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Tropomyosin-receptor kinase A (TrkA) is the primary isoform among the
tropomyosin-receptor kinases that have been associated with human cancer
development, contributing to approximately 7.4% of all cancer cases. TrkA
represents an attractive target for cancer treatment; however, currently
available TrkA inhibitors face limitations in terms of resistance development
and potential toxicity. Hence, the objective of this study was to identify new
allosteric-approved inhibitors of TrkA that can overcome these challenges and be
employed in cancer therapy. To achieve this goal, a screening of 9,923 drugs from
the ChEMBL database was conducted to assess their repurposing potential using
molecular docking. The top 49 drug candidates, exhibiting the highest docking
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scores (−11.569 to −7.962 kcal/mol), underwent MM-GBSA calculations to evaluate
their binding energies. Delanzomib and tibalosin, the top two drugs with docking
scores of −10.643 and −10.184 kcal/mol, respectively, along with MM-GBSA dG
bind values of −67.96 and −50.54 kcal/mol, were subjected to 200 ns molecular
dynamic simulations, confirming their stable interactions with TrkA. Based on these
findings, we recommend further experimental evaluation of delanzomib and
tibalosin to determine their potential as allosteric inhibitors of TrkA. These drugs
have the potential to provide more effective and less toxic therapeutic alternatives.
The approach employed in this study, which involves repurposing drugs through
molecular docking andmolecular dynamics, serves as a valuable tool for identifying
novel drug candidates with distinct therapeutic uses. This methodology can
contribute to reducing the attrition rate and expediting the process of drug
discovery.

KEYWORDS

cancer, tropomyosin-receptor kinase A, repurposing, molecular docking, molecular
dynamics, drug discovery, health and wellbeing

1 Introduction

Tropomyosin-receptor kinases (Trks), a subfamily of the
protein kinase superfamily, belong to the receptor tyrosine
kinases and consist of three isoforms: TrkA, TrkB, and TrkC.
These isoforms function as receptors for the neurotrophin
family, which includes high-affinity growth factors such as
nerve growth factor (NGF), which binds to TrkA, brain-
derived neurotrophic factor (BDNF) and neurotrophin-4/5
(NT4/5), which bind to TrkB, and neurotrophin-3 (NT3),
which binds to TrkC (Wang et al., 2009).

Previous experimental research has provided cumulative data
indicating the involvement of Trks in the pathogenesis of a diverse
range of human cancers, which has led to their recognition as
promising targets for cancer treatment (Wang et al., 2009; Alam
et al., 2017). TrkA, in particular, is considered oncogenic, with
mounting evidence pointing to its overexpression and involvement
in cancer development (Griffin et al., 2020). It is the most common
isoform of Trks and is frequently associated with gene mutations or
fusions, which result in the formation of oncogenes responsible for
approximately 7.4% of all human cancer cases (Guo et al., 2022).

Trk inhibitors can be classified into four categories based on
their binding interactions: type I, type II, type III, and type IV (Wu
et al., 2015). Type I inhibitors are ATP-competitive and bind to the
ATP active site. Type II inhibitors, on the other hand, are ATP non-
competitive and exhibit pseudo-competitive binding kinetics by
extending into a deep hydrophobic pocket within the ATP-
binding site. Type III inhibitors are allosteric and bind adjacent
to the ATP-binding site, while type IV inhibitors bind to regions
other than the kinase domain of the protein (Yan et al., 2019). Type
II inhibitors offer higher selectivity than type I inhibitors, but their
large molecular size limits their druggability. However, both type I
and type II inhibitors face challenges due to the emergence of
secondary mutations in the ATP active site of Trks, particularly
TrkA. Type III and type IV inhibitors provide isoform selectivity,
although the effectiveness of type IV inhibitors as anticancer agents
remains uncertain (Yan et al., 2019). Therefore, this study aims to
identify allosteric TrkA selective inhibitors (type III) to overcome
the existing limitations of TrkA inhibitors. These inhibitors could

potentially be used in the management of various cancers associated
with TrkA activation, such as lung, breast, cervix, thyroid, and oral
cavity cancers (Lagadec et al., 2009; Sasahira et al., 2013; Faulkner
et al., 2018; Gao et al., 2018; Faulkner et al., 2020).

