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A palladium-catalyzed asymmetric three-component synthesis of α-arylglycine
derivatives starting from glyoxylic acid, sulfonamides and arylboronic acids is
reported. This novel, operationally simple method offers access to the
α-arylglycine scaffold in good yields and enantioselectivities. The utilization of
α tailored catalyst system enables the enantioselective synthesis of the desired
α-arylglycines despite a fast racemic background reaction. The obtained products
can be directly employed as building blocks in peptide synthesis.
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1 Introduction

α-Amino acids play a central role in biology and chemistry. As the smallest unit of all
peptides and proteins, they are the building blocks of life (Nelson and Cox, 2008). α-Amino
acids are important intermediates in the chemical industry and are used for the production of
drugs, agrochemicals, or functional materials (Hughes, 2011). Due to the tremendous
advances in the development of protein-based drugs (Tsomaia, 2015) and protein
engineering (Lutz, 2010), unnatural and non-proteinogenic amino acids are gaining
increasing importance. Within this class, α-arylglycines are of particular significance.
The α-arylglycine motif is present in several natural products with unique biological
activities. Prominent examples include vancomycin or teicoplanin, two glycopeptide
antibiotics (Van Bameke et al., 2004), or Feglymycin (Dettner et al., 2009) (Figure 1), a
13-mer peptide containing nine α-arylglycine units, which shows promising activities against
HIV and methicillin-resistant Staphylococcus aureus (MRSA). α-Arylglycines are useful
building blocks for the synthesis of various drugs, such as amoxicillin (Fisher and
Mobashery, 2014), an α-lactam antibiotic, or clopidogrel, an antiplatelet medication
(Plosker and Lyseng-Williamson, 2007) (Figure 1). In addition, α-arylglycines are widely
used as starting materials for the preparation of chiral auxiliaries or ligands (Hughes, 2011).

Due to their chemical and biological significance, various different methods for the
asymmetric synthesis of α-arylglycine derivatives have been developed (Nájera and
Sansano, 2007; Hughes, 2011). Multicomponent reactions (MCR) based on the in-situ
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generation of reactive imine species offer a particularly attractive
approach toward the a-arylglycine scaffold (Herrera and
Marqués-López, 2015).

Among these different MCRs, the Petasis or borono-Mannich
reaction (Scheme 1A), is ideally suited for the construction of
arylglycine derivatives due to the simple and widespread

FIGURE 1
Biologically active molecules containing α-arylglycine motifs (highlighted in blue).

SCHEME 1
Synthesis of α-arylglycines via the racemic Petasis reaction (A). Previous work based on the usage of glyoxylates for enantiomeric synthesis (B) and
this work with the free glyoxylic acid (C).
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availability of the starting materials (Candejas et al., 2010; Paul,
Presset and Le Gall, 2017; Wu, Givskov and Nielsen, 2019). In this
three-component process an amine 1) and an aryl or alkenyl boronic
2) react with glyoxylic acid 3) in the absence of any catalysts to
furnish a-arylglycines 4) with a high degree of structural diversity.
Mechanistic studies support a reaction pathway involving an
additional activation of the boronic acid as ate complex five and
intramolecular transfer of the organic residue (Scheme 1B). As the
Petasis reaction proceeds in the absence of any catalyst, it gives
access to racemic amines. Examples of enantioselective Petasis
reactions are rare and often limited to specific substrate
combinations (Lou and Schaus, 2008). (Dia) Stereoselective
construction of the newly formed stereocenter is usually achieved
by using chiral amine or aldehyde components.

Recently, we have disclosed palladium-catalyzed, three-
component transformations between (sulfon) amides, different
aldehyde components and boronic acids or carboxylic acids as
broadly applicable alternatives to the classical Petasis reaction
(Beisel and Manolikakes. 2013; Beisel and Manolikakes, 2015;
Beisel, Diehl and Manolikakes, 2016; Beisel and Manolikakes,
2016; Diehl and Manolikakes, 2020). With glyoxylic acid ester as
aldehyde component, the corresponding a-arylglycines esters 8) can
be obtained in high yields and enantioselectivities (scheme 1c)
(Beisel, Diehl and Manolikakes, 2016). Incorporation of 2, 2, 4, 6,
7-pentamethyl-2, 3-dihydrobenzofuran-5-sulfonylamide (Pbf-NH2)
enables the synthesis of Pbf-protected arylglycines. Racemization-
free cleavage of the Pbf-group affords the glycine derivatives 9) with
a free N-terminus for further transformations, such as peptide
coupling. On the other hand, hydrolysis of the ester group in
obtained arylglycine derivatives leads to (partially) racemized
products (Beisel, Diehl and Manolikakes, 2016; Tailhades, 2022).
An enantioselective approach to a-arylglycine derivatives 10), which
can be easily modified both on the N- and the C-terminus, would be
highly desirable. Such products would provide versatile building
blocks for the synthesis of arylglycine-containing peptides or natural
products.

