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A short 3-step synthesis of the antiviral agent 7DMA is described herein. The nature
of a major by-product formed during the key N-glycosylation of 6-chloro-7-
deaza-7-iodopurine with perbenzoylated 2-methyl-ribose under Vorbrüggen
conditions was also investigated. Spectroscopic analyses support that the
solvent itself is converted into a nucleophilic species competing with the
nucleobase and further reacting with the activated riboside in an unanticipated
fashion. These findings call for a revision of reaction conditions whenworkingwith
weakly reactive nucleobases in the presence of Lewis acids. 7DMA thus obtained
was evaluated for its efficacy against an emerging flavivirus in vitro.
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1 Introduction

Nucleoside analogues make up a valuable chemical class in the fields of both anticancer
and antiviral chemotherapy (Jordheim et al., 2013). In the latter, they may target RNA-
dependent RNA polymerases (RdRp), thereby inhibiting viral replication (Carroll et al.,
2003; Benzaria et al., 2007; Boehr et al., 2019). This strategy remains effective for emerging
RNA viruses, such as Zika (ZIKV),West Nile (WNV), and Ebola (EBOV); especially with the
recent coronavirus (SARS-CoV-2) outbreak, adenosine analogue remdesivir (1) has made a
compelling case (Eyer et al., 2016, 2019; Tchesnokov et al., 2019; Gordon et al., 2020; Yin
et al., 2020). Another modified nucleoside that is frequently used as a tool in flavivirus
research is 7-deaza-2′-C-methyladenosine (7DMA, 2), a close analogue to adenosine (3)
(Figure 1). 7DMAwas originally developed byMerck (under the nameMK-608) to target the
RdRp (NSB5) of the hepatitis C virus (HCV) and had shown promising results before failing
in clinical trials (Carroll et al., 2009; Arnold et al., 2012). Still, it is frequently used to study
other Flaviviridae viruses such as the dengue virus (DENV) (Schul et al., 2007), tick-borne
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encephalitis virus (TBEV) (Eyer et al., 2015), and ZIKV (Zmurko
et al., 2016; Eyer et al., 2019; Jacobs et al., 2019).

In view of using 7DMA to study viral metabolism at our research
institute, and given the high cost of commercial sources, our
chemistry group set out to produce the compound in house.
Only two research articles disclosed in detail the synthesis of
7DMA. Eldrup and colleagues used an in situ generated α-
epoxide intermediate (Scheme 1, 3a) to react with the sodium
salt of 7-deazaadenine (4a) (Eldrup et al., 2004), whereas Bio and
co-workers sought to generate the α-epoxide (3b) prior to
undergoing aminolysis by the sodium salt of N6-protected 7-
deazaadenine (4b) (Bio et al., 2004). About a dozen patent
applications filed between 2002 and 2010 report the synthesis
based on these approaches; however, the preparation of the key
epoxide intermediates can require 5 to 10 steps. Looking for a
shorter process to produce compound 2, we envisioned the
traditional Vorbrüggen protocol for the key N-glycosylation
reaction (Vorbrüggen and Ruh-Pohlenz, 1999; Beutner et al.,
2019). Although Bio and co-workers have described the lack of
reactivity of 6-chloro-7-deazapurine (4a) under these conditions
(Bio et al., 2004), the Hocek group succeeded in coupling
perbenzoylated 2-methyl-ribose (5) with iodinated 6-chloro-7-
deazapurine (6) (Scheme 1) in the presence of TMSOTf and
DBU in 48% yield (Nauš et al., 2012). In 2020, Cho also reported
the same coupling in 73% yield using TMSOTf and BSA as activating
agents (Cho et al., 2020). While in these studies, the iodine group
was used as a handle for further cross-coupling reactions, the latter
halogen could also be removed by simple catalytic hydrogenation
after a one-pot chlorine–nitrogen exchange and removal of the
benzoyl groups in aqueous ammonia, thus yielding 7DMA (2). As
such, we describe a short synthesis of 7DMA using the Vorbrüggen

protocol and an unexpected side-reaction that occurred during this
key step. The in vitro activity of 7DMA against the emerging
mosquito-borne Usutu virus (USUV) is also reported.

2 Materials and methods

2.1 Synthetic procedure for compound 10

Please refer to the Supplementary Material for general synthetic
and analytical procedures for the known compounds 7a, 8, 8a, 5, 6,
9, 13, and 2.

