of different shapes and
sizes but also for producing and being incorporated into a wide range of self-assembled
structural motifs such as helicates or grids of increasing complexity and controlled topologies
(i.e., molecules whose representation/graph based on atoms and bonds is non-planar), like
catenanes, rotaxanes, knots, molecular muscles, and machines, many of them pioneered by
Prof. Jean-Pierre Sauvage and thoroughly described in his Nobel Lecture (Sauvage, 2017). In
the context of metallosupramolecular chemistry, metal-mediated self-assembled spheres or
polyhedral cages have gained increased attention, owing to their nanoscale cavities. Work in
this area has mostly focused on building their architectures and studying the properties and
applications of their confined nanospaces. The topic has been extensively reviewed over the
last four decades, and some recent studies include Pullen et al. (2021), McConnell (2022),
and McTernan et al. (2022).

Design principles to construct high-symmetry cages, such as tetrahedra, cubes, and
octahedra, were first discussed by Stang and co-workers (Chakrabarty et al., 2011) and are
based on the shapes of the ligands employed and the coordination angles of the metals
involved. The ample choice of available metal candidates for self-assembly must be balanced
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by the rigidity of their coordination requirements, much higher than
other tools such as hydrogen bonds or hydrophobic forces. For
example, in Fujita’s MnL2n (M = Pd2+) giant nanoscopic metallo-
cages (Sun et al., 2011), subtle variations in the ligand (furan versus
thiophene) favor either M12L24 or M24L48 rhombicuboctahedral
constructs. In addition, the self-assembly process must be
reversible to reach equilibrium, so the most stable structures
result. Thus, kinetically labile octahedral (i.e., GaIII, FeII, CoII,
ZnII, and NiII) (Caulder and Raymond, 1999) and square planar
(PdII and PtII) metal ions (Sun et al., 2020) are usually employed.
Among the larger metals, lanthanides (i.e., EuIII) have also been
used for self-assembly, but their variable coordination numbers and
geometries complicate rational designs (Yan et al., 2015). In the
actinide series, uranyl cation UO2

2+ has been employed to assemble
frameworks and cages, but most examples generally involve
polyoxometalate-type clusters (Burns et al., 2005; Ling et al.,
2010; Thuéry and Harrowfield, 2017).

Among the self-assembled cages, the chemical replica of Platonic
solids, the five regular polyhedra with convex faces, have always
attracted and fascinated synthetic chemists. While polyhedral
structures based on sp3-carbon atoms are limited to tetrahedrane,
cubane, and dodecahedrane, whose syntheses constituted milestone
achievements decades ago (Eaton and Cole, 1964; Maier et al., 1978;
Ternansky et al., 1982), coordination and supramolecular chemistry
have opened access to structures of increased complexity (Seidel and

Stang, 2002; Pluth and Raymond, 2007; Yoshizawa et al., 2009;
Hardie, 2010; Jin et al., 2010; Smulders et al., 2013; Young and Hay,
2013), such as octahedra (MacGillivray and Atwood, 1997; Takeda
et al., 1999; Ronson et al., 2007; Hiraoka et al., 2009), icosahedra (Orr
et al., 1999; Bilbeisi et al., 2013), tetrahedra (Pluth et al., 2007; Mal
et al., 2009; Granzhan et al., 2011; Clustelcean et al., 2012; Mahata
et al., 2013; Mitra et al., 2013), or so-called Archimedean solids
(Olenyuk et al., 1999; Sun et al., 2010; Liu et al., 2011; Wang et al.,
2014).

We described, a decade ago, novel metallo-cages in the solid
state arising from uranyl cation UO2

2+ and calixarene carboxylic
acids (Pasquale et al., 2012). Uranyl easily coordinates reversibly
with three carboxylates at its equatorial plane in a hexagonal
bipyramidal fashion (Clark et al., 1995; Sather et al., 2010; Wang
and Chen, 2011), providing an ideal C3-symmetry component
(Figure 1A), whereas calix[4]arene and calix[5]arene
carboxylates provide C4- and C5-symmetry elements,
respectively, to build octahedral and icosahedral assemblies
(with an inner cube or dodecahedron inscribed at the uranyl
-yl oxygens, respectively) (Figures 1B, C). Indeed,
polycarboxylates have been often employed as ligands for
uranyl–organic frameworks (UOFs) (Thuéry et al., 1999;
Thuéry et al., 2004; Liao et al., 2010; Wang and Chen, 2011;
Li et al., 2016; Zhang et al., 2017; Hu et al., 2018) with a wide
variety of resulting architectures.