Herein, we describe a palladium-catalyzed enantioselective
three-component reaction between arylboronic acids,
sulfonamides and the parent glyoxylic acid itself (Scheme 1D).
Although the scope, yields and stereoselectivities of this novel
transformation so far are only moderate, this process provides an
alternative approach to the arylglycine derivatives, which can be
directly utilized in peptide synthesis. The identification of a
specifically tailored catalyst system, allowed us to override an
otherwise fast racemic background reaction.

2 Results and discussion

Initially, we performed a detailed analysis of potential amine and
aldehyde components and protecting group combinations, which
could provide access to arylglycine products with handles for a
chemoselective modification of the N- and the C-terminus. Whereas
the previously identified Pbf-protecting group is perfectly suited for
this purpose (Carpino et al., 1993; Isidro-Llobet, Álvarez and
Albericio, 2009), the ideal choice for the carboxylic acid part
would be the free, unprotected glyoxylic acid itself. The thereby
assembled arylglycine products bear close resemblance to Boc-

protected amino acids, which are among the most common
building blocks for (solid-phase) peptide synthesis (Isidro-Llobet,
Álvarez and Albericio, 2009; El-Faham and Albericio, 2011). Yet, the
direct utilization of free glyoxylic acid poses one fundamental
problem for the development of an enantioselective
transformation. Due to its free OH-group, glyoxylic acid is a
perfect substrate for a classical Petasis reaction. Indeed, we have
shown previously, that the reaction of glyoxylic acid with
sulfonamides and aryl boronic acids furnished racemic
α−arylglycines 11) in the absence of any catalyst or additive
(Scheme 2A) (Diehl et al., 2018). As an example, the reaction of
2, 2, 4, 6, 7-pentamethyl-2, 3-dihydrobenzofuran-5-sulfonylamide
12) and phenylboronic acid 13) with glyoxylic acid, used in the easy-
to-handle solid monohydrate form 3), furnishes the Pbf-protected
phenylglycine 14) in 90% yield after 16 h at 40°C in nitromethane as
solvent. First test reactions with our previously established Pd
(TFA)2—S,S′-iPrBox-catalyst systems (Beisel and Manolikakes.
2013; Beisel and Manolikakes, 2015; Beisel, Diehl and
Manolikakes, 2016; Beisel and Manolikakes, 2016; Diehl and
Manolikakes, 2020) led to highly interesting observations. In the
presence of the palladium catalyst, the desired a-arylglycine (13a)
was obtained in a decreased yield of 55%–65% under otherwise
identical reaction conditions (MeNO2, 40°C for 16 h) (Scheme 2B).
To our surprise, we observed a high degree of enantioinduction in
the presence of the chiral catalyst. The desired arylglycine could be
isolated with an enantiomeric ratio (e. r.) of up to 90:10. However,
we quickly encountered problems with reproducibility. Whereas the
isolated yield stayed in a range of 55%–65% for several independent
experiments, the enantiomeric ratio for individual runs ranged
between 60:40 to 90:10.

