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This study presents velocity-resolved desorption experiments of recombinatively-
desorbing oxygen from Ag (111). We combine molecular beam techniques, ion
imaging, and temperature-programmed desorption to obtain translational energy
distributions of desorbingO2. Molecular beams of NO2 are used to prepare a p (4 ×
4)-O adlayer on the silver crystal. The translational energy distributions of O2 are
shifted towards hyperthermal energies indicating desorption from an intermediate
activated molecular chemisorption state.
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1 Introduction

Silver surfaces play important roles in large scale industrial heterogeneous catalytic
processes such as partial oxidation of methanol to formaldehyde and ethylene to ethylene
oxide (Serafin et al., 1998; Qian et al., 2003). Because of the tremendous scale of these
applications, seemingly modest improvements in the reaction process may lead to big
economical and ecological improvements. Therefore, this system has attracted significant
attention over the years and numerous studies have focused on the microscopic details of
oxidized silver surfaces. Oxygen induced reconstructions of silver surfaces have been
thoroughly investigated using high-precision ultra-high vacuum (UHV) surface science
techniques in combination with theoretical approaches (Bao et al., 1996; Michaelides et al.,
2005; Schnadt et al., 2006; Greeley and Mavrikakis, 2007; Reichelt et al., 2007; Rocha et al.,
2012; Martin et al., 2014; Jones et al., 2015a; Jones et al., 2015b). Ag (111) exhibits a variety of
different reconstructed surfaces with similar stability which have been studied and discussed
for many years. A detailed review about the history of considered oxygen structures on
Ag (111) is given by Michaelides et al. (2005).

Experimentally, the oxidation of Ag (111) under UHV conditions with molecular oxygen
is difficult due to the low sticking probability (ca. 1 × 10−6) of O2 (Campbell, 1985; Kleyn
et al., 1996). In early UHV studies, silver surfaces were therefore oxidized under
comparatively high O2 pressures before characterization under UHV conditions
(Campbell, 1985). The use of more aggressive oxidants circumvents this issue; in
particular, atomic oxygen (Bukhtiyarov et al., 2003; Böcklein et al., 2013; Derouin et al.,
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2015) or NO2 (Bare et al., 1995; Huang and White, 2003) allow for
silver surface oxidation under UHV compatible conditions. When
using NO2 as oxidant, the temperature range at which clean oxidized
surfaces are produced is restricted between ca. 490 K and 520 K since
at lower temperatures NO2 adsorbs molecularly and at elevated
temperatures, O2 starts desorbing (Huang and White, 2003). When
oxidizing at these temperatures, the reconstructed surface is
indistinguishable from surfaces oxidized with molecular oxygen
and consists mainly out of p (4 × 4)-O domains (Carlisle et al.,
2000a; Carlisle et al., 2000b). In contrast, oxidizing with atomic
oxygen is possible at lower temperatures. It typically results in
slightly different surface phases and forms subsurface oxygen
below 510 K, (Derouin et al., 2015).

The large number of reconstructed oxidized Ag (111) surfaces
observed in experiments has motivated theory groups to develop
models describing surface stability based on first principles theory
(Michaelides et al., 2003; Li et al., 2003a,b; Michaelides et al., 2005).
Using ab initio thermodynamics and first principles simulations,
theory is able to provide (T, p) phase diagrams describing stable
oxidized surface phases from UHV to high pressure conditions
present at real world catalysts (Reuter, 2016). By comparison with
experimental results, microscopic details of the oxidized surface
structure can be elucidated.

Additional theoretical work has focused on the dynamics of the
O2 dissociation process on Ag (111). These studies do not aim for
clarifying the geometry of reconstructed surfaces but provide
theoretical data on the atomic scale mechanism of the oxidation
process itself (Xu et al., 2005; Kunisada et al., 2011; Kunisada and
Sakaguchi, 2014). Kunisada and Sakaguchi investigated quantum
dynamics of O2/Ag (111) dissociative adsorption propagating on a
six-dimensional potential energy surface (PES) obtained from
density-functional theory (DFT) (Kunisada and Sakaguchi, 2014).
From the PES, they identify the lowest barrier near a top site with a
height of 1.37 eV. Coupled-channel calculations trajectories based
on this PES provide dissociation probabilities for O2 as function of
the incident translational and vibrational energy. Interestingly,
dissociation occurs even with translational energies slightly below
the activation barrier height, which the authors explain by O2

tunneling effects. The computations also show a significant
dissociation enhancement by increasing the incident vibrational
energy caused by a late barrier in the reaction pathway. In
another theoretical study based on a neural network interpolated
PES, Goikoetxea et al. investigated electronically non-adiabatic
effects during the dissociative adsorption of O2 at Ag (111)
(Goikoetxea et al., 2012). They also identified a large energy
barrier for dissociation above 1 eV close to the surface. As non-
adiabatic effects affect sticking probabilities at elevated distances to
the surface and are expected to be smaller than the adiabatic energy
barrier, their influence on the sticking probability is negligible.