(6-(Benzoyloxy)-2-(cyanomethyl)-6a-methyl-2-phenyltetrahydrofuro
[2,3-d][1,3]dioxol-5-yl)methyl benzoate (10).

To a mixture of 5 (2.65 g, 4.57 mmol), 6 (1.53 g, 5.49 mmol,
1.2 equiv.) and DBU (2.10 mL, 13.72 mmol, 3.0 equiv.) in
acetonitrile (46 mL) was added TMSOTf (3.30 mL,
18.30 mmol, 4.0 equiv.) dropwise at 0°C and the mixture was
then stirred at 70°C for 24 h. After cooling, the mixture was
diluted with ethyl acetate (45 mL) and saturated aq. NaHCO3

(45 mL) was added. The aqueous layer was further extracted with
ethyl acetate (4 mL × 45 mL). The combined organic layers were
washed with water (45 mL) and brine (45 mL), dried over MgSO4,
and concentrated. The crude product was purified once by
chromatography on silica gel (CHCl3/MeOH, 98:2) and once
by reverse-phase chromatography (MeCN/H2O, 80:20) to yield
the expected product (9) in only 20% (0.69 g, 0.93 mmol), and the
by-product (title compound) (1.22 g, 2.45 mmol, 54%) in the
more polar fractions. An analytical sample of 10 for the X-ray
diffraction experiment was obtained by crystallization from
hexane to yield colorless crystals. HRMS calcd for

FIGURE 1
Antiviral agents remdesivir (1), 7DMA (2), and the nucleobase adenosine (3).

SCHEME 1
Previous and proposed synthetic routes toward 7DMA (2).
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C29H26NO7
+ [M + H]+: 500.1704, found: 500.1708; 1H NMR

(500 MHz, CDCl3) δ 7.97–7.85 (m, 4H), 7.65–7.57 (m, 3H),
7.56–7.49 (m, 1H), 7.48–7.42 (m, 2H), 7.41–7.31 (m, 5H), 5.88
(s, 1H), 5.12 (d, J = 9.0 Hz, 1H), 4.37 (dd, J = 12.1, 3.5 Hz, 1H),
4.17 (dd, J = 12.3, 5.0 Hz, 1H), 3.65–3.59 (m, 1H), 2.92 (dd, J =
21.4, 12,0 Hz, 2H), and 1.88 (s, 3H). 13C NMR (125 MHz, CDCl3)
δ 165.8, 165.5, 140.6, 133.6, 133.1, 130.0, 129.6, 129.5, 129.3,
128.9, 128.5, 128.4, 128.3, 125.4, 115.9, 111.6, 110.3, 88.7, 78.1,
76.0, 63.1, 33.8, and 22.3.

2.2 Single-crystal X-ray studies of
compound 10

The crystallographic data for compound 10 were collected at
100 K on the MANACA beamline at Sirius (Brazilian
Synchrotron Light Laboratory) with a PILATUS2M detector
using monochromatic X-ray (0.67937 Å). The data were
recorded in the rotation mode using the ω scan technique
with 2θmax = 57.2° using data collection software MXCuBE
(Gabadinho et al., 2010; Oscarsson et al., 2019). The
MANACA is a macromolecular crystallography beamline, and
to avoid the lack of completeness at high angles, we collected data
from eight crystals of compound 10 mounted in random
orientations. The data reduction and merging were performed
using the XDS (Kabsch, 2010). The data were corrected for
absorption effects using the empirical method implemented in
XDS (Kabsch, 2010). The structure was solved by direct methods
(intrinsic phasing) using SHELXT (Sheldrick, 2015b). The
refinement was carried out by the full-matrix least-squares
method with anisotropic displacement parameters for all non-
hydrogen atoms based on F2 using SHELXL (Sheldrick, 2015a)
through the OLEX2 interface (Dolomanov et al., 2009). The
hydrogens were positioned geometrically in their idealized
positions (Sheldrick, 2015a). The following reflections were
omitted from refinement due to bad crystal data from one
dataset: −10 10 1, 8 12 0, 1–14 5, and 6 0 12. The general-
purpose crystallographic tool PLATON (Spek, 2003) was used for
structure validation. MERCURY was used for molecular graphics
representations. Details of the data collection and refinement and
additional ORTEP style view of the X-ray crystal structure and
packing diagrams of compound 10 are given in the
Supplementary Material.