Despite these inconsistencies, we were encouraged by the
observed enantioselective formation of a-arylglycine 13a under
conditions adapted from the racemic, catalyst-free Petasis
reaction. Therefore, we started a more thorough examination of
the role of solvents and additives in the palladium-catalyzed,
enantioselective three-component reaction between sulfonamide
12, glyoxylic acid monohydrate three and phenylboronic acid 13
(Table 1). We quickly identified the crucial role of trace amounts of
water in the outcome of the reaction. A reaction with pre-dried
nitromethane and rigorous exclusion of ambient moisture afforded
arylglycine 13a in 57% isolated yield and an e. r. Of 57:43. Increasing
the amount of water from 1.0 to 5.0 equivalents led to a drastic
increase in enantioselectivity with consistent isolated yields (entries
2–4). Further increase of the water content resulted in decreased
yields and enantioselectivities (entry 5). The use of commercially
available, aqueous glyoxylic acid solution (50 wt%; equals
6.6 equivalents of water) furnished arylglycine 13a in a lower
yield of 34%, albeit with very high enantioselectivity. As
arylboronic acids can contain varying amount of the
corresponding boroxines, water might play an important role in
liberating the free boronic acid as a crucial intermediate for the
palladium-catalyzed reaction (Schrapel and Peters, 2015). Indeed,
the reaction with triphenylboroxine afforded the arylglycine product
13a in only 34% yield and an enantiomeric ratio of 64:36 (entry 7).
Still, one has to consider, that during the reaction system up to two
equivalents of water are generated over the curse of the reaction (one
equivalent from the used glyoxylic acid hydrate and one from the
condensation of glyoxylic acid with the sulfonamide). Overall, the
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addition of five equivalents of water led to the best results, both in
terms of isolated yield and enantioselectivity. Therefore, the effect of
further solvents, both with and without five equivalents of water as
additive, were investigated. Reactions in chlorinated solvents, such
as CH2Cl2 or CHCl3, furnished arylglycine 13a in 31%–82% yield
and low to modest enantioselectivities (e. r. ≤ 65:35, entries 8–11).
No significant effect of water was observed for these chlorinated
solvents. Ether-based solvents, such as THF, 2-Me-THF,MTBE or 1,
4-dioxane resulted in overall lower yields of 3%–36% and very low
enantioselectivities (entries 12–19). The addition of water had a
detrimental effect on the isolated yield in all four cases. Only the use
of anhydrous THF afforded the desired arylglycine in modest
enantioselectivity (entry 11). No product formation could be
observed in protic solvents, such as EtOH, MeOH or pure water
(entry 20). In toluene and acetonitrile, the desired arylglycine was
obtained in 61%–63% yield as a nearly racemic mixture (entries
21 and 23). Addition of water only resulted in decreased yields
without a significant effect on the stereochemical outcome (entries
22 and 24).

With these optimized conditions, we investigated the effect of
different (bis)oxazoline-type ligands. The rather unexpected
outcome is summarized in Table 2. Reactions with Box-ligands
L2-L5, containing either a different spacer between the oxazoline-
rings or residues with a different steric demand, afforded the
arylglycine product 13a in 7%–55% yield and almost racemic
form (entries 2–5). Similar stereoselectivities were obtained with
the pyridine-derived ligands L6 and L7 (entries six and 7).
Considering the common observation, that small changes in
ligand structure usually result in small changes in observed
yields/stereoselectivities (Ghosh, Mathivanan and Cappiello, 1998;

Desimoni, Faita and Jorgensen, 2006; Desimoni, Faita and
Jorgensen, 2011), the almost complete lack of stereoinduction for
all other screened ligands seems rather surprising. We assume, that
only ligand L1 displays the correct properties (bite-angle and steric
demand) for a successful enantioselective three-component
reaction.

Next, we investigated the influence of different palladium
precursors, catalyst loading and reaction temperature (Table 3).
Decreasing the amount of Pd (TFA)2 to 2.5 or even 1 mol%
furnished arylglycine 13a in approximately 50% yield with
decreasing levels of enantioselectivity (entries two and 3). On the
other hand, increasing the Pd (TFA)2 loading to 10 mol% afforded
the desired arylglycine with an increased enantiomeric ratio of 99: 1,
albeit with a consistent yield of 54% (entry 4). Alteration of reaction
temperature showed a significant effect on yield and
enantioselectivity (entries 5–7). A decreased temperature led to
increased enantioselectivity together with a decreased yield (entry
5). Increased reaction temperatures afforded the arylglycine product
in higher yield with significantly lower enantioselectivity (entries six
and 7). With PdCl2 as a precursor, arylglycine 13a was obtained in
62% yield as a racemate (e. r. = 50:50, entry 8). The use of Pd(OAc)2
resulted in a similar yield (57%) together with a good level of
stereoinduction (e. r. = 80:20, entry 9). These results indicate,
that the pre-coordination of the ligand to Lewis-acidic palladium
(II)-precursors might be crucial for the formation of an active
catalyst species (Fanourakis et al., 2020). Indeed, pre-stirring of
Pd (TFA)2 and L1 in MeNO2 for 30 min before adding all other
starting materials led to the desired product with increased yield and
enantioselectivity (entry 10). It is worth mentioning, that a slow
erosion of the enantiomeric excess can occur over time.Whereas, the

SCHEME 2
Racemic background reaction (A) and initial observations of the enantiomeric reaction (B).
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enantiomeric ratio decreased from 99:1 to 97:3 after a reaction time
of 40 h (entry 11), a significant drop to 87: 13 was observed after 72 h
(entry 12).