FIGURE 1
Hexagonal bipyramidal coordination of uranyl with carboxylates (A) and chemical structures of uranyl hexameric (B) and dodecameric (C) cages
from calixarenes.
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As a result, octahedral and icosahedral anionic metallo-cages of
nanoscopic dimensions (estimated inner volumes from inscribed
spheres ca. 940 and 7,200 Å3, respectively) were formed univocally
with an unusually small number of components (Pasquale et al.,
2012).

The assembly of a tetrahedron, the last Platonic solid from
calixarene carboxylic acids and uranyl, requires two C3-symmetry
components in a L4M4 stoichiometry, but the selection of an
appropriate ligand with three carboxylates is by no means
trivial. Calix[6]arenes substituted at alternate rings are
unsuitable candidates, since these substituents are oriented
almost parallel to each other in their conformations (van
Duynhoven et al., 1994). An interesting alternative would be
the use of O-unsubstituted homooxacalix[3]arenes, but they
display wide, almost flat cone conformations (Tsubaki et al.,
1998). Interestingly, however, the cavities can shrink upon
uranyl coordination with the six oxygen atoms of the
macrocycle (three phenols and three ether bridges) (Thuéry
et al., 1999; Masci et al., 2002) into ideal angles and shapes for
a tetrahedral assembly.

Based on these findings, a cage of L4M8 stoichiometry could be
anticipated from homooxacalix[3]arene tricarboxylic acid 1
(Scheme 1), with four uranyl cations (in blue) at the lower rim
of the ligands (shaping metals) and the other four metals (in red)
acting as gluing elements.

Results and discussion

The predicted shaping of homooxacalix[3]arene–uranyl
complexes into an ideal building block for tetrahedron formation
was confirmed in the solid state from the triester precursor of triacid
1, namely, triethyl homooxacalix[3]arene tricarboxylate (2) (Zhong
et al., 1999). Indeed, a single crystal (crystal C1) was grown from the
slow diffusion of ethyl acetate into a mixture of 2, potassium tert-
butoxide, and uranyl nitrate in a CHCl3–methanol–DMF solvent
mixture. In the crystal, the uranyl is bound to all three phenol groups
of the macrocycle, at the expected long U-O single-bond distances
(ca. 2.22 Å) (Thuéry et al., 1999), forcing the calixarene skeleton to
adopt a sharp conical bowl-shaped conformation (dihedral angles of
benzene rings at ca. 85.3o) (Figure 2; Supplementary Figure S1). The
remaining ether oxygen atoms of the macrocycle also coordinate at
the uranyl equatorial plane, though in a much weaker manner (U-O
distances ca. 3.19 Å).

Interestingly, in the crystal packing, C1 forms a dimeric capsule,
arising from two staggered, face-to-face oriented bowls and
stabilized by the disordered potassium counterions of both units,
bound to the inner -yl oxygen atoms of the uranyl moieties, and also
stabilized by cation–π interactions with the neighboring benzene
rings (Gokel et al., 2002).

Tricarboxylic acid 1 was readily synthesized by the hydrolysis of
2 with potassium hydroxide in an ethanol–water mixture. Slow

SCHEME 1
Assembly of a tetrahedral cage from homooxacalix[3]arene tricarboxylic acid (1) and uranyl.
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diffusion of toluene into a solution of 1, potassium hydroxide, and
uranyl nitrate in DMF resulted in a crystal showing the expected
supramolecular assembly. The structure was resolved using a
rotating anode with MoKa radiation, without requiring the use of
a synchrotron light beam, as is usual for most giant assemblies (Sun
et al., 2010; Sun et al., 2011).

The tetrahedral complex 14(UO2)8K8 (crystal C2) crystallizes in
the body-centered cubic space group I-43m, showing a high degree
of symmetry. Four uranyl residues are located at the center of the
faces, whereas the remaining four metals lie at the corners (Figure 3).
Unlike for crystal C1, the calixarene monomers are not fully
symmetric, revealing a certain degree of distortion, as only two
of the ether oxygen atoms bind to the uranyl (Supplementary Figure
S2B). The inner -yl oxygens of the uranyl groups at the faces define a
tetrahedron with two ca. 7.70 Å edges and four ca. 7.93 Å edges,
whereas a larger tetrahedron (Figure 3B; Supplementary Figure S3)
is defined by the prolongation of the lines along the edges of the
assembly.