2.3 Antiviral activity assessment

2.3.1 Virus and cell culture
USUV 1477 (GenBank: KJ438705.1) was provided by Prof.

Dr. Jonas Schmidt-Chanasit of the Bernhard Nocht Institute of
Tropical Medicine, Germany. Low-passage-number viral stocks
were generated in Vero CCL81 cells, titrated and stocked
at −80°C. Vero (ATCC CCL-81) and SH-SY5Y cells (CRL-
2266™) were obtained from ATCC. Vero CCL81 cells were
cultured in DMEM supplemented with 10% fetal bovine sera
(FBS) and antibiotics, while SH-SY5Y cells were cultured in the
same media with 50% F-15. Cell cultures were kept at 37°C,
5% CO2.

2.3.2 In vitro testing of 7DMA (2) and i7DMA (13)
Cells were infected with USUV at a multiplicity of infection

(MOI) of 0.1 and then treated with vehicle (0.001% DMSO) or test
compounds. In the dose-dependent assays, concentrations ranging
from 100 to 3.1 μM of 7DMA were used. For evaluation of the
antiviral effect of i7DMA, non-infected and infected cells (see above)
were treated with vehicle, 7DMA or i7DMA at 10 μM. Cell culture
supernatant was collected at 48 h post-infection in dose-dependent
assays of 7DMA, and 24 h post-infection in antiviral effect and cell
viability assay for i7DMA. Viral loads were assessed using plaque-
forming assays (Rocha et al., 2021). Cell culture viability was
assessed using MTT assays [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] according to recommendations
from the manufacturer (Merck).

3 Results

Starting with the preparation of perbenzoylated 2-methyl-ribose (5)
in house, D-(+)-glucose (7) was subjected to the Amadori reaction
(Hotchkiss et al., 2006) and further treated with calcium chloride
(Steinhardt and Eastgate, 2013) to give 2-methyl-D-ribonic-γ-lactone
8 (Scheme 2). Perbenzoylation of the latter prior to reduction of the
lactone using lithium tri-t-butoxyaluminium hydride and benzoylation
of the resulting crude hemiacetal furnished the desired peracylated 2-
methyl-ribose 5 (Zhou et al., 2016). This 4-step sequence could be
performed on a multigram scale without the use of chromatographic
purification. The planned coupling partner 6 was prepared by
iodination of 6-chloro-7-deazapurine 4a (Song et al., 2011). With
the key N-glycosylation reaction partners 5 and 6 in hand, Hocek’s
protocol was followed, giving the desired product (9) in 48% yield (Nauš
et al., 2012). On repeating the reaction, however, we only achieved low
yields, around 20%. The addition of molecular sieves did not greatly
improve the outcome (30% yield). Intrigued by these results, the
reaction mixture was analyzed in detail. Chromatographic analyses
of the reaction mixture revealed the presence of a major by-product
with an ion mass ([MH]+) of 500.1708. Being devoid of isotopic peaks
that would arise from chlorine present in 6, potential deazapurine
derivatives were dismissed. Furthermore, considering that protonated
species are recorded ([MH]+, and the ammonium ion [MNH4]

+), the
corresponding molecular mass would be equal to 499, which would
imply an odd number of nitrogen atoms present in the structure of the
by-product (Pellegrin, 1983). As a consequence, accounting for all the
reagents present in the reaction mixture that possess an odd number of
nitrogen, and having excluded deazapurine derivatives, the only
remaining candidate would be the solvent, acetonitrile. In
consideration of the reaction intermediates generated under the
reaction conditions, the activated riboside oxonium (11) would be
the most likely reactive intermediate, and the combined masses of 11
and acetonitrile indeed had the theoretical protonated ion mass of
500.1704, the experimental data (m/z 500.1708) being within an
excellent error margin (<1 ppm).

The by-product was further isolated in order to perform a full
characterization and try to establish the causes for its occurrence.
Chromatographic purification was successfully achieved, yielding a
pure product with the expected mass, as examined by UPLC-HRMS
analysis. The compound was thus subjected to a series of NMR
experiments (please see Supplementary Material for full details),
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which revealed that acetonitrile was indeed connected to the 1,2-
O-ethylidene moiety of 3,5-dibenzoyl-2-methylribose through its α-
carbon. The structure of by-product 10 shown in Figure 2 has the
name ((3aR,5R,6R,6aR)-6-(benzoyloxy)-2-(cyanomethyl)-6a-methyl-
2-phenyltetrahydro-furo[2,3-d][1,3]dioxol-5-yl)methyl benzoate.
Crystals of 10 suitable for X-ray crystallography diffraction
experiments were also produced, which unequivocally confirmed the
proposed structure, also highlighting the single stereochemistry at the
ketal position, defined as R (Figure 3).