Similar to other RTKs, TrkA comprises three domains: an
extracellular domain responsible for ligand binding, a
transmembrane domain, and an intracellular catalytic domain
(Amatu et al., 2019). The region between the transmembrane
domain and the catalytic domain, known as the juxtamembrane
(JM) region, consists of approximately 60 residues. Interestingly, this
region exhibits approximately 36% similarity with TrkB and 40%
similarity with TrkC (Su et al., 2017; Furuya et al., 2017). In the
inactive state, the Asp–Phe–Gly (DFG) motif of TrkA’s activation
loop adopts an “out” conformation. This conformation is stabilized
by edge-to-face interactions involving three phenylalanine residues:
DFG motif Phe669, gatekeeper Phe589, and back pocket Phe575.
Together, they form a unique FFF motif, along with the
Leu564 residue in the α-C helix and the JM region. This
combination generates an allosteric site adjacent to the ATP-
binding site of TrkA (Bagal et al., 2019). X-ray crystallography
studies have revealed that this allosteric site binds type III inhibitors,
effectively maintaining TrkA in an inactive conformation (Simard
et al., 2009; Heinrich et al., 2010). Therefore, this study leverages the
knowledge of this allosteric site to identify type III TrkA inhibitors,
utilizing its potential for modulating TrkA activity.

The process of drug discovery and development is known for its
high attrition rate, involving significant time, cost, and effort,
making the introduction of a new drug to the market a
challenging endeavor (Mohammed et al., 2022; Gowtham et al.,
2022). In the field of cancer research, the strategy of drug
repositioning or repurposing has gained widespread application.
This strategy involves repurposing approved or investigational drugs
for new indications that were not initially intended for their use
(Pushpakom et al., 2018; Gazerani, 2019; Omer et al., 2022). By
leveraging existing drugs, the drug repositioning approach
significantly reduces the time required for the drug discovery
process by 3–5 years, lowers costs by $0.3 billion, and reduces
failure rates in the later stages of development. This is because
the drugs being investigated have already demonstrated sufficient
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safety profiles, enabling them to swiftly enter phases II and III of
clinical trials (Fu et al., 2022; Issa et al., 2021).

Computational techniques play a vital role in drug repurposing,
encompassing various approaches, such as molecular docking,
genetic association, pathway mapping, data mining, and signature
matching (Fu et al., 2022).

In this study, molecular docking coupled with MM-GBSA
calculations and molecular dynamics (MD) simulations were
employed to investigate drugs from the ChEMBL database. The
aim of this study was to assess their potential for repurposing as drug
candidates for cancer treatment, specifically targeting the TrkA
allosteric site.

2 Materials and methods

All in silico studies, with the exception of the molecular
dynamics (MD) simulations, were conducted using Maestro
v12.8 from Schrödinger. The MD simulations were performed
using Academic Desmond v6.5 by D.E. Shaw Research.

2.1 Protein and ligand preparation

The crystallographic structure of TrkA, along with the co-
crystallized ligand (PDB ID: 6D20) (Bagal et al., 2019), was
obtained from the Protein Data Bank (PDB) (https://www.rcsb.
org/). To prepare the TrkA structure for subsequent calculations, a
three-step processing procedure was performed using the Protein
Preparation Wizard in Maestro.

In the first step, basic adjustments were made to the protein
structure, including assigning bond orders, adding hydrogen atoms
to those that were missing, creating zero-order bonds for metals and
disulfide bonds, converting selenomethionines to methionines,
filling in missing side chains and loops, removing water
molecules beyond 5.00 Å from heterogroups, and generating
potential ionization states of heteroatoms at a pH of 7 ± 2.

The second step involved optimizing hydrogen bonds and
assigning orientations to the crystalized water molecules. The
protonation states of the residues were also determined using the
PROPKA tool at a pH of 7.0.

Finally, the third step involved restrained minimization, which
was performed using the OPLS4 force field (AbdElmoniem et al.,
2023). This step aimed to achieve a more stable and energetically
favorable conformation of the TrkA structure for subsequent
calculations.