Such theoretical work provides excellent data for comparison
with surface dynamics experiments under well-controlled UHV
conditions. A classical experimental approach probes the
entrance channel of the reaction pathway by employing pulsed
molecular beams of reactants to initiate the surface reaction
(Barker and Auerbach, 1984; Kleyn et al., 1996; Sitz, 2002; Kleyn,
2003; Golibrzuch et al., 2015; Chadwick and Beck, 2016; Vattuone
and Okada, 2020; Shen et al., 2022). Seeding reactants in different
carrier gases allows for modification of the incident translational

energy. Incident vibrational energy can be altered by thermal or laser
excitation. Surface reactivity as function of varied incident
parameters is probed using, for instance, Meitner-Auger electron
spectroscopy (MAES) or temperature -programmed desorption
(TPD) for coverage determination after exposing the surface for
a selected time to a molecular beam.

Surface reaction dynamics experiments on the exit channel
probe degrees of freedom of the desorbing reaction products
using quantum state-resolved detection methods in combination
with translational energy dependent measurements (Comsa and
David, 1982; Michelsen and Auerbach, 1991; Michelsen et al., 1992;
Shuai et al., 2017; Kaufmann et al., 2018; Dorst et al., 2022). From
these studies, translational, rotational, and vibrational state
distributions of products can be deduced. Eventually, concepts of
detailed balance allow to model these distributions and to defer
quantitative heights of reaction barriers.

Recently, we used this approach to investigate the recombinative
desorption of oxygen from Rh (111) (Dorst et al., 2022). O2 was
detected using a velocity map imaging (VMI) setup after non-
resonant ionization with a femtosecond pulse of 800 nm. The
desorption process was initiated by linearly heating the sample in
a TPD type approach. We identified hyperthermal velocity
distributions for oxygen molecules desorbing from surface sites
as well as for oxygen molecules originating from subsurface,
indicating a common intermediate desorption state.

In this paper, we present angular distributions and
translational energy distribution of recombinatively-desorbing
O2 from Ag (111). We prepare p (4 × 4)-O Ag (111) by dosing
the surface with a molecular beam of NO2 seeded in rare gases at a
surface temperature of 510 K. Angular distributions are narrow
and hyperthermal translational energy distributions indicate an
activated desorption process.

2 Experimental

The experimental setup has been previously described in detail
(Westphal et al., 2020). Briefly, experiments were conducted under
ultra-high vacuum (UHV) conditions at a base pressure of <5 ×
10−10 mbar. We dose the surface with a pulsed supersonic molecular
beam of 10% NO2 (AirLiquide, 99.5%) seeded in He (AlphaGaz,
≥99.999%) using a home-built pulsed solenoid nozzle (Park et al.,
2016). During exposure, we maintain UHV conditions by
differential pumping techniques.

For surface cleaning, the UHV apparatus is equipped with an ion
gun (Staib Instruments IG-5-C), with which the surface is Ar+-
sputtered (2.00 kV, 2.0 × 10−7 mbar Ar) for multiple cycles. After
annealing (700 K, 30 min), the surface cleanliness is checked by
Meitner-Auger electron spectroscopy (OCI BDL 450) and low-
energy electron diffraction (LEED) spectroscopy (OCI BDL 450).
The Ag (111) crystal (MaTecK, 99.99%,∅ 10 mm, 2 mm thickness) is
mounted on a home-built sample holder and is resistively heated by
Ta filaments; temperatures are monitored by a K-type thermocouple.
With liquid nitrogen cooling, the accessible temperatures range from
100 K to 1,235 K. We use a home-written LabVIEW™ program for
data acquisition and control of experimental parameters.

Velocity distributions of surface desorption products are
obtained by combining velocity map imaging (VMI) and
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temperature-programmed desorption (TPD) experiments: we
linearly heat up the surface while simultaneously detecting
velocity map images of desorbing molecules. For that, the beam
of a regenerativly amplified femtosecond laser (Spectra-Physics,
Solstice Ace, <35 fs, 800 nm, 1 kHz) is focused by an optical lens
(f = 300 mm) such that molecules are non-resonantly ionized after
desorption. The ions are detected by an imaging setup which follows
the design by Eppink and Parker (Eppink and Parker, 1997). Micro-
channel plates (MCPs, Topag, MCP 56–15) are used for signal
amplification and ions are imaged using a CMOS camera (Basler ace

acA 1,920–155 μm, 1,920 px × 1,200 px) recording the images from a
phosphor screen (Proxivision P43). Figure 1 shows the ionization
region of the experimental setup.

Before each TPD experiment, the sample is exposed to the
molecular beam at a defined dosage temperature. Afterwards, the
surface is linearly heated at 4 K s−1 in a TPD experiment while we
record images at 1 kHz laser repetition rate.

