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This paper focuses on determining the authenticity and identifying the species of
Fritillariae cirrhosae using electronic nose, electronic tongue, and electronic eye
sensors, near infrared andmid-level data fusion. 80 batches of Fritillariae cirrhosae
and its counterfeits (including several batches of Fritillaria unibracteata Hsiao et
K.C. Hsia, Fritillaria przewalskii Maxim, Fritillaria delavayi Franch and Fritillaria
ussuriensis Maxim) were initially identified by Chinese medicine specialists and
by criteria in the 2020 edition of Chinese Pharmacopoeia. After obtaining the
information from several sensors we constructed single-source PLS-DA models
for authenticity identification and single-source PCA-DA models for species
identification. We selected variables of interest by VIP value and Wilk’s lambda
value, and we subsequently constructed the three-source fusion model of
intelligent senses and the four-source fusion model of intelligent senses and
near-infrared spectroscopy. We then explained and analyzed the four-source
fusion models based on the sensitive substances detected by key sensors. The
accuracies of single-source authenticity PLS-DA identification models based on
electronic nose, electronic eye, electronic tongue sensors and near-infrared were
respectively 96.25%, 91.25%, 97.50% and 97.50%. The accuracies of single-source
PCA-DA species identification models were respectively 85%, 71.25%, 97.50% and
97.50%. After three-source data fusion, the accuracy of the authenticity
identification of the PLS-DA identification model was 97.50% and the accuracy
of the species identification of the PCA-DAmodel was 95%. After four-source data
fusion, the accuracy of the authenticity of the PLS-DA identification model was
98.75% and the accuracy of the species identification of the PCA-DA model was
97.50%. In terms of authenticity identification, four-source data fusion can
improve the performance of the model, while for the identification of the
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species the four-source data fusion failed to optimize the performance of the
model. We conclude that electronic nose, electronic tongue, electronic eye data
and near-infrared spectroscopy combined with data fusion and chemometrics
methods can identify the authenticity and determine the species of Fritillariae
cirrhosae. Our model explanation and analysis can help other researchers identify
key quality factors for sample identification. This study aims to provide a reference
method for the quality evaluation of Chinese herbs.

KEYWORDS

Fritillariae cirrhosae, data fusion, electronic nose, electronic eye, Electronic tongue, near
infrared spectroscopy, authenticity, species

1 Introduction

Fritillariae cirrhosae is an herb used both in traditional Chinese
medicine and as food. Fritillaria cirrhosae is used in the treatment of
cough, it eliminates phlegm, relieves asthma, reduces blood pressure,
has analgesic effects, prevents ulcers, and has antibacterial and anti-
inflammatory properties (Zhong et al., 2019; Chen et al., 2020). The
sources of Fritillariae cirrhosae recorded in the 2020 edition of
Chinese Pharmacopoeia include Fritillariae cirrhosae, Fritillaria
unibracteata, Fritillaria przewalskii, Fritillaria delavayi, Fritillaria
taipaiensis, Fritillaria unibracteata. These are named songbei,
qingbei, lubei, etc., based on different characteristics. The
Fritillaria genus includes other related plants such as Fritillaria
thunbergii, and Fritillaria ussuriensis. Because of the scarcity of
Fritillariae Cirrhosae and the difficulties in cultivating it, it is
common to find other plants sold as Fritillaria cirrhosae
especially the cheap and easy to obtain Fritillaria ussuriensis. The
presence of the market of plants sold as Fritillariae Cirrhosae would
weaken the safety, efficacy and stability of clinical application of
Fritillariae Cirrhosae decoctions. Therefore, efficient, rapid and
sensitive authenticity and species identification technology is of
great significance to ensure the quality of Fritillariae Cirrhosae
decoction pieces (Xin et al., 2014; Hua et al., 2021).

Chinese herb medicines are traditionally identified by
integrating a variety of human senses to determine their quality.
This method is fast but subjective and difficult to quantify. The
development of modern analytical techniques, chemical and
biological detection techniques such as chromatography,
spectroscopy, and molecular biology has played a key role in the
identification and quality evaluation of TCM decoction pieces
(Moon et al., 2018; Qi et al., 2018; Pu et al., 2019; Zhang Y.
et al., 2021). Detection methods based on modern analytical
techniques such as chromatographic methods have high accuracy,
but the sample pretreatment is complex, time-consuming and costly.
Artificial intelligence sensory technology can imitate human sensory
systems, quantifying information and providing fast and accurate
comprehensive information on the samples. Such methods are
widely used in the detection and analysis of drugs and food
(Buratti et al., 2018; Orlandi et al., 2019; Xu et al., 2019; Zhang
X. et al., 2021).

Data fusion strategy consists in merging complementary
information to obtain more data points; this strategy has been
gradually applied to trace the origin of Chinese medicine (Shen
et al., 2019; Wang et al., 2019; Jing et al., 2022), identify its quality
(Ying et al., 2017; Dai et al., 2018; Sun et al., 2020) and analyze

pharmaceutical processes (Wang et al., 2021; Zhang et al., 2022).
Data fusion includes low, medium and high-level fusion. In low-
level data fusion, the original data are directly combined into a new
matrix. In mid-level data fusion, features are firstly extracted from
the original data and then features are fused. It is worth noting that
the removal of redundant information can improve the efficiency of
the algorithm. In high-level data fusion, single data sources are firstly
identified and chosen, and the final result is obtained based on the
recognition results of each data source (Borràs et al., 2015). The
flowchart of data fusion in this article is shown in Supplementary
Data Sheet 1. The compositions of traditional Chinese medicine
decoction pieces are complex, and the data measured by a single
technology are not sufficient to accurately determine the
authenticity and identify the species of the samples. Similar to
what humans do, data fusion strategies can complement different
sensory information to improve the identification accuracy.
Previous studies have found that data fusion of observations
made by artificial intelligence senses, such as electronic noses,
electronic tongues and electronic eyes, can be successfully used to
differentiate the two botanical origins of Magnolia Officinalis Cortex
(Jing et al., 2022), evaluate the quality of Xiaochaihu granules
(Zhang X. et al., 2021), identify products made with Curcuma
(Lan et al., 2020), and identify and classify medicinal materials
based on their smell and taste (Lan et al., 2020; Jing et al., 2022).