From a mechanistic point of view, a notable disconnection
would be at the ketal moiety since the cyclic oxonium
intermediate 11b (Scheme 3) would be a plausible electrophile.
In fact, although it is the first time that the alkylation of the non-
anomeric position of the acyl oxonium is reported for C2-methylated
pentoses, this phenomenon has already been described during the
reaction of silyl enol ethers with peracylated-D-ribofuranose
catalyzed by stannic chloride to produce C-nucleosides

(Yokoyama et al., 1982; Berber et al., 2001). Since then, a few
other studies have reported this generally unexpected reactivity in
C2-acylated sugars for other C-nucleophiles, such as
allenyltributylstannane (Chan et al., 2005), indium acetylenides
(Lubin-Germain et al., 2008), trimethylaluminum (More and
Campbell, 2009), cyanotrimethylsilane (Popsavin et al., 2012), or
zinc acetylenides (Lemaire et al., 2014), suggesting that the small size
of the nucleophile is the most decisive factor for the observed
regioselectivity. The formation of the corresponding orthoesters
is well known in the field of O-glycosylation, the latter serving as
intermediates in the synthesis of oligosaccharides (Kong, 2007).
Regarding the reactivity of acetonitrile under our reaction
conditions, three reports describe cyanomethylation reactions
with acetonitrile in the presence of a silylated Lewis acid (Iwasaki
and Kume, 1987; Watanabe et al., 2017; Yoshimura et al., 2017), but
it is only Yoshimura who proposes that the reactivity of alkylnitriles
is mediated via activation by trialkylsilyl triflates, when in the

SCHEME 2
Synthetic steps toward the key Vorbrüggen N-glycosylation reaction. Reagents and conditions: (a) BnNHMe, EtOH, AcOH, reflux, 4 h, 52%–66%
(7a); (b) MeOH, THF, CaCl2/MeONa, 40°C, 19 h, 44%–70% (8); (c) BzCl, Et3N, CH2Cl2, rt, 18 h, 58%–89% (8a); (d) i. (LiAl(OtBu)3H), THF, rt, 3 h; ii. BzCl, Et3N,
CH2Cl2, rt, 19 h, 38%–78% (5); (e) NIS, DMF, rt, 20 h, 81%–95% (6); (f) DBU, TMSOTf, MeCN, 70°C, 28 h, 20% (9), 54% (10) or DBU, TMSOTf, DCE, 70°C, 24 h,
58% (9).

FIGURE 2
Proposed structure of by-product 10 and main NOESY correlations.
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presence of mild organic bases, thus generating transient N-silyl
ketene imine nucleophiles (Yoshimura et al., 2017). As such, a
mechanism for the formation of by-product 10 could be
proposed, as an excess of TMSOTf and DBU was present in our
reaction mixture, thus being able to generate nucleophilic
acetonitrile (via the N-silyl ketene imine 12) which would, in
turn, attack intermediate 11b at the non-anomeric position
(Scheme 3). Moreover, the stereoselective attack of the least
hindered β-face of 11b could be justified. Although for most of
the aforementioned cases, there was only one nucleophile in play, in
our case, a competition between compounds 6 and 12 must take
place, and one could assume that the lack of reactivity of nucleobase
6 favors attack by 12. The modified Vorbrüggen protocol involving
the addition of DBU was first mentioned in 1994 (Kristinsson et al.,

1994), claiming the advantages of neutralization of the reaction
media, in addition to promoting better solubilization of the silylated
nucleobase and the dismissal of anhydrous conditions. Since then,
this protocol has been described for the N-glycosylation of other
purines (Franchetti et al., 1998; Rosenberg et al., 2003; Gunic et al.,
2007).