With these optimized conditions, we investigated the three-
component reaction of Pbf-sulfonamide 12 and glyoxylic acid
hydrate 3) with different arylboronic acids 2) (Scheme 2). The
reaction with para-tolyl boronic acid (14), para-fluorophenyl
boronic acid (15) and para-chlorophenyl boronic acid (16), three
arylboronic acids with similar electronic properties (Hansch, Leo
and Taft, 1991), afforded the desired arylgylcines 14a-16a in 61%–
74% yield and high enantioselectivities (e. r. 87:13–92:8). On the

other hand, the more electron-rich 4-methoxyphenylbornic acid
(17) furnished arylglycine 17a in 68% yield and a significantly lower
enantiomeric excess of 60:40. For transformations with arylboronic
acids bearing stronger electron-withdrawing groups, such as meta-
chlorophenyl boronic acid (18), the product 18a was obtained in a
lower yield of 47% yield and decreased enantioselectivity. Reaction
with the sterically hindered methyl- and chloro-ortho-substituted
arylboronic acids 19 and 20 delivered the desired a-arylglycines 19a
and 20a in low yields and enantioselectivities. Overall, the electronic
and steric properties of the employed boronic acid component
display a significant influence on the outcome of the reaction, in

TABLE 1 Initial experiments and solvent optimization.

Entry Deviations from optimized conditions Yield (%)[a] e.r

1 Predried Nitromethane 57 57:43

2 1.0 eq H2O 65 89:11

3 2.5 eq H2O 59 93:7

4 5.0 eq H2O 54 97:3

5 10.0 eq H2O 39 74:26

6 Glyoxylic acid sol. (50wt%; 6.6 eq H2O) 34 99:1

7 Triphenylboroxine instead of 13 34 64:36

8 DCM 79 56:44

9 DCM +5.0 eq H2O 82 61:39

10 Chloroform 31 65:35

11 Chloroform +5.0 eq H2O 55 61:39

12 THF 36 72:28

13 THF +5.0 eq H2O 17 53:47

14 2-Me-THF 15 52:48

15 2-Me-THF +5.0 eq H2O 3 51:49

16 MTBE 14 51:49

17 MTBE +5.0 eq H2O 9 55:45

18 1,4-Dioxane 32 52:48

19 1,4-Dioxane +5.0 eq H2O 17 52:48

20 MeOH/EtOH or H2O NR -

21 Acetonitrile 61 52:48

22 Toluene 63 54:46

23 Acetonitrile +5.0 eq H2O 22 53:47

24 Toluene +5.0 eq H2O 23 51:49

[a]Isolated yield of analytically pure product. DCM, dichlormethane; THF, tetrahydrofuran; MeOH, methanol; EtOH, ethanol; NR, no reaction.
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particular enantioselectivity. This is in stark contrast to our
previously reported catalyst-free and racemic transformation,
which performs equally well with various substitution patterns
(Diehl et al., 2018).

In order to evaluate the utility of the obtained Pbf-protected
products as building blocks for peptide synthesis, arylglycine 13a
was employed in the synthesis of a representative dipeptide.

Coupling of 13a with L-valine methyl ester hydrochloride with
HATU ((1-[Bis(dimethylamino) methylene]-1H-1,2,3-triazolo
[4,5-b]pyridinium 3-oxide hexafluorophosphate) (Stetsenko
et al., 2016) afforded the Pbf-protected dipeptide 22 in 90%
yield. Removal of the Pbf-group was achieved with TFA in the
presence of dimethyl sulfide, furnishing dipeptide 23 as the
corresponding TFA salt in 95% yield. Importantly, no

TABLE 2 Variation of (bis)oxazoline-type ligands.

Entry Deviations from optimized conditions Yield (%)[a] e.r

L1 54 97:3

L2 17 58:42

L3 26 56:44

L4 55 54:46

L5 8 57:43

L6 39 54:46

L7 36 56:44

[a] Isolated yield of analytically pure product.
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racemization was observed in the coupling or deprotection
step. The final dipeptide 23 could be obtained in a
diastereomeric ratio of 98:2 starting from an arylglycine batch
with an enantiomeric ratio of 98:2. The successful preparation of
the simple model dipeptide 23 model, showcases the utility of the
Pbf-protected arylglycines as building blocks for peptide
synthesis. Both, coupling of the protected building block and
subsequent removal of the Pbf-group, could be achieved with
standard procedures (El-Faham and Albericio, 2011; Stetsenko
et al., 2016). One could envision, that the used procedures could
be easily adapted to solid-phase peptide synthesis.

Finally, we also studied the incorporation of some selected
sulfonamide residues into our three-component process
(Scheme 5). Whereas the reaction with a simple sulfonamide,
such as para-toluene sulfonamide 25, furnished the expected
arylglycine product 25a in good yields and high
enantioselectivities, no product formation was observed with
the electron-poor para-nitrobenzene sulfonamide 26.
Interestingly, a racemic product 27a was obtained with the
sterically hindered sulfonamide 27. As the major focus of our
work was devoted to the synthesis of a suitably protected
arylglycine-building blocks for peptide synthesis, no further
sulfonamides were studied.