The crystal packing of C2 reveals a remarkable degree of
porosity. Each tetrahedron requires eight cationic counterions to

balance the overall negative charge (one negative charge per uranyl
subunit). In crystal C2, only four disordered potassium cations have
been assigned, located as a bridge connecting to three tetrahedra via
the outer -yl uranyl oxygens at the corners (Figure 4A).

The three-dimensional stacking of tetrahedra and potassium
counterions in C2 is based on triple-tetrahedral subunits and a
sextuple-tetrahedral subunit formed through potassium bridges
(Figures 4A–C). Two triple-tetrahedral subunits are formed: one
via a bridged potassium atom and the other as a circle that requires
three bridged potassium counterions. Also, a larger, flat, cyclic
subunit is formed by six tetrahedrons and six bridged potassium
atoms. Stacking of both triple-tetrahedral assemblies produces a
large tetrahedral cavity, whose potassium vertexes define 19.56 Å
edges and an inner available volume of ca. 882 Å3 (Figure 4D;
Supplementary Figure S4). The complexity further increases by
the formation of a cage with 12 tetrahedra, in which the
sextuple-tetrahedral assembly cage is embedded (Supplementary
Figure S5). The 3D tetrahedron–potassium network in C2 can be
displayed by using layer-by-layer stacking and mutually embedding
patterns (Supplementary Figure S6).

FIGURE 2
Synthesis and crystal structure of uranyl complex C1 from triethyl homooxacalix[3]arene tricarboxylate ester (2).

FIGURE 3
Crystal structure C2. (A) Tetrahedron frame with a ca. 382 Å3 sphere tangent to the -yl oxygens at the faces, representing the inner available volume.
(B) Wireframe representation of the two distorted tetrahedrons defined by the inner -yl uranyl oxygens on the face (green lines) and by the outer
tetrahedral surface (blue lines).
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When ethyl acetate is diffused into a mixture of 1,
tetrabutylammonium (TBA) hydroxide, and uranyl nitrate, a
homooxacalix[3]arene–uranyl tetrahedral complex (crystal C3) is

also formed. The complex with TBA as a counterion crystalizes in
space group P2 (1)/n, a lower symmetry than crystal C2, so that the
tetrahedral cage lacks symmetry elements. In this case, all eight

FIGURE 4
Stacking mode between tetrahedral cages and bridged potassium counterions in C2. (A) Each potassium bridges three tetrahedral cages. (B) Three
tetrahedra form a circle via three bridged potassium cations. (C) Six tetrahedra in a circle via six bridged potassium atoms. (D) Self-assembled cavity (in
green) formed by six tetrahedral cages with a ca. 882 Å3 volume.

FIGURE 5
(A) Two TBAs and three DMFs filling the tetrahedral cage, whereas six TBAs surround the cage in C3. (B) Packing of tetrahedral cages, TBA
counterion, and DMF solvent molecules.
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cationic TBA counterions are located. Two of them, together with
three solvent molecules (DMF), fulfill the cavity (Figure 5A). The
remaining six TBA counterions surround the tetrahedral cage in a
tight packing, so a porous assembly is not present under these
conditions (Figure 5B). This is rather unusual in other chemical
replica of Platonic tetrahedra (Granzhan et al., 2011; Clustelcean
et al., 2012).

Summary and outlook

In summary, all five Platonic solids can be easily assembled from
just two components, namely, calixarene carboxylates and uranyl.
The last one, the tetrahedron (representing fire in Plato’s conception
of world), is described here. The assembly requires homooxacalix[3]
arene tricarboxylate and eight uranyl moieties, four of them
employed to shape the macrocycle into the appropriate
conformation, while the remaining four are gluing elements to
bridge the subunits by carboxylate–uranyl coordination.
Counterions dictate the packing characteristics. Potassium creates
porous materials, whereas tetrabutylammonium yields densely
packed structures. As for the remaining uranyl cages, metals are
centered in the faces, paving the way for the use of these novel UOFs
as catalytic vessels (Hu et al., 2018), gas storage containers
(Furukawa et al., 2010; Li et al., 2016), and in photoelectronic
applications (Wang and Chen, 2011; Wang et al., 2012; Wang
et al., 2013).

From a design point of view, our approach to Platonic
polyhedral cages could be conceptually extended to reversible
non-metallic motifs, such as imines, from calixarene aldehydes
and planar C3-symmetry counterparts (i.e., benzene or 1,3,5-
triazine triamines) (Rue et al., 2011; Lin et al., 2012), opening the
way for a new family of self-assembled large capsules.
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