3 Results and discussion

For investigating velocity-resolved desorption of
recombinatively-desorbing oxygen, we first create a complete
monolayer of a p (4 × 4)-O phase on Ag (111) by dosing it with
NO2 from a molecular beam at Tsurf = 350 K or 510 K for 2 min at a

FIGURE 1
The surface temperature is linearly ramped by resistive heating.
Recombinatively-desorbing molecules are ionized using non-
resonant multi-photon ionization and coupled into the time-of-flight
(ToF) tube by the ion optics of the velocity map imaging detector.
Ions are detected on a phosphor screen at the end of the ToF tube (not
shown). Velocities of desorbing molecules are deduced from the
position at which the ions hit the phosphor screen.

FIGURE 2
VMI-TPD spectrum of desorbing NO2 (dashed) and
recombinatively-desorbing O2 (solid) after identical NO2 exposure of
an Ag (111) surface. The integrated flux density is plotted as a function
of the temperature T; Tdos is the dosage temperature.

FIGURE 3
Velocity-map images of recombinatively-desorbing O2 from Ag
(111) around 600 K. v⊥ and v‖ are defined relative to the surface normal.
(A) Raw velocity-map image with indicated thermal background. We
use the thermal background for defining the point of zero
velocities and to calibrate the detector. For that, we fit the room
temperature thermal background with a 1-D Maxwell-Boltzmann
distribution. The width of the distribution provides the calibration and
the center provides zero velocity. One can clearly distinguish the
hyperthermal velocities of surface desorbing oxygen and the
background. (B) Velocity-mapped image after thermal background
subtraction, v calibration, and density-to-flux conversion.
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nozzle frequency of 200 Hz. We check the degree of oxidation by
LEED and TPD (see Supplementary Material). Depending on the
surface temperature during exposure, either nitrate (NO3) or pure
oxygen layers may form (Alemozafar and Madix, 2005). In Figure 2,
we show TPD spectra of NO2 and O2 recorded with the VMI setup
displayed in Figure 1. We record the total signal at the phosphor
screen of the molecular mass of the parent ion by gating the
phosphor screen to the respective time-of-flight. The VMI-TPD
spectrum of NO2 (dashed curve) shows two different desorption
features after dosing at 350 K: first, a broad desorption peak ranging
up to 470 K followed by a less broad, lower intensity desorption
between 480 K and 510 K. These features are attributed to NO3

decomposition into NO2(g) and O from two different states
(Alemozafar and Madix, 2005). In contrast, O2 (solid curve)
desorbs at significantly higher temperatures at Tsurf of ≈590 K
(Huang and White, 2003).

We use the VMI setup to determine velocity distributions for
both, desorbing NO2 and recombinatively-desorbing O2.
Figure 3A shows the raw image of O2 desorption from Ag
(111) around 590 K. We obtain the image by averaging all
images that we record during a desorption peak in a TPD run.
The raw image clearly displays the residual thermal gas
background in the UHV chamber as circular spot as indicated
in Figure 3A. From the background we deduce the point of zero
velocity. We further calibrate the detector by fitting a one-
dimensional Maxwell-Boltzmann distribution to the thermal
background. Figure 3B shows the calibrated figure after
subtraction of the thermal background and density-to-flux
conversion (Harding et al., 2017). The velocity-mapped image
shows a directed desorption feature with hyperthermal velocities
between 500 m s−1 and 1,500 m s−1. The angular tilt is due to a
slightly tilted suspension of the crystal in the sample holder. From
such images, we deduce velocity distributions by iterative
integration over velocity increments within 10◦-broad angular
slices as shown in Figure 3B. In Figure 4, we show the results for the
NO2 peak at 425 K and the O2 peak at 595 K. All curve integrals are

normalized to unity. For comparison, thermal flux-weighted
Maxwell-Boltzmann distributions of the shape

f v, Tsurf( )∝ v3 · exp − M · v2
R · Tsurf

( ) (1)

are plotted.M denotes the molarmass of the compounds and R is the
universal gas constant. We use the signal-weighted temperature 〈T〉
of 425 K for NO2 and 595 K for O2 for Tsurf.

From the figure it is obvious that O2 desorbs with hyperthermal
velocities indicated by a shift of the curve’s maximum by more than
300 m s−1 compared to a flux-weighted thermal velocity distribution.
In contrast, NO2 desorption is clearly thermal as it can be well-
reproduced by a flux-weighted Maxwell-Boltzmann distribution of
the surface temperature. We did not observe any significant
difference between the two desorption features of NO3

decomposition (see Supplementary Material). Table 1 lists the
characteristic properties of the shown velocity distributions.

Additionally, we record angular distributions of NO2 and O2

desorption from Ag (111). For that, we move the surface parellel to
the detector such that only molecules from certain desorption angles
are detected as described previously (Dorst et al., 2022). As VMI
provides the direction of velocities in the detector plane, desorption
angles are directly obtained from the ion images. Figure 5 shows a
polar plot of the