In the first step, a condensation of the sulfonamide and
glyoxylic acid to the corresponding imine 28 takes place.
From imine 28, the mechanism bifurcates into two different
pathways. In pathway A (uncatalyzed reaction) the boronic
acid coordinates to the free hydroxy functionality of the

glyoxylic acid, leading to the ate complex 29 (Candeias et al.,
2010; Candejas et al., 2010; Paul, Presset and Le Gall, 2017; Wu,
Givskov and Nielsen, 2019). Intramolecular transfer of the aryl
moiety from the activated ate species to the electrophilic
N-sulfonylimine leads to the addition product 30. Hydrolysis
of 30 affords to final a-arylgylcine 11.

In competing pathway B (palladium-catalyzed reaction), a
transmetallation from the boronic acid to the Lewis-acidic
Pd(II)-complex 32 takes place (Dai and Lu, 2007; Dai, Yang
and Lu, 2008; Ma, Zhang and Shi, 2009; Chen et al., 2012; Yang
and Zhang, 2013; Schrapel and Peters, 2015; He et al., 2016; Yan
et al., 2016; Wen et al., 2022). The stereoselective transfer of the
aryl group from the Pd-complex to the imine generates
intermediate 33. Product decomplexation from intermediate
33 leads to the a-arylgylcine product 10. In order to achieve a
high degree of enantioselectivity the complete catalytic cycle of
pathway B has to be significantly faster than the uncatalyzed
reaction (pathway A). Factors, which slow down any individual
step in the catalytic cycle should therefore lead to reduced
enantioselectivities.

With this in mind, we can provide reasonable explanations
for our experimental observations. Role of solvents: Whereas the
uncatalyzed reaction proceeds well in various different solvents
(Diehl et al., 2018), only nitromethane is a suitable solvent for
the palladium-catalyzed enantioselective transformation.
Nitromethane is known as the solvent of choice for the
stabilization of cationic species (Miyaura, 2002; Nishikata,
Yamamoto and Miyaura, 2003). We assume, that

TABLE 3 Reaction parameter optimizations.