A notable alternative would thus either be substituting
acetonitrile, for example, with 1,2-dichloroethane (Smith et al.,
2004), or performing the reaction without DBU. As mentioned
earlier, Cho has recently reported the same coupling using BSA and
TMSOTf (Cho et al., 2020) which has also been used for
N-glycosylation reactions with other 7-deazapurine analogs, as
reported by Seela and Ming (2007) and Ingale et al. ( 2018) and
the Hocek group (Nauš et al., 2015; Perlíková et al., 2021) for non-
C2-branched peracylated pentoses. In our hands, however, the same
side-reaction occurred on repeating Cho’s protocol. Therefore, the
different reaction conditions mentioned previously were repeated
and the reaction mixtures monitored by UPLC-HRMS at several
time points (please see Supplementary Material for further details).
Our original condition (TMSOTf/DBU/MeCN) for coupling
partners 5 and 6 showed the appearance of both the desired
product (9) and by-product (10) after 6 h in a 7:3 ratio which
persisted overnight. On repeating Cho’s protocol with BSA/
TMSOTf, almost complete conversion of the riboside was
observed after 1 h; however, the reaction mixture showed the by-
product (10) as major product, and desired product (9) in a 85:
15 ratio, evolving to 89:11 after 6 h (Cho reported the reaction
duration of 8–9 h with 73% yield) (Cho et al., 2020). This suggests
that the sole presence of a Lewis acid is sufficient to promote the
formation of by-product 10. By running the DBU/TMSOTf protocol
in 1,2-dichloroethane instead of acetonitrile, the desired nucleoside
9 was observed with 82% conversion after 6 h and 92% after 25 h
and, as expected, with no traces of by-product 10. This protocol was
subsequently used to perform the key coupling reaction and gave

FIGURE 3
ORTEP view of compound 10.

SCHEME 3
Mechanistic proposal for the formation of by-product 10.
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compound 9 in up to 58% (mean value of 48% over four
experiments), after two sequential chromatographic purifications
on normal and reverse phases, respectively. Finally, the reaction of
riboside 5 with 6-chloropurine using TMSOTf/DBU in acetonitrile
(Bio et al., 2004) was also analyzed and showed 99% conversion to
the expected product after 30 min, with no traces of by-product 10.

This observation supports that it is the lack of reactivity of
nucleobase 6 that enables the generated N-silyl ketene imine (12)
to attack the cyclic oxonium intermediate 11b.

In order to complete the synthesis of 7DMA (2), a concomitant
aminolysis of the benzoyl esters and substitution of the 6-Cl atom
with aqueous ammonia (Nauš et al., 2012) was performed to yield

SCHEME 4
Completion of the synthesis of 7DMA. Reagents and conditions: (a) aq. NH3, dioxane, 120°C (sealed tube), 21°h, 42–98%; (b) H-Cube

®
Pro reactor,

30 mm Pd/C 10% cartridge, Et3N, DMF/MeOH (50 mM), “full H2 mode”, 1 atm, 40°C, 1 mL/min flow, 77%.

FIGURE 4
Antiviral effect of 7DMA (2) and i7DMA (13) against USUV and cell viability assessments. (A–B) Dose-dependent inhibition of USUV replication by
7DMA. Vero CCL81 or SH-SY5Y cells were infected and treated with vehicle or 7DMA in concentrations ranging from 3.1 to 100 µM. Cell culture
supernatant was collected at 48 h post-infection for the assessment of infectious viral load. Cell viability was assessed using the MTT assay. The
left Y axis represent the percentage of viable cells relative to non-infected vehicle-treated controls (NI, 100%) (white bars) and infected and treated
cells (black bars). The right Y axis represent viral load results expressed in plaque-forming units (PFU/ml) of culture supernatant, presented as red
circles. (C) Cytotoxic effect of i7DMA in infected cells. Vero CCL81 cells were infected with USUV and treated with vehicle (black bar), 7DMA
(green bar) or i7DMA (orange bar) at the concentration of 10 µM; non-infected Vero CCL81 cells were treated with 7DMA (green outlined bar)
and i7DMA (orange outlined bar) at the same concentration. Cell culture supernatant was collected at 24 h post-infection for the assessment of infectious
viral load (green and orange circles for 7DMA and i7DMA, respectively). Cell viability was assessed as described above. Data are representative of
two or more independent experiments and indicate mean ±SE (n = 2 to 5).
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precursor 13, followed by deiodination through catalytic
hydrogenation (Scheme 4) (Nauš et al., 2015). This last step was
accomplished in a flow hydrogenation reactor equipped with a Pd/C
10% cartridge under atmospheric pressure and gentle heat (40°C),
whereby 1.4 g of 13 could be processed in just over 1 h, providing
750 mg of the final product (7DMA) in 77% yield after
chromatographic purifications.