We downloaded the drugs library from the ChEMBL database at
https://www.ebi.ac.uk/chembl/. Specifically, we focused on the
category of drug molecules. Within this category, we narrowed
our focus to small molecules, which encompass various types,
such as FDA-approved, world-approved, and investigational
compounds. In total, we selected 9,923 small molecules from this
category, representing a diverse range of therapeutic classes. To
prepare the library for further analysis, the LigPrep tool in Maestro
was employed (Alzain and Elbadwi, 2021). LigPrep not only
generated low-energy three-dimensional structures for the input
compounds but also produced multiple output structures for each
compound. This was achieved by considering various factors, such

as possible ionization states, tautomers, and stereoisomers. The
LigPrep process was executed with the default settings, ensuring
comprehensive exploration of the chemical space represented by the
drug library.

2.2 Grid generation and molecular docking

The prepared protein structure underwent the receptor grid
generation process, a crucial step for ligand docking. This process
generated a grid file representing the site on the receptor where the
ligand docking would occur. The receptor grid generation panel in
Maestro was utilized to configure the grid generation job (Mohamed
et al., 2022). The ligand molecule that bound to the TrkA allosteric
site was identified and excluded from the grid generation process.
This step helped define the position and size of the allosteric site
surrounding the ligand. The van derWaals scaling and other options
in the panel were kept at their default settings, and the grid
generation process was initiated.

To evaluate the strength and affinity of the compounds toward
the target’s allosteric site, the prepared library underwent
molecular docking using the ligand docking panel in the Glide
tool of Maestro (Elbadwi et al., 2021; Alzain et al., 2022). Initially,
the library was subjected to a high-throughput virtual screening
(HTVS) mode. The top compounds were then filtered based on
their docking scores and subsequently subjected to an extra-
precision (XP) docking mode. This multi-step docking process
enabled the identification of potential compounds that exhibited
favorable binding characteristics and affinity for the TrkA allosteric site.
As a reference, the co-crystallized ligand was also docked onto the
allosteric site.

2.3 MM-GBSA calculations

The ligand that poses with the best docking scores were selected
and subjected to free-binding energy calculations using the
molecular mechanics-generalized born surface area (MM-GBSA)
method. These calculations were performed using the Prime tool in
Maestro. The MM-GBSA method was utilized to estimate the free-
binding energy of the ligand–receptor complex. The specific
equation employed in these calculations to determine the free-
binding energy is as follows:

ΔE � Ec–ER–EL,

where ΔE is the free-binding energy, Ec is the ligand–receptor
complex energy, ER is the receptor energy, and EL is the ligand
energy (Obubeid et al., 2022). The force field and the solvent model
were set to be OPLS4 and VSGB, respectively.

2.4 MD simulation

The two ligand–protein complexes with the best docking scores
and free-binding energy, as well as the co-crystallized ligand, were
chosen for the molecular dynamics (MD) simulation study. The MD
simulations were conducted using Desmond software (Alzain et al.,
2022).
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Prior to the simulation process, the biological system was set up
using the System Builder panel in Desmond. This involved solvating
the ligand–protein complexes with 12,437 TIP3P water molecules in
an orthorhombic-shaped box with dimensions of 10 × 10 × 10 Å.
Additionally, 51.167 mM of Na+ ions (with a total charge of +35)
and 51.167 mM of Cl−ions (with a total charge of −35) were added as
salt to maintain the system’s electrostatic neutrality. The
OPLS4 force field was employed to minimize the energy of the
system. Subsequently, the system underwent equilibration in two
ensembles: isothermal–isochoric (NVT) and isothermal–isobaric
(NPT). During the NVT ensemble, the system’s temperature was
maintained at 300 K, while during the NPT ensemble, both
temperature and atmospheric pressure (1 bar) were kept
constant. The Nose–Hoover chain thermostat and the
Martyna–Tobias–Klein barostat methods were employed to
maintain the desired temperature and pressure conditions,
respectively. The trajectory was recorded at a 100-ps interval,
resulting in a total of 2,000 frames.

The analysis of the simulation results was performed using the
Simulation Interaction Diagram tool provided by Desmond.