Entry Deviations from optimized conditions Yield (%)[a] e.r

1 no variation 54 97:3

2 1.0 mol% Pd (TFA)2 52 54:46

3 2.5 mol% Pd (TFA)2 33 75:25

4 10.0 mol% Pd (TFA)2 54 99:1

5 23°C instead of 40°C 23 96:4

6 50°C 59 76:24

7 60°C 70 71:29

8 PdCl2 instead of Pd (TFA)2 62 50:50

9 Pd(OAc)2 instead of Pd (TFA)2 57 80:20

10 Pd (TFA)2 and L1 prestirred for 30 min 64 99:1

11 Pd (TFA)2 and L1 prestirred for 30 min; 40 h reaction time 63 97:3

12 Pd (TFA)2 and L1 prestirred for 30 min; 72 h reaction time 61 87:13

[a] Isolated yield of analytically pure product.
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nitromethane plays a crucial role in stabilizing the active
palladium catalyst 31, thereby facilitating the palladium-
catalyzed process. We have already observed a similar
beneficial effect of nitromethane in other palladium (II)-
catalyzed 1, 2-addition reactions (Carpino et al., 1993).
Water as additive: The product decomplexation step plays a
crucial (and often overlooked) role in palladium-catalyzed
addition reactions (Holder et al., 2013). Without this final
step, no regeneration of the active catalyst will take place.
We assume - that water plays a crucial role in the
decomplexation step. In the absence of water, the liberation
of the active catalyst is somewhat slow, thereby favoring the
uncatalyzed racemic background reaction. Ligands and
Palladium Precursors: As one can derive from Table 3, the
formation of a cationic palladium species 31 can be best
achieved by using Pd(II) precursors with labile ligands, such
as trifluoroacetate. A cationic Pd (II) center with a labile TFA
ligand is also ideally suited both for a rapid transmetallation and
efficient imine coordination step. The surprising observation
that only a single tested ligand (L1) leads to a significant
stereoinduction can be rationalized by a matching
combination of bite angel and steric bulk. Ligands with a
lower bight angle and/or more bulky residues will lead to a
sterically more encumbered Pd (II) center. This in turn should
lead both to a slower transmetalation step and more difficult
coordination of the imine to a Pd(II) complex of type 32.
Influence of the aryl boronic acid: It is well known, that
electron-rich (hetero) aryl boronic acids perform well in
traditional, uncatalyzed Petasis reactions (Candejas et al.,
2010; Paul, Presset and Le Gall, 2017; Wu, Givskov and
Nielsen, 2019). On the other hand, electron-deficient
arylboronic acids usually don’t react in the absence of a
catalyst or activating agent. This reactivity pattern can be
seen in the stereochemical outcome of reactions with
different aryl boronic acids (Scheme 3). The electron-rich
para-methoxybenzene boronic acid affords a-arylgylcine 17a
in almost racemic form, presumably due to a fast uncatalyzed
addition to the imine 28 via pathway A. Reactions with more or
less electron-neutral aryl boronic acids 14–16 proceed
efficiently via pathway B, furnishing the arylglycines 14a-16a
in 61%–74% yield and an enantiomeric ratio ≥88:12. On the
other hand, an electron-deficient aryl boronic acids 18 furnish
the desired product 18a in lower yield and partially decreased
enantioselectivity. We assume, that in these cases the
transmetallation step is slower, leading to a less efficient
catalytic cycle and a comparably fast (or slow) background
reaction. For the sterically hindered boronic acids, the
corresponding transmetallation step should be even slower,
resulting in an even less efficient catalytic cycle. The obtained
yields and enantioselectivities for the two arylglycines 19a and
20a align with our rationale. Lower yields with palladium-
catalysis: Compared to our initial, metal-free reaction (Diehl
et al., 2018) we observe significantly reduced yields (typically
20%–40% lower) of the desired arylgylcines in the presence of
the palladium-catalyst system. Close analysis of the reaction
mixtures revealed the formation of a significant amount of
protodeborylated products of type 34. Depending on the
reaction up to 80% (based on the amount of used boronic

acid) of the deborylated species 34 could be detected by GC
and GC/MS analysis. In addition, 1H-NMR analysis of the crude
reaction mixture showed only traces of boronic acid. In contrast,
no extensive deborylation was observed in the absence of a
palladium catalyst. Therefore, we assume, that in the presence of
a palladium catalyst a third non-productive pathway C, a
palladium-catalyzed protodeborylation via aryl palladium
species 32 is operative. This side reaction leads to a less
efficient process in terms of final isolated yields and can
result in an unproductive outcome in case both pathways A
and B are not favored. From Scheme 6, one can clearly delineate,
that achieving an overall efficient and highly enantioselective
three-component reaction requires careful adjustment of
several, competing factors.

Since the three-component reaction proceeds both in the
presence and the absence of the palladium catalyst and the
enantioselectivity is strongly influenced by various factors (ligand,
solvent, type of boronic acid or sulfonamide), one has to consider a
more complex mechanistic scenario (Scheme 6).

3 Material and methods

3.1 Experimental

Unless otherwise mentioned, all reactions were carried out
without any precautions to exclude ambient air or moisture.
Thin layer chromatography (TLC) was performed on precoated
aluminum sheets (TLC silica gel 60 F254). The spots were visualized
by ultraviolet light, iodine or cerium (IV) ammonium molybdate.
Flash column chromatography was performed using a puriflash XS
420 + Flash purifier machine from Interchim with prepacked flash
columns (puriFlash_Silica HP_15 µm_F0040, puriFlash PF C18HP
30 µm F0012) and the respectively solvent mixture. All yields refer to
the isolated yields of compounds estimated to be >95% pure as
determined by 1H NMR.

3.2 Materials

Unless noted, all starting material were purchased from different
commercial sources and used without further purification.
Sulfonamide 12 (Carpino et al., 1993) and ligand L1 (Denmark
et al., 1997) were synthesized according to known literature
procedures. Racemic products for chiral HPLC analysis were
prepared according to the same typical procedures reported for
the enantioselective 3-component reactions by utilizing the
corresponding sulfonamide (0.5 mmol), glyoxylic acid
(0.65 mmol) and arylboronic acids (1.0 mmol) in nitromethane
(2.0 ml) at 60°C for 24 h.