The 7DMA antiviral activity was tested against the emerging
flavivirus USUV (Ashraf et al., 2015) in vitro. Vero CCL81 cells,
derived from monkey kidney, and SH-SY5Y cells, derived from
human neuroblastoma, were infected with USUV and treated with
7DMA (Figures 4A, B). The assessment of infectious viral load in cell
culture supernatants indicated that the 7DMA treatment reduced
USUV titers at a concentration of 25 µM or greater. The antiviral
effect of 7DMA treatment on USUV replication was greater in SH-
SY5Y cells than in Vero CCL81 cells, reducing USUV titers by
approximately 10,000-fold at a concentration of 100 µM (Figure 4B),
with the same treatment condition resulting in approximately 50-fold
reduction in the infected Vero CCL81 cells (Figure 4A). Moreover,
7DMA treatment had little effect on the viability of SH-SY5Y cells, as
indicated MTT assays, while in Vero CCL81 cells, up to 30% reduction
in cell culture viability was observed at the highest concentration tested.

The immediate precursor of 7DMA in this synthetic route,
compound 13 (named i7DMA), was also tested against USUV in
Vero CCL81 cells (Figure 4C). Although we were not able to
differentiate the antiviral effect of 7DMA and i7DMA at the
concentration of 10 μM, i7DMA treatment caused a 25% reduction
in cell culture viability only inUSUV-infected cells. Such an effect on the
viability of flavivirus-infected cells was not observed for 7DMA in any of
the tested conditions in this study and is not reported in the literature.

4 Discussion

Nucleoside analogues are privileged tools in antiviral research.
N-Glycosylation reactions that unite both sugar and nucleobase
moieties commonly follow the Vorbrüggen protocol, using acylated
ribosides and nucleobase derivatives, often in solution in acetonitrile, as
well as Lewis acids and silylating agents to promote activation of both
coupling partners. During the synthesis of the antiviral compound 7-
deaza-2′-methyl-adenosine (2) applying literature protocols using the
Vorbrüggen conditions in the key glycosylation step, we were faced with
considerable amounts of a by-product (10) and low yields of the desired
product (9). A full structural characterization, including an X-ray
structure of the purified compound led us to conclude that 10 was
the product of addition of the solvent, acetonitrile, to activated riboside
11 at its non-anomeric position, a process provoked by the lack of
reactivity of the nucleobase and concomitant activation of acetonitrile
by the Lewis acid, TMSOTf. To the best of our knowledge, it is the first
time that this mechanism is reported, where the solvent acts as
competing nucleophile during a Vorbrüggen protocol, and one must
notice that this occurrence has never been mentioned by the authors
who performed this reaction. No information was given on whether
reagents and or solvents were purified prior to use in those reactions. By
substituting acetonitrile with 1,2-dichloroethane, the formation of the
by-product could be avoided and yields, improved. Overall, this work
suggests that for the glycosylation of weakly reactive nucleobases using
Vorbrüggen protocols, conditions that preclude acetonitrile as solvent

should be chosen, favoring 1,2-dichloroethane, for instance.
Alternatively, protocols that make use of already established
epoxides could be privileged, although their preparation requires
additional synthetic steps. As such, this work proposes a
straightforward synthesis of 7DMA (2), achievable in three steps
from commercially available perbenzoylated 2-methyl-ribose (5) and
iodopurine (6), useful for research projects that demand quantities of
7DMA past the milligram scale, which come at relatively high costs.

7DMA prepared by this route showedmoderate activity against the
emerging mosquito-borne USUV, in line with previous results (Segura
Guerrero et al., 2018). Indeed, other flaviviruses, such as ZIKV and
WNV, have already proven more susceptible to 7DMA (Eyer et al.,
2016, 2019). Interestingly, 7DMA was less toxic and caused greater
reductions in USUV replication when tested in infected SH-SY5Y cells.
This cell line is used as a model for neuronal cells, which are considered
target cells for USUV in mammalian hosts, especially when USUV
infection evolves to neurological disease. There are no antiviral
treatments available against USUV infection, and few compounds
presenting the antiviral activity against USUV in vitro or in vivo are
reported to date (Segura Guerrero et al., 2018; Caracciolo et al., 2020;
Wald et al., 2022; Chen et al., 2023). Altogether, advantages to produce
7DMA using the proposed new route, coupled with preliminary
evidence indicating antiviral activity, should facilitate in vivo
assessment of 7DMA antiviral activities against USUV and other
emerging pathogens.
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