3 Results and discussion

Figure 1 provides an overview of the research workflow, which
employed various in silico methods to investigate the potential
discovery of drug candidates from FDA-approved drugs for the
inhibition of TrkA protein kinases. In the drug discovery process,
molecular docking and molecular dynamics simulations play crucial

roles in understanding ligand–receptor interactions. These
computational approaches are particularly valuable for
developing medications targeting new and challenging diseases
such as cancer. The research also utilized virtual screening and
drug repurposing strategies to identify potential drug candidates. By
leveraging these in silico techniques, the study aimed to uncover
promising candidates for TrkA inhibition.

3.1 Molecular docking

The molecular docking analysis was performed using the Glide
module of Schrödinger. Glide is a powerful tool that accurately
determines the positions and orientations of ligands within the
active site of the receptor, providing valuable information on the
compounds’ affinity and activity (Alzain and Elbadwi, 2021; Meng
et al., 2011). It employs various scoring functions to rank and
select the best poses for further analysis (Friesner et al., 2004).
Glide offers three levels of docking methodologies: high-
throughput virtual screening (HTVS), standard precision (SP),
and extra-precision (XP). Each methodology differs in accuracy,
with HTVS being the fastest but least accurate and XP being the
most accurate but time-consuming. The docking time for
screening one compound ranges from 2 s (HTVS) to 2 min
(XP) (Eltaib and Alzain, 2022). These methodologies can be
used sequentially to efficiently filter a large number of
compounds. Furthermore, the molecular docking performed
by Glide sets the stage for predicting the free-binding energy
using methods such as MM-GBSA calculations.

FIGURE 1
Overall work summary.
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After preparing the library of FDA-approved drugs
(9,923 molecules) using the LigPrep tool, we generated a total of
23,334 conformers and tautomers. These compounds were subjected
to molecular docking against the TrkA allosteric site using the high-
throughput virtual screening (HTVS) mode. Among them,
230 structures with docking energies below −7 kcal/mol were
identified as potential ligands. Since this number was manageable
for further analysis, these 230 structures were directly subjected to
molecular docking using the extra-precision (XP) mode, bypassing
the standard precision (SP) level. Among the XP docking results,
49 structures were selected based on their docking scores, which
ranged from −11.569 to −7.962 kcal/mol, for subsequent free-
binding energy prediction.

3.2 MM-GBSA calculations

Docking results provide insights into whether ligands bind to the
active site of the target protein. However, to determine if this binding
is stable and capable of eliciting a response, it is crucial to assess the
free-binding energy of the receptor–ligand complex (Lyne et al.,
2006). Therefore, the top 49 structures from the docking results were
further analyzed using the MM-GBSA method, which accounts for
the solvent’s influence on the ligand–protein complex binding. For
comparison, the co-crystallized ligand of TrkA was also subjected to
XP and MM-GBSA calculations as a reference.

Among the 49 structures, nine drugs were selected based on
their docking scores (<−9) and MM-GBSA dG bind energies
(<−50 kcal/mol) for further investigation (Table 1). As shown
in Table 1, none of the nine chosen drugs achieved better
docking scores or MM-GBSA dG bind energies than the
reference compound, which had a docking score
of −10.689 and MM-GBSA dG bind of −105.51 kcal/mol.
However, the results are considered satisfactory since the
difference in docking scores between the selected compounds
and the reference is minimal, and their MM-GBSA dG bind
energies are highly favorable.

Among the chosen drugs, delanzomib and tibalosin, with
docking scores of −10.643 and −10.184 kcal/mol and MM-GBSA
dG bind energies of −67.96 and −50.54 kcal/mol, respectively, stood
out as representatives for further analysis of their interaction
patterns.

3.3 Ligand–residue interaction analysis

The delanzomib/TrkA complex exhibited three hydrogen bonds
with LEU486, LYS544, and GLY670 residues, along with
hydrophobic contacts with LEU486, PHE521, LEU564, LEU567,
ILE572, VAL573, PHE575, PHE589, LEU641, PHE646, ILE666, and
PHE669 (Table 2; Figure 2A), while the tibalosin/TrkA complex
formed one hydrogen bond with ASP668, one salt bridge with
ASP668, and hydrophobic contacts with LEU486, PHE521,
LEU564, LEU567, PHE589, ILE572, VAL573, LEU641, PHE646,
ILE666, and PHE669 (Table 2; Figure 2B). On the other hand, the
reference/TrkA complex exhibited six hydrogen bonds, involving
GLY483, SER484, LEU486, ARG673, and ASP668 residues.
Additionally, it formed one halogen bond with HIE648, one
pi–cation interaction with LYS544, and hydrophobic contacts
with LEU486, LEU564, LEU567, MET587, PHE589, ILE572,
VAL573, PHE575, LEU641, PHE646, ILE666, and PHE669
(Table 2; Figure 2C).