3.3 Absolute configuration

The absolute configuration of the a-arylglycines were
determined via crystal structure of compound 25a. The crystal
data are equivalent to the according literature (Duarte-Hernández
et al., 2015).
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3.4 Analytical data and instrumentation

NMR spectroscopy—Proton nuclear magnetic resonance
spectra (1H NMR) and carbon spectra (13C NMR) were
recorded at a frequency of 400 MHz (1H) and 101 MHz (13C),
respectively. Chemical shifts are expressed as parts of million
downfield shift on the d scale and are referenced to the solvent
peak (Chloroform-d1: d = 7.26 ppm for 1H, d = 77.16 ppm for 13C;
DMSO-d6: d = 2.50 ppm for 1H, d = 39.52 ppm for 13C). 19F NMR
spectra were recorded proton decoupled at a frequency of
282 MHz. Chemical shifts are quoted in parts per million and
are not referenced. Coupling constants J) are quoted in Hz and
the observed signal multiplicities are reported as follows: s =
singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Mass
spectrometry—Mass spectra (MS) were measured using ESI
(electrospray ionization) techniques. High resolution mass

spectra (HRMS) were acquired on a Waters GCT Premium
using electron ionization mass spectroscopy (EI-MS-TOF).
Infrared spectroscopy—Infrared spectra (IR) were recorded on
a FT-IR (Fourier transform infrared spectroscopy) spectrometer
including a diamond universal ATR sampling technique
(attenuated total reflectance) from 4,000–400 cm−1. The
absorption bands were reported in wave numbers (cm−1).
Optical rotations—Rotation values α) were measured using
with an analog type 243B polarimeter from PerkinElmer,
equipped with a sodium lamp source (589 nm), at 20°C in
10 cm cell and the indicated solvent. The specific rotation
values are reported as [α]λT (mass concentration c) in
g*100 ml−1, solvent) and are quoted in deg*mL*dm−1*g−1.
Analytical chiral HPLC–Enantiomeric ratios (e. r.) and
accordingly enantiomeric excesses (e. e.) were determined by
normal phase high performance liquid chromatographic (HPLC)

SCHEME 3
Substrate scope arylboronic acids.

SCHEME 4
Synthesis of Model dipeptide 23.
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analysis with a Hewlett Packard™ system (G1322 A degasser,
G1311 quadruple pump, G1316 A diode array detector with
visualization at 254 nm) and the use of a Chiralpak® IA,
Chiralcel® OD-H or OJ-H as chiral column (4.6 mm × 25 cm)
obtained from Daicel Chemical Industries, Ltd. Elution
conditions for specific compounds are reported in the SI.
Melting points—Melting points are uncorrected.

3.5 General procedures (GP)

GP1 (Initial experiments)—A 10 ml screw cap glass vial was
charged with a magnetic stirring bar, sulfonamide 12
(0.50 mmol, 1.0 equiv), glyoxylic acid (0.65 mmol,
1.3 equiv), phenylboronic acid (1.00 mmol, 2.0 equiv), Pd
(TFA)2 (25 μmol, 0.05 equiv), S,S′-iPrBox L1 (37.5 µmol,
0.075 equiv) and nitromethane (0.25 M referring to
sulfonamide, 2 ml) as solvent. Then the vial was closed with
a Teflon lined screw cap and the resulting reaction mixture was
stirred at 40°C for 16 h. After cooling to room temperature, the
reaction mixture was diluted with acetone and filtered through a
short plug of celite and silica gel. The filter pad was rinsed with
additional acetone and the combined filtrates were
concentrated under reduced pressure. Purification of the
crude residue by flash column chromatography afforded the
analytically pure product.

GP2 (Ligand variation)—A 10 ml screw cap glass vial was
charged with a magnetic stirring bar, sulfonamide 12
(0.50 mmol, 1.0 equiv), glyoxylic acid (0.65 mmol, 1.3 equiv),
phenylboronic acid (1.00 mmol, 2.0 equiv), Pd (TFA)2 (25 μmol,
0.05 equiv), ligand (37.5 µmol, 0.075 equiv) and nitromethane
(0.25 M referring to sulfonamide, 2 ml) as solvent. Then the vial
was closed with a Teflon lined screw cap and the resulting reaction
mixture was stirred at 40°C for 16 h. After cooling to room
temperature, the reaction mixture was diluted with acetone and
filtered through a short plug of celite and silica gel. The filter pad was
rinsed with additional acetone and the combined filtrates were
concentrated under reduced pressure. Purification of the crude

residue by flash column chromatography afforded the analytically
pure product.

GP3 (Parameter optimization)—A 10 ml screw cap glass vial
was charged with a magnetic stirring bar, sulfonamide 12
(0.50 mmol, 1.0 equiv), glyoxylic acid (0.65 mmol, 1.3 equiv),
phenylboronic acid (1.00 mmol, 2.0 equiv), Pd (TFA)2 (25 μmol,
0.05 equiv), ligand (37.5 µmol, 0.075 equiv) and nitromethane
(0.25 M referring to sulfonamide, 2 ml) as solvent. Then the vial
was closed with a Teflon lined screw cap and the resulting reaction
mixture was stirred at 40°C for 16 h. After cooling to room
temperature, the reaction mixture was diluted with acetone and
filtered through a short plug of celite and silica gel. The filter pad was
rinsed with additional acetone and the combined filtrates were
concentrated under reduced pressure. Purification of the crude
residue by flash column chromatography afforded the analytically
pure product.