Principal Component Analysis-Discriminant Analysis (PCA-
DA) and Partial Least Squares-Discriminant Analysis (PLS-DA)
are two methods based respectively on principal component
regression and partial least squares regression. The PCA-DA
algorithm applies discriminant analysis (DA) based on principal
component analysis (PCA), using the principle of principal
component analysis to further compress high-dimensional data
by maximizing the ratio of within-class variance and minimizing
the ratio of between-class variance, thus exploring the combination
of variables that can explain the main trends of the dataset (Chua
et al., 2011; Wong et al., 2014). PCA-DA can simplify overlapping
sample information in multi-dimensional data, and is more suitable
for multi-class classification. PLS-DA can reduce the dimension of
original data and simplify sample information. The mechanism of
this technique is to search for linear combinations of the original
variables (latent variables) that display maximum covariance with
the Y-variables (classes) for classification prediction (Borraz-
Martínez et al., 2019). A discriminator, or threshold is created to
separate the different classes. The classification model is established
by using known categories as a training set and then is used to
predict the unknown samples. PLS-DA can determine whether the
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samples belong to a predefined category (Ballabio and Consonni,
2013; Yao et al., 2018; Borraz-Martínez et al., 2019). PLS-DA is
generally used to deal with binary classification problems, but the
PLS algorithm can deal with multi-column dependent variable Y, so
PLS-DA can be used for multi-class classification in some cases.

In this study, we used a mid-level data fusion strategy to verify
the authenticity and determine the species of Fritillariae Cirrhosae.
Firstly, we analyzed the NIR spectra and the sample responses of
electronic nose, electronic tongue and electronic eye. Based on four
kinds of single source data (electronic nose, electronic eye electronic
tongue and NIR), we then constructed PLS-DAmodels to determine
the authenticity of the samples, and PCA-DA models to identify the
species of the samples. Secondly, we selected the original variables
(electronic sensors) respectively based on Variable Importance in
Projection (VIP) and wilk‘s lambda value, and the NIR characteristic
spectral bands based on Competitive Adaptive Reweighted Sampling
(CARS). And the selected variables from three intelligent sensors
were fused for three-source data fusion, the selected variables from
four kinds of single source data were fused for four-source data
fusion. Finally, based on the fusion variables data matrix, we verified
the authenticity and identified the species of the samples. Also, we
determined the optimal model based on the accuracies of models
and analyzed it in combination with the sensor response signals.
This study aims to provide a reference for the quality evaluation of
Fritillariae Cirrhosae and other traditional Chinese medicine
decoction pieces.

2 Materials and methods

2.1 Samples

80 batches (20 of Fritillaria unibracteata (FU), 20 of Fritillaria
przewalskii (FP), 20 of Fritillaria delavayi (FD), and 20 of Fritillaria
ussuriensis (FUS)) were collected from either the Zhengzhou
traditional Chinese medicine hospital, the Zhengzhou Chinese
medicine market, the first affiliated hospital of Henan University
of Chinese medicine or the Bozhou Chinese medicine market. Each
batch consisted of 100 g of material. Samples plot is shown in
Figure 1.

2.2 Sample identification

2.2.1 Human experience: Specialist identification
Experts with a wealth of experience in identifying TCM

decoction pieces (over 15 years work experience in the
production, processing and preparation of TCM decoctions),
affiliated with different organizations (universities, industries,
hospitals, etc.), and with different backgrounds (covering the
cultivation, processing, circulation and use of TCM decoction
pieces), were invited to identify the samples. A total of 8 experts
from the Henan province identified the samples.

2.2.2 Physicochemical identification based on
pharmacopoeia

The samples were identified based on their appearance, by
microscopic identification, thin-layer chromatography (TLC),

moisture content, ash content and other detection methods as
described in the Fritillariae Cirrhosae section in the 2020 edition
of Chinese Pharmacopoeia.

2.3 Electronic sensory signal acquisition and
preprocessing

2.3.1 Electronic nose
Olfactory information collection was acquired by ten types of

metal oxide sensors (W1C, W5S, W3C, W6S, W5C, W1S, W1W,
W2S, W2W, and W3S) from German PEN3 electronic nose
(PEN3 portable electronic nose by the German AIRSENSE
company). 2 g powder were taken from samples 1 to 80 and
3 replicates per sample, marked as A-1, A-2, A-3. Based on our
pre-experimental results, the samples were tested after 15 min. The
experiment was carried out at 20°C and 60% humidity. The sampling
conditions were the following: sampling time (the time the sample
was exposed to the sensors), 120 s; cleaning time, 100 s; sampling
interval, 1 s; air intaking flow rate, 150 mL·s-1. An olfactory
information matrix X1 (80 × 10) was obtained, and the data was
used to establish the model.

2.3.2 Electronic eye
The IRIS VA400 electronic eye (France Alpha MOS company)

was used to collect visual information on the samples. An area of
about 8 × 8 cm2 was randomly selected from each sample and placed
on watch glass. Top lighting conditions were selected based on pre-
experimental results, and a 24-color color correction plate was used
for color correction. A 5 mm aperture was used and the upper and
lower backlights were simultaneously turned on to eliminate the
background. Images from each sample were collected three times
after changing the position of the samples. A visual information
matrix X2 (80 × 65) was obtained by 65 sensors, and the data was
used to establish the model.

2.3.3 Electronic tongue
Taste information was collected using the TS-5000Z Insent

electronic tongue (Ensoul Technology LTD.). The C00, AN0,
BT0 and AE1 sensors were used. The principle of the electronic
nose is to use sample gas to interact with the sensor to change the
conductivity of the active material of the sensor, thus generating the
response value. 5 g of each sample were weighed and crushed in an
electric homogenizer for 15 s. The sample powder was then placed in
100 mL of artificial saliva to be ultrasonically processed. The samples
were subsequently filtered, sterilized and poured into a special cup to
be tested by the electronic tongue. The electronic tongue sensor was
cleaned in a cleaning solution for 90 s, in a reference solution for
120 s, and in a different reference solution for 120 s. The sensor
started to collect sample information after the response value
stabilized at 0 for 30s. The acquisition time of the beforetaste
value of each sample was 30 s, the sensors were then cleaned for
3 s in the two reference solutions. Finally, the sensors were inserted
into the new reference solution to collect data for 30 s and the
aftertaste value was exported. This cycle was repeated four times,
data from the first cycle was removed, and the average data of the last
three cycles was calculated. Liquid used for cleaning, balancing and
aftertaste-testing were placed in different sample cups. A six sensor
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taste information matrix X3 (80 × 6) was obtained and the original
data were used to establish the model.

2.3.4 NIR spectra acquisition and spectra selection
(1) NIR spectra acquisition: NIR spectra were acquired by the

Nicolet6700 Fourier transform near-infrared spectrometer
(InGaAs detector). Sampling mode was set to diffuse
reflection. The samples were dried in an oven at 60°C for 6 h
and then crushed and sieved with the No.4 Pharmacopoeia sieve
(250 ± 9.9 μm). The parameters of the NIR spectrometer were
the following: reference: air; temperature: 25°C ± 2°C; relative
humidity: 50 %–60%; resolution: 8cm-1; number of scans: 64;
scanning range: 12,000 cm-1-4,000 cm-1; number of gratings:
9–11. Each sample was placed in a quartz sample pool and
scanned three times. The spectrum information was collected at
room temperature by the opus spectrum acquisition software
(Bruker company) and the average spectra were calculated. A
NIR spectral information matrix X4 (80 × 2075) was obtained.

(2) Spectra selection: The Competitive Adaptive Reweighted
Sampling (CARS) method was used to eliminate redundant
information in the NIR spectra and to select the characteristic
spectra related to the structure of the tested compounds. CARS
uses Monte Carlo sampling to establish a Partial Least Squares
(PLS) model and simulates the principle of survival of the fittest
to eliminate variables by exponential decay function, so that the
wavelength variables with smaller absolute values of regression
coefficients in the PLS model are removed and the wavelength
points with larger weights are screened out through adaptive
reweighted sampling technology. An optimal variable
wavelength subset was selected based on Root Mean Squares
Error of Cross-Validation (RMSECV) of the PLS model (Li
et al., 2009; Wang et al., 2017). When using CARS, the number
of iterations of Monte Carlo was set to 100, and the pretreatment
method of NIR spectra data was “mean centering”.

2.4 Construction of authenticity and species
identification model based on single source
data

PLS-DA was used to establish the authenticity identification
models of Fritillariae cirrhosae based on data from electronic nose,
electronic tongue, electronic eye, and NIR spectra. The performance
of the four models based on each type of sensor was evaluated with
leave-one-out cross-validation. Because PLS-DA has unclassified
cases in multi-classification (Rui-xin et al., 2020; Wen-hao and Shi,
2021), PCA-DA was then chosen to establish the species
identification models of Fritillariae cirrhosae based on electronic
nose, electronic tongue, electronic eye and NIR spectra. The
performance of the models was evaluated by the model’s
accuracy (the ratio of the number of correctly classified samples
to the total number of samples) after leave-one-out cross-validation.

2.5 Variable selection

Variable Importance in Projection (VIP) of each sensor in the
authenticity identification model was obtained with the PLS-DA

algorithm. VIP can explain the contribution extent of independent
variables to dependent variables. The larger the VIP is, the greater
the contribution of independent variables compared to dependent
variables is. VIP >1 indicates a significant contribution of
independent variables to dependent variables. In the
identification of authenticity, the original variables with VIP
greater than 1 were selected from electronic nose, electronic
tongue and electronic eye. Wilk’s lambda value represented the
ratio of within-group variation to between-group variation in the
training set (Huan-ran et al., 2019). The smaller one variable’s wilk’s
lambda value is, the stronger the discriminant ability of this variable
is. In species identification, by gradually eliminating the variables
with the largest Wilk‘s lambda value in the PCA-DA model, we
selected characteristic variables from electronic nose, electronic
tongue and electronic eye sensors according to the change of
model’s accuracy after removal of different variables. Key
wavelengths selected by CARS were used as NIR characteristic
variables.

2.6 Construction of authenticity and species
identification model based on fusion data

Based on the sample identification results, we constructed an
authenticity PLS-DA model and a species PCA-DA model using the
fusion of three-source intelligent sensors and three-source
intelligent sensors and NIR (based on the variables selected in
2.5). The performance of the model was evaluated considering
the accuracy of the model after leave-one-out cross validation.

2.7 Model explanation and analysis

Based on the VIP and Wilk’s lambda value of the optimal
discriminant model, we identified the sensors that most
contributed to the classification. We analyzed the characteristic
component and key quality factors affecting the authenticity and
species identification of Fritillariae cirrhosae.

3. Results and discussion

3.1 Sample identification

The results of the specialist identification are shown in
Supplementary Table S1. When the identification results of
8 specialists are inconsistent, we determined the final specialist
identification result of each sample by judging that the number
of specialists was whether larger than or equal to 3/4 of the total
specialists or not.

The identification results of Fritillariae cirrhosae based on the
2020 edition of Chinese Pharmacopoeia were the following.

• Appearance characteristics: S23, S24, S43 and S61-S80 did not
meet the requirements;

• Microscopic identification: S71, S74 and S78 did not contain
spiral vessel, while all other samples met the requirements of
the pharmacopeia to be identified as F. cirrhosae;
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• Thin-Layer Chromatography identification: S23 and S24 did
not contain peiminine and therefore were not identified as F.
cirrhosae, while TLC of S61-S80 showed the same color spots
corresponding to the reference medicinal materials of
Fritillariae cirrhosae;

• The results of moisture and ash content for all 80 samples were
in line with the requirements of the pharmacopeia for the
identification of F. cirrhosae.

After combining the identification results of the specialist
identification and the test results based on the 2020 edition of
the Chinese Pharmacopoeia, (if the results of artificial experience
identification and the pharmacopeia test were in disagreement, we
carried out a retest to avoid identification errors), the final results of
our identification were: S1-S20, FU; S21-S22, S25-S40, FP; S41-S42,
S44-S60, FD; S23, S24, S43, S61-S80, FUS.

3.2 Signal response of electronic senses

Based on the response of the electronic sensors, it can be seen that in
the electronic nose test (Figure 2A)most samples had the largest response
value on W1W sensor, followed by W1S and W2W, while sample
S69 had the largest response value for theW1W,W2WandW5S sensors.
All samples had small response values on the W5C, W3C and W1C
sensors, which are sensitive to aromatic compounds. In the electronic
tongue test (Figure 2B), samples had the largest response value at the
B-bitterness2 sensor, which is related to the alkaloid components
contained in the samples. The NIR spectra (Figure 2C) showed that
the samples had more abundant information at wavelengths
4,000–7,000 cm-1. In the electronic eye test (Figure 2D), the samples
had the largest response at color number values of 4,095, 4,093, 4,094,
4,092 and 4,075, which are related to white surfaces characteristics of
Fritillariae cirrhosae and Fritillaria taipaiensis.

3.3 Selection of NIR spectra

The full NIR spectra data for the 80 samples were selected by
CARS. After 81 iterations, the Root Mean Square Error of Cross-

Validation (RMSECV) of the PLS model was the smallest. Eight key
wavelengths were eventually selected. The number of wavelengths
decreased significantly from 2075 to 8. The eight key wavelengths of
the NIR spectra were 4,188 cm-1, 5,102 cm-1, 5,970 cm-1, 6,900 cm-1,
9,754 cm-1, 10,884 cm-1, 11,254 cm-1, and 11,678 cm-1.

As shown in Figure 3A, there were two operation stages of
CARS: fast selection (sampling times 0–30) and refined selection
(sampling times 30–80). In the fast selection stage, the exponentially
decreasing function filters out the wavenumbers with little or no
information, thus effectively simplifying the spectral data (Li et al.,
2009; Ma Hui et al., 2021).

As shown in Figure 3B, the RMSECV remains unchanged in the
rapid selection stage, while in the initial stage of refined selection it
changes from the maximum to the minimum due to the removal of
key variables during the iteration process. As shown in L1 and L2 of
Figure 3, when the variables marked L1 were filtered and removed,
the regression coefficient of one variable was also immediately
reduced to 0 under this sampling number, indicating CARS
removed variables that played a key role in the PLS model as
part of the sampling operation, so that there was a sharp decline
in model’s stability. This phenomenon can also be seen in L2.
Therefore, the variables selected by CARS are called “key variables”.

3.4 Authenticity identification

3.4.1 Electronic nose
PLS-DA was used to establish a qualitative identification model

to identify 60 batches of Fritillariae cirrhosae and 20 batches of
Fritillaria taipaiensis based on data collected by electronic nose. Five
latent variables, which explain 96.4% of the total variation in the X
data among the samples, can be used to establish a PLS-DA model.
As shown in Figure 4A, the two types of samples displayed obvious
cluster characteristics, while sample S69 was significantly far from all
other counterfeit samples. The electronic nose test was then repeated
and its results showed a considerable difference in three-times
sensory data for S69, this may have been the result of differences
in the decoction due to its complex sources.

Near the separation line, under the first two latent variables,
S24 and S43 were misclassified as authentic FC, this can be explained

FIGURE 1
Samples plot: sample15, FU (A); sample38, FP (B); sample50, FD (C); sample73, FUS (D).
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from the results of previous human experience of specialist
identification and the pharmacopeia detection: in the
identification and detection results of S24, four experts had
identified it as counterfeit, one expert identified it as authentic,
and three other experts failed to identify it. And the results of TLC
and appearance test from the pharmacopeia both showed that
S24 could not be identified.

In the identification and detection results of S43, three experts
had identified it as authentic and five experts had failed to identify it.

The pharmacopeia detection results showed that S43 was
counterfeit. S21, S22 and S40 of FP were identified as
counterfeits, so it was speculated that the misclassified samples
were caused by differences in geographical sources. The accuracy
of this model was 96.25%, and the sensitivity (Se), specificity (Sp)
after cross-validation were 0.9825 and 0.8696. These parameters
indicate that the electronic nose can identify both FC and FUS.

3.4.2 Electronic tongue
The first three latent variables were used to establish a better

PLS-DA qualitative analysis model, which could explain 82.55% of
the total variation in the samples. The distribution of counterfeit
samples was relatively scattered, indicating that the counterfeits have
larger internal differences in terms of intelligent taste information.
As shown in Figure 4B, using the first two latent variables S24 was
misclassified as again, and so were S79 and S80, while S1, S2, S4 and
S45 were misclassified as counterfeits. In the specialist identification
of S79, only three experts had identified it as FUS, suggesting it
was a difficult sample to identify. S1, S2 and S4 were in line with
regulations in the pharmacopeia of FC and the detection
indexes of S80 were in accordance with the standards of
FUS, while these samples were still mis-classified under the
first two latent variables. We speculated that the internal
material of the samples had changed because of variations in
the environmental temperature and humidity during storage
and transportation. The appearance detection of S45 from the
pharmacopeia identification did not meet the requirements, and
the TLC results were not obviously colored. We speculated that
these differences caused its misclassification. The accuracy of
the PLS-DA model established by the electronic tongue sensors
was 91.25%, and Se and Sp after cross-validation were
0.9649 and 0.7826. These parameters indicate that the model
performance needs to improve to be able to use electronic
tongue sensors to identify FC and FUS.

3.4.3 Electronic eye
After leave-one-out cross-validation, the qualitative analysis

model established by the first three latent variables had the best
performance. The first three latent variables could explain 74.63% of
the total sample variation. From Figure 4C, the cluster
characteristics of authentic and counterfeit samples are not
obvious. Samples S4, S45, S43 and S79 were misclassified as in
the previous tests, indicating that the response value of these samples
was significantly different from other samples. Although there were
somemis-classified samples using the first two latent variables, when
the number of latent variables in the model is three, the accuracy of
the model reaches 97.50%, and the model parameters Se and Sp are
1,0.8696 and 0.9750. These parameters indicate that the electronic
eye can identify the two types of samples.

3.4.4 NIR spectra
When the first six latent variables were selected for modeling, the

model performance was the best. The first six latent variables can
explain 99.80% of the total variation among the samples. From
Figure 4D it can be seen that the cluster characteristics of counterfeit
samples were not obvious. In addition to the samples that have been
misclassified, S23, S25 and S61 were also misclassified under the first
two latent variables.

FIGURE 2
response values (A) electronic nose, (B) electronic tongue, (C)
NIR spectra, (D) electronic eye.
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Two experts had identified S23 as counterfeit, one expert
had identified it as authentic and five experts had failed to
identify it, while the results of the extract test from the
pharmacopeia and appearance detection showed that S23 was
unqualified. The pharmacopeia detection indexes of S25 and
S61 were in line with the regulations respectively of FC and FUS.
The overall classification results of the model were determined
by the six latent variables. The accuracy of this model was
97.50%. Se and Sp were 1 and 0.8696. These parameters indicate
that the full spectra, combined with the PLS-DA algorithm, can
accurately identify the samples.

3.4.5 Variable selection of authenticity
identification model

Original variables with VIP >1 in the four single-source PLS-DA
models are shown in Table 1.

3.4.6 Three-source data fusion
The original variables (sensors) with VIP >1 in each single-

source intelligent sensory data model were fused to explore and
analyze the discriminant ability of the fused data in identifying the
samples. When the first four latent variables were selected for
modeling, the model performance was the best: the first four

FIGURE 3
The changing trend of the ratio of retained variables (A), 10-fold RMSECV values (B) and regression coefficients of each variable (C) with the
increasing of sampling runs.
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latent variables explain 80.84% of the total variation among the
samples. As in Figure 5A, the cluster characteristics of two
types are more obvious than those in single-source data
analysis, and only S4 was misclassified as FUS on the first
two latent variables. The rate of correct results of the model
after three-source fusion was 97.50%. Although the accuracy is
the same as using the electronic eye sensor or NIR alone, the
accuracy is greater than using the electronic tongue or the
electronic nose alone. The classification results on the first two
latent variables were also better than that when using single-

source electronic sensory data alone. The model parameters, Se
and Sp, were 1 and 0.9130.

These results show that data fusion can obtain multi-
dimensional information of samples, and the fusion of original
variables will contribute to sample classification.

3.4.7 Four-source data fusion
The sample information obtained by the fusion data is richer,

and the model’s classification performance is improved. We
therefore explored the result of the fusion of NIR feature spectra

FIGURE 4
Scores Plot of Single-Source PLS-DA authenticity and counterfeit identification model based on (A) electronic nose, (B) electronic tongue, (C)
electronic eye and (D) NIR spectra.

TABLE 1 Original variables with VIP >1.

Data Source Original Variables

electronic nose W1C, W3C, W5C, W1S, W2S

electronic tongue Aftertaste-A, H-bitterness,Bitterness, Astringency

electronic eye Color number value 2,712、 2,985、3,257、3,258、3,273、3,513、3,529、3,530、3,545、3,783、3,786、3,800、3,802、3,803、3,818、4,056、4,057、
4,059、4,073、4,074、4,076、4,090、4,091、4,094、4,095

NIR Wavenumber 4188.696、5102.804、5970.628、6900.164、9754.34、10884.44、11254.71、11678.98
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and data from three electronic sensors. After leave-one-out cross-
validation, the model established by the first four latent variables had
the best performance. These four latent variables explained 77.08%

of the variation among samples. In Figure 5B it can be seen that the
classification situation after four-source data fusion is similar to that
after three-source data fusion. Although S4 and S43 were

FIGURE 5
Scores Plot of PLS-DA authenticity and counterfeit identification model based on three-source fusion (A) (EN + ET + EE) and four-source fusion (B)
(EN + ET + EE + NIR).

FIGURE 6
ROC curves of single-source PLS-DA authenticity and counterfeit identification model based on electronic nose (A), electronic tongue (B),
electronic eye (C) and NIR spectra (D) and three-source fusion (E) (EN + ET + EE) and four-source fusion (F) (EN + ET + EE + NIR).
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misclassified under the first two latent variables, the model
performance was determined by the first four latent variables and
the accuracy of the model constructed with the first four latent
variables was 98.75%, which is higher than when using any single
source. The model parameters Se and Sp were 1 and 0.913. The PLS-
DA model constructed with four-source data fusion has therefore
the best performance and achieved the best classification.

ROC curves (Figure 6) showed that PLS-DA authenticity and
counterfeit identification models based on NIR and three-source
data fusion and four-source data fusion have better performance and
the AUC of the three models is 1 while the classification
performance of PLS-DA model based on electronic tongue
(AUC:0.9573) is not very well in comparison with the other five
models.

3.5 Species identification

3.5.1 Electronic nose
The accuracy of the PCA-DA model based on electronic nose

data was 85%, and there were no unclassified samples. The model

parameters Se, Sp and Pre were respectively 0.85, 0.98 and 0.94. The
classification results showed that 3 FU were misclassified as FD, 3 FP
were misclassified as FD, 1 FP was misclassified as FUS, 1 FD was
misclassified as FP, 1 FUS was misclassified as FU, 2 FUS were
misclassified as FP and 1 FUS was misclassified as FD. There was no
obvious difference between different FC and FUS samples based on
electronic nose data, resulting in a number of misclassified samples
(Figure 7A). As shown in the scores plot, on the variation
information represented by the first two principal components,
FU and FD samples could be distinguished easily and the
clusters of FU, FP and FD samples were clear, while counterfeit
samples had a wide range of differences and appeared scattered.

3.5.2 Electronic tongue
The correct rate of the PCA-DA model based on electronic

tongue data was 71.25%, with no unclassified samples. The model
parameters Se, Sp and Pre were respectively 0.65, 0.92 and 0.72.
There were 7 FU samples misclassified, 6 FP, 5FD, and 5 FUS,
indicating that electronic tongue data showed little differences
between different FC and FUS samples. It can be also seen that
the cluster distribution of the four types of samples was not obvious

FIGURE 7
Scores Plot of Single-Source PCA-DA species identificationmodel based on (A) electronic nose, (B) electronic tongue, (C) electronic eye and (D)NIR
spectra.
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in the variation information represented by the first two
principal components, and there were overlaps between the
four types (Figure 7B). We conclude that the performance of the
species identification model based on electronic tongue data is
not good.

3.5.3 Electronic eye
The PCA-DA model based on electronic eye data could

effectively distinguish the four species of samples, and the correct
identification rate we observed was 97.5%. The model parameters Se,
Sp, and Pre were respectively 1.00, 0.98, and 0.95. All FU and FP
samples were correctly classified, and there was only one
misclassified sample in FD and one in FUS. As shown in
Figure 7C, the cluster of FP samples was the clearest, followed by
the FD and FU samples. On the contrary, there were some scattered
samples in FUS, indicating that the traits of these samples were
significantly different from other samples.

3.5.4 NIR spectra
The PCA-DA model based on NIR spectra could also

distinguish between the four types of samples. The correct
identification rate was 97.5%, and parameters Se, Sp, and Pre
were respectively 1.00, 0.98, and 0.95. FU, FP, and FD samples
were all correctly classified. One FUS sample was misclassified as FU
and another was misclassified as FD. The scores plot (Figure 7D)

shows clearer clusters for FU and FP samples, while FD and FUS
samples appear more dispersed in comparison.

3.5.5 Variable selection of the species identification
model

The variables from single-source data were selected based on the
Wilk’s lambda value of themodel.We proceeded by gradually removing
variables with larger Wilk’s lambda values and stopped the removal at
the point at which removing a variable resulted in the correct
identification rate decreasing. The variables remaining were selected.
Table 2 shows the variables selected for each intelligent sensor.

3.5.6 Three-source data fusion
Fusing data obtained from electronic nose, electronic tongue

and electronic eye, the correct identification rate of the model was
95%, higher than that of the models using either only electronic nose
data or only electronic tongue data. The model parameters Se, Sp
and Pre were respectively 0.95, 0.98, and 0.90. The principal
component score plot (Figure 8A) shows the cluster of FP
samples is more concentrated than other samples. FU, FD and
FUS clusters could be better together except for several samples.
S2 was misclassified as FD; S45 was misclassified as FP; S43 was
misclassified as FP and S79 was misclassified as FU. These samples
were also misclassified in the authenticity and counterfeit
identification. All other samples were correctly identified. The

TABLE 2 Selected variables for electronic nose, electronic tongue and electronic eye.

Data Source Original Variables

electronic nose W1C, W3C, W6S, W5C, W1S, W1W, W2S, W2W, W3S

electronic tongue H-bitterness,Bitterness, Astringency

electronic eye Color number value 1911,2167,2183,2184,2438,2439,2694,2710,2711,2712,2966,
2967,2982,2983,2984,2985,3239,3240,3255,3256,3257,3258,3512,
3513,3529,3530,3531,3785,3786,3800,3802,3803,3818,4073,4074,
4075,4076,4090,4091,4092,4093,4094,4095

FIGURE 8
Scores Plot of PCA-DA species identificationmodel based on three-source fusion (A) (EN + ET+ EE) and four-source fusion (B) (EN + ET + EE +NIR).
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positive identification rate of the model based on fusion data was
lower than that of the model based on electronic eye data alone,
which we hypothesized could be explained by the removal of key
variables during the process of variable selection. This suggests that
the increase in the number of variables in data fusion does not
necessarily improve the performance of the model, while it is crucial
to focus on the choice of the variables.

3.5.7 Four-source data fusion
After fusing the data of electronic nose, electronic tongue,

electronic eye and near infrared, the correct identification rate of

the model was 97.50%, and the model parameters Se, Sp and Pre
were 1.00, 1.00, and 0.95. The principal component scores plot
(Figure 8B) was similar to the scores plot of the three-source fusion
datamodel. S43wasmisclassified as FP and S79wasmisclassified as FU,
suggesting that the fusion of NIR spectra features and intelligent senses
didn’t significantly improve the model performance and it can only
reach the same classification ability of electronic eye and NIR.

Comparing the model parameters of single-source data and multi-
source data model (Table 3), we observed that the parameters of the
model after data fusion were equal to or better than in the single-source
data models. In the authenticity and counterfeit identification model,

TABLE 3 Model parameters of single-source data and multi-source data (EN: electronic nose; ET: electronic tongue; EE: electronic eye) (the bold values means the
parameters of optimal PCA-DA and PLS-DA models).

Model parameters

Sp Se Ac

PLS-DA authenticity and counterfeit identification EN 0.8696 0.9825 0.9625

ET 0.7826 0.9649 0.9125

EE 0.8696 1.0000 0.9750

NIR 0.8696 1.0000 0.9750

EN + ET + EE 0.9130 1.0000 0.9750

EN + ET + EE + NIR 0.9130 1.0000 0.9875

PCA-DA species identification EN 0.9800 0.8500 0.8500

ET 0.9200 0.6500 0.7125

EE 0.9800 1.0000 0.9750

NIR 0.9800 1.0000 0.9750

EN + ET + EE 0.9800 0.9500 0.9500

EN + ET + EE + NIR 1.0000 1.0000 0.9750

FIGURE 9
VIP value of each variable in the four-source fusion PLS-DA model (cnv: color number value).
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the positive identification rate in the four-source fusion model was
higher than that of each single-source data model. While in the species
identification model, the parameters of the fusion model were only
better than the single-source models based on data from either
electronic nose or electronic tongue, but equal to the single-source
model constructed from electronic eye sensors and NIR spectra. We
believe this may be due to the fact that the accuracy of the identification
model based on these two instruments was already high.

3.6 Explanation and analysis of the models

3.6.1 Explanation and analysis of the models based
on VIP

We identified the optimal discriminant model as the model
based on four-source data fusion, based on its accuracy. VIPs of each
variable in this model are displayed in Figure 9. There were
20 variables with VIP >1, contributing to the classification of
samples. Among these, the five sensors that played a key role in
the classification based on electronic nose single-source data
contributed greatly to the classification of authentic and
counterfeit samples after data fusion. Among the eight NIR
wavelengths selected by CARS, four of them had a greater
contribution to sample classification after data fusion. There were
25 sensors that played an important role in the classification of
electronic eye single-source data, while only 10 played a crucial role
in authenticity and counterfeit classification after data fusion.
Among the four sensors which contributed to the classification
based on electronic tongue, only the “Astringency” sensor had
VIP>1. We therefore concluded that the four instruments played
different and complementary roles in the classification of sample
authenticity and counterfeit.

The sensor with highest response in the electronic tongue was
B-bitterness2, but its contribution to sample classification was
relatively small. Although the sensor Astringency had a small
response, it contributed greatly to sample classification.

We performed a T-test on the response values of the Astringency
sensor for authentic and counterfeit samples and found there was a
significant difference between the two types of samples (p < 0.05).

Among the sensors of the electronic nose, W1S, W2S, W3C,
W1C and W5C contributed the most to the classification of
authentic and counterfeit samples. The response values of all
other sensors except W1S were small. In addition, sensors with
larger response values (W1W, W2W and W5S) showed little
contribution to the classification of samples. The response values

TABLE 4 Response substances (information) of variables with VIP >1.

Variables Response substances (information)

W1S alkane

Color number value 3,530 L: 81.324, a:2.059, b:18.207

W2S Alcohols, part of aromatic compounds

W3C Ammonia, aromatic molecules

W1C aromatic hydrocarbons

Color number value 4,091 L: 96.445, a: 7.26, b:30.891

Color number value 4,090 L: 96.225, a: 8.707, b:38.525

Color number value 2,985 L: 69.923, a: 4.012, b:10.507

Color number value 3,786 L: 82.772, a: 8.202, b:20.463

Color number value 4,095 L: 97.579, a: 0, b:0

W5C alkene, aromatic compounds, polar molecules

Color number value 3,802 L: 86.778, a: 0.367, b:25.861

Astringency astringency

Color number value 3,803 L: 87.04, a: 1.983, b:17.941

Color number value 4,073 L: 91.97 a: 2.515, b:40.97

Color number value 3,800 L: 86.343 a: 2.375, b:41.459

FIGURE 10
Wilk’s lambda value of original variables in the four-source data fusion PCA-DA model (cnv: color number value).
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of authentic and counterfeit samples were significantly different (p <
0.05) on W1S, W2S, W3C, W1C and W5C sensors.

Among the ten color number values that played an important
role in the classification based on electronic eye data, the response
values of the samples were all small for all values except 4,095,
3,802 and 3,803. The response values of the two types of samples
were significantly different (p < 0.05). We found that the sensors that
contributed the most to the sample classification were not
necessarily the sensors with the highest response values. Some
components had a smaller response value on the sensors, but, as
the content of these components was significantly different in
authentic and counterfeit samples, they played a key role in
classification of the samples. This kind of component can be
defined as “intelligent sensory information with high
identification contribution”.

The response substances of sensors with VIP >1 are shown in
Table 4, which indicates that their response values had a great
influence on the classification of authentic and counterfeit FC. The
response substances of these sensors can be used as key index
components to determine the authenticity of FC.

3.6.2 Explanation and analysis of the models based
on Wilk’s lambda

The variables that contributed the most to the classification of
samples were selected if Wilk’s lambda value <0.3. We selected a
total of 17 variables. The selected variables are shown in Figure 10,
and the information they represent are listed in Table 5, which
shows the contribution to the discrimination of authentic FC
samples is significant.

By selecting variables based on the Wilk’s lambda value, we
identified 14 among the 43 original variables of electronic eye
data that contributed greatly to the classification of fusion data.
Except for color number values 4,076, 2,711, 3,256, 3,529 and
3,803, the response values of the remaining 9 color number
values were small. Among the 9 original variables of electronic
nose data, 3 variables (W1S, W2S and W1C) showed a large
contribution to the classification results in the data fusion
model. Yet the W1S sensor had the largest response value,
showing once again that the sensors that contribute the most
to sample classification are not necessarily the ones with a high
response value.

None of the electronic tongue sensors had a significant
contribution to the classification results in fusion data.

We performed a t-test on the original data collected by the
sensors with large contributions. On color number values
2,712 and 3,257 of the electronic eye, the four types of
samples were significantly different (p < 0.05), while on the
remaining 12 color number values there was no significant
difference.

In the original data of four types of samples, FT and FU showed
no significant difference on W1S and W2S, and FU and FD showed
no significant difference on W1C. Yet, the model identification
results were not based on a single sensor, but on the comprehensive
results from multiple sensors.

4 Conclusion

We established a functional and effective method to
determine the authenticity and identify the species of
Fritillariae cirrhosae samples based on electronic nose,
electronic tongue, and electronic eye sensors, NIR spectra,
and mid-level data fusion technology. We proved the
established PLS-DA model can accurately identify authentic
and counterfeit FC samples. The identification model with the
best performance was the four-source data fusion model (based
on the fusion of electronic nose, electronic tongue, electronic
eye data and NIR spectra). The positive identification rate of the
model was as high as 98.75%.

In addition, the established PCA-DA model could
effectively discriminate between species related to FC. The
species identification model with optimal performance was
based on electronic eye or on NIR spectra data or on four-
source data fusion and its positive discriminant rate was 97.50%
in three cases. The model explanation and analysis showed that
the information collected by W1S, W2S and W1C sensors in the
electronic nose, the Astringency sensor in electronic tongue,
color number values 3,530 and 4,091 in the electronic eye and
eight NIR characteristic wavelengths selected by CARS were the
key quality information for the model to distinguish between
the authentic and counterfeit FC samples and identify their
species. Being able to extract such information from FC samples
makes it possible to achieve a rapid evaluation of the quality of
FC decoctions. We believe this study provides reference
methods for the rapid evaluation of the quality of FC, as well
as for the evaluation and control of the quality of other herbal
samples.

TABLE 5 Variables selected based on Wilk’s lambda values and their response
substances.

Variables Response substances (information)

Color number value 2,439 L: 57.822, a: 4.244, b: 10.942

Color number value 2,984 L:69.632, a:2.25, b:18.817

Color number value 4,076 L: 92.679, a: 1.916, b: 17.697

Color number value 2,711 L:63.64, a:2.371, b:19.17

Color number value 2,438 L:57.535, a:2.516, b:19.565

Color number value 2,712 L:63.929, a:4.119, b:10.712

Color number value 3,257 L:75.524, a:2.147, b:18.497

Color number value 3,256 L:75.268, a:0.568, b:26.636

Color number value 3,529 L:81.065, a:0.459, b:26.233

Color number value 3,803 L:87.04, a:1.983, b:17.941

Color number value 3,240 L:71.156, a:8.649, b:21.178

W1S alkane

Color number value 3,513 L:77.007, a:8.412, b:20.803

W2S Alcohols, part of aromatic compounds

Color number value 3,530 L:81.324, a:2.059, b:18.207

Color number value 4,093 L:96.96, a: 3.919, b:15.452

W1C aromatic hydrocarbons
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