The ligand–residue interaction analysis provides insights into
the differences observed in the docking scores and MM-GBSA dG
bind energies among the reference, delanzomib, and tibalosin
complexes. The reference compound showed the highest number
of hydrogen bonds (6), followed by delanzomib (3) and Tibalosin
(1). This highlights the importance of hydrogen bond interactions in
contributing to the binding affinity of ligands (Klebe and Böhm,
1997; Chen et al., 2016; Anandan et al., 2022).

It is worth noting that the interactions observed between
delanzomib, tibalosin, and specific residues in the TrkA protein
align with findings from previous research articles investigating
small molecules as TrkA allosteric inhibitors (Furuya et al., 2017; Su

TABLE 1 Docking scores and MM-GBSA dG bind energies of the nine selected best ligand poses and the reference bound to TrkA allosteric site.

Compound name Docking score kcal/mol MM-GBSA dG bind kcal/mol

Delanzomib −10.643 −67.96

Tibalosin −10.184 −50.54

Vismodegib −9.948 −53.56

Hexoprenaline −9.666 −62.39

Merestinib −9.342 −64.24

Etanterol −9.146 −55.76

Ractopamine −9.117 −53.23

Primidolol −9.084 −54.35

Cliropamine −9.022 −52.04

TrkA–ligand −10.689 −105.51
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et al., 2017; Bagal et al., 2019; Subramanian et al., 2019; Guo et al.,
2022). For instance, ASP668 has been reported to form hydrogen
bonds with several top inhibitors discovered by different scientific
groups. In the case of tibalosin, ASP668 interacts with the hydroxyl
group and the amino group of the (2R)-2-[(4-phenylbutyl)amino]
propan-1-ol moiety through hydrogen bond and salt bridge
interactions, respectively. Although delanzomib does not form a
hydrogen bond with ASP668, it establishes hydrogen bond
interactions with LEU486, LYS544, and GLY670, which have also
been documented in previous studies (Furuya et al., 2017; Bagal
et al., 2019; Subramanian et al., 2019; Guo et al., 2022).

Furthermore, previous studies by Guo et al. (2022) and Bagal
et al. (2019). have emphasized the significance of hydrophobic
interactions with LYS544, LEU564, and PHE589 in TrkA

allosteric inhibitors. In the case of delanzomib and tibalosin, both
compounds form hydrophobic contacts with LEU564 and
PHE589 and establish a charged positive contact with LYS544.

Additionally, a thorough review of the identity and previous
records of delanzomib and tibalosin was conducted to determine
if any documented activity or correlation with cancer treatment
exists.

Delanzomib is an orally active boronate-based proteasome
inhibitor that specifically targets the chymotrypsin-like activity
of the proteasome (Dolloff, 2015). While information regarding
delanzomib’s impact on bone remodeling is limited, one study
has explored its effects on osteoclasts (Zangari and Suva, 2016).
In a study by Mopei et al., delanzomib demonstrated promising
efficacy and antimutagenic properties in human multiple

TABLE 2 Ligand–residue interactions of delanzomib and tibalosin at the TrkA allosteric site.

Compound
name

H-bond Salt
bridge

Hydrophobic interaction Other interaction

Delanzomib LEU486, LYS544, and
GLY670

- LEU486, PHE521, LEU564, LEU567, ILE572, VAL573, PHE575,
PHE589, LEU641, PHE646, ILE666, and PHE669

Polar interaction: SER484 and
HIE648

Charged negative: ASP668

Charged positive: LYS482, LYS544,
and ARG673

Tibalosin ASP668 ASP668 LEU486, PHE521, LEU564, LEU567, PHE589, ILE572, VAL573,
LEU641, PHE646, ILE666, and PHE669

Polar interaction: SER484 and
HIE648

Charged negative: ASP668 and
ASP650

Charged positive: LYS544 and
ARG673

Reference GLY483, SER484, LEU486,
ASP668, and ARG673

- LEU486, LEU564, LEU567, MET587, PHE589, ILE572, VAL573,
PHE575, LEU641, PHE646, ILE666, and PHE669

Polar interaction: SER484 and
HIE648

Charged negative: GLU560 and
ASP668

Charged positive: LYS482, LYS544,
ARG574, and ARG673

Halogen bond: HIE648

Pi–cation: LYS544
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myeloma cell lines and patient-derived cells (Wang et al., 2019).
Additionally, delanzomib has shown significance in the
treatment of renal cell carcinoma (RCC). When combined

with ritonavir, these two drugs exhibited synergistic effects in
suppressing colony formation and inhibiting the growth of renal
cancer (Isono et al., 2018).

FIGURE 2
2D and 3D interactions of the best three hits with the TrkA allosteric site (PDB ID: 6D20) using Glide software. (A) Delanzomib. (B) Tibalosin. (C)
Reference.
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Tibalosin, a phenylethylamine derivative, has been shown to
reduce arterial pressure in hypertension animal models (Staessen
et al., 1983). It exhibits potent antihypertensive effects; however, side
effects prevent its clinical use at a daily dose of 150 mg. Combination

therapy with a beta-adrenoceptor-blocking medication appears to be
more effective in treating hypertension than thiazide therapy alone
(Staessen et al., 1986). Currently, there is no available data linking
tibalosin to cancer or its anticancer properties.

FIGURE 3
Protein–ligand RMSD plot of the top three compounds and the reference complexed with the TrkA allosteric site (PDB ID: 6D20) during 200 ns
molecular dynamics simulation using Desmond software. (A) Delanzomib. (B) Tibalosin. (C) Reference.
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In conclusion, based on the docking, MM-GBSA, and
interaction pattern analysis results, delanzomib and tibalosin
demonstrate promise as TrkA inhibitors. Delanzomib has
reported an anticancer activity, while tibalosin presented a
potential anticancer activity as a TrkA inhibitor, which is being
reported for the first time in this study. Furthermore, both drugs
were subjected to a 200 ns molecular dynamics (MD) simulation
study to further explore their behavior and interactions.

3.4 MD simulations

The previous techniques employed rigid structures for proteins
and ligands, whereas molecular dynamics (MD) simulation takes
into account the conformational changes in the receptor and ligand.
MD simulation provides a more realistic representation of the
dynamic behavior occurring under physiological conditions,
allowing for a thorough investigation of the complex’s stability,

flexibility, and binding interactions (Kumar et al., 2019; Jordaan
et al., 2020; Aghajani et al., 2022; Gowtham et al., 2023).

In this study, MD simulations were conducted for the
complexes of the two best compounds, delanzomib and
tibalosin, with TrkA, as well as the reference structure (the
co-crystallized ligand of 6D20). The analyzed data include the
root mean square deviation (RMSD), the root mean square
fluctuation (RMSF), and the protein–ligand contacts observed
during the 200 ns simulation.

Starting with the RMSD analysis of the protein’s Cα atoms
(Figure 3), it can be observed that the protein exhibited a similar
pattern of deviations with an average RMSD of 4.31 Å when
complexed with the two compounds and the reference. This
average RMSD value is relatively compatible, as an RMSD of
1–3 Å is generally acceptable for small globular proteins
(Obubeid et al., 2022). It indicates the overall stability of the
TrkA–ligand complexes. Delanzomib exhibited the lowest range
of RMSD values, indicating greater stability than tibalosin and the

FIGURE 4
Plot of protein RMSF showing the top three ligands and the reference bound to the TrkA allosteric site (PDB ID: 6D20) during 200 ns molecular
dynamics simulation using Desmond software. (A) Delanzomib. (B) Tibalosin. (C) Reference.
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reference. Delanzomib also showed minimal fluctuations along the
simulation duration, with an average ligand RMSD of 2.81 Å. It is
worth noting that the behavior of delanzomib closely resembled that
of the reference.

On the other hand, tibalosin initially exhibited high fluctuations
during the first 100 ns of the simulation, but its behavior became
more similar to the reference in the second half of the simulation.
Although tibalosin showed higher fluctuations, its average ligand
RMSD of 1.63 Å was the smallest among delanzomib (2.81 Å) and
the reference (2.61 Å).

The flexibility of the TrkA protein and the movement of its
residues were assessed by monitoring the RMSF value of the Cα
atoms. A lower RMSF value indicates less flexibility and greater
stability (Alzain, 2022). As shown in Figure 4, the protein
exhibited similar RMSF patterns with both compounds and
the reference, with an average RMSF value of 1.59 Å. The low
average RMSF value, combined with the previously discussed
average RMSD values, confirms the stability of the studied
complexes.

The protein–ligand contact histogram (Figure 5) provided
information about the binding and non-binding interactions
between the protein and the two compounds, as well as the
reference, during the simulation. The delanzomib–TrkA complex
formed contacts with SER484 (H-bond 10% and water bridges 50%),
VAL647 (H-bond 25%, hydrophobic 3%, and water bridges 22%),
HIS648 (hydrophobic 60% and water bridges 40%), ASP650 (water
bridges 25%), and PHE704 (hydrophobic 30%).

The tibalosin–TrkA complex interacted with LEU486 (hydrophobic
40%), LEU567 (hydrophobic 20%), PHE646 (hydrophobic 70%), and
PHE669 (water bridges 5%). Considering the significant role of H-bonds
in the binding of an inhibitor to a kinase (Wu et al., 2021), these results
suggest that delanzomib exhibits higher inhibitory activity than tibalosin.
This conclusion is supported by the protein–ligand contact histogram,
which shows that delanzomib forms H-bonds with two residues,
whereas tibalosin does not form any H-bonds.

The reference–TrkA complex had contacts with LEU567
(hydrophobic 15%), VAL573 (hydrophobic 35%), PHE589
(hydrophobic 30%), LEU641 (hydrophobic 20%), ASP668 (H-bond

FIGURE 5
Protein–ligand contact histogram of the top three compounds and the reference complexed with the TrkA allosteric site (PDB ID: 6D20) during
200 ns molecular dynamics simulation using Desmond software. (A) Delanzomib. (B) Tibalosin. (C) Reference.
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70% and water bridge 30%), PHE669 (hydrophobic 45%), and ARG673
(H-bond 2%, hydrophobic 3%, and water bridges 37%).

In conclusion, based on the MD results, delanzomib and
tibalosin were identified as type III inhibitors, as they
exhibited similar effects on the protein compared to the
reference molecule (a potent, selective, and allosteric type III
TrkA binder named molecule 23) in terms of RMSD and RMSF
plots (Bagal et al., 2019).

4 Conclusion

TrkA, the most prevalent isoform associated with a wide
range of human malignancies, is a crucial target for cancer
therapy. This study aimed to identify potential allosteric TrkA
inhibitors for the treatment of cancer. To achieve this objective,
multiple computational approaches were employed to screen a
library of 9,923 approved drugs from the ChEMBL database,
assessing their repurposing potential as allosteric inhibitors
against the TrkA protein. Initially, the library was docked
into the allosteric site of TrkA using HTVS and XP modes.
This screening process yielded 49 compounds with favorable
docking scores, which were further evaluated through MM-
GBSA calculations to determine their free-binding energies.
Among the 49 compounds, nine exhibited MM-GBSA dG bind
energies below −50 and were selected for detailed analysis in
this study. The interaction patterns of the top two drugs,
delanzomib and tibalosin, were examined. These compounds
displayed several common interactions with previously
identified TrkA allosteric inhibitors, and notably, delanzomib
has been reported to possess antimutagenic and anti-cancer
effects. Subsequently, delanzomib and tibalosin underwent MD
simulations, demonstrating good stability at the protein’s
allosteric site. Based on these findings, delanzomib and
tibalosin are considered promising hits against TrkA. Further
experimental investigations are warranted to validate their
potential as inhibitors of this protein, holding significant
prospects for future cancer therapies.
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