GP4 (Boronic acid variation)—A 10 ml screw cap glass vial was
charged with a magnetic stirring bar, Pd (TFA)2 (50 μmol,
0.1 equiv), L1 (75 μmol, 0.15 equiv) and nitromethane (1 ml) as
solvent. After 30 min at 40°C the sulfonamide 12 (0.50 mmol,
1.0 equiv), glyoxylic acid (0.65 mmol, 1.3 equiv), arylboronic acid
(1.00 mmol, 2.0 equiv) were added and the inner wall was rinsed
with 1 ml nitromethane. Then the vial was closed with a Teflon lined
screw cap and the resulting reaction mixture was stirred at 40°C for
16 h. After cooling to room temperature, the reaction mixture was
diluted with acetone and filtered through a short plug of celite and
silica gel. The filter pad was rinsed with additional acetone and the
combined filtrates were concentrated under reduced pressure.
Purification of the crude residue by flash column
chromatography afforded the analytically pure product.

GP5 (Peptide-coupling)—A 50 ml round flask was charged
with a magnetic stirring bar, 13a (1.0 equiv, 0.48 mmol,
200.0 mg), HOAt (1.2 equiv, 0.58 mmol, 78.0 mg), HATU
(1.2 equiv, 0.58 mmol, 222.0 mg) and dichlormethane (5 ml)
and stirred at room temperature for 10 min. A mixture of
L-valine methyl ester hydrochloride (1.0 eq, 0.48 mmol,
96.0 mg) and DIPEA (1.1 equiv, 0.48 mmol, 0.1 ml) in
dichlormethane (5 ml) were added and the reaction mixture

SCHEME 5
Reactions with selected sulfonamides.
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was stirred for 4 h at room temperature. The resulting reaction
mixture was washed with saturated NaCl solution (2 × 10 ml).
The organic phase was dried over Na2SO4 and concentrated
under reduced pressure. Purification of the crude residue by
flash column chromatography afforded the analytically pure
product.

GP6 (Deprotecting of Pbf-group)—The N-Pbf-group was
removed by a method according to known literature.1 The N-
Pbf-protected a-arylglycine-derivative (1.0 eq) was added to a
suitable round flask and a solution of TFA (69 equiv, 23.4 mmol,
1.8 ml) and DMS (8.0 equiv, 2.7 mmol, 0.2 ml).

GP7 (Sulfonamide variation)—A 10 ml screw cap glass vial was
charged with a magnetic stirring bar, Pd (TFA)2 (16.6 mg, 50 μmol,

0.1 equiv), L1 (16.8 mg, 75 μmol, 0.15 equiv) and nitromethane
(1 ml) as solvent. After 30 min at 40°C the sulfonamide (0.50 mmol,
1.0 equiv), glyoxylic acid (59.8 mg, 0.65 mmol, 1.3 equiv),
phenylboronic acid (121.9 mg, 1.00 mmol, 2.0 equiv) were added
and the inner wall was rinsed with 1 ml nitromethane. Then the vial
was closed with a Teflon lined screw cap and the resulting reaction
mixture was stirred at 40°C for 16 h. After cooling to room
temperature, the reaction mixture was diluted with acetone and
filtered through a short plug of celite and silica gel. The filter pad was
rinsed with additional acetone and the combined filtrates were
concentrated under reduced pressure. Purification of the crude
residue by flash column chromatography afforded the analytically
pure product.

SCHEME 6
Mechanistic considerations.
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4 Conclusion

In conclusion, we have described a novel, palladium-
catalyzed enantioselective three-component reaction of aryl
boronic acids, sulfonamides and glyoxylic acid. This method
provides access to a-arylglycines in moderate to good yields
and enantioselectivities. The formed Pbf-protected products
can be directly utilized as building blocks for the synthesis of
arylglycine-containing peptides. Although the scope of this
process is still limited, our tailored catalyst system allows an
enantioselective preparation of different a-arylglycines despite a
fast racemic background reaction. Detailed mechanistic
considerations reveal a complex mechanistic scenario with
several competing pathways. Currently, a more thorough study
of the reaction mechanism(s) is underway in our laboratory. The
more detailed mechanistic insight will be used to develop a more
general version of the herein-reported three-component
reaction. Jiang and Schaus, 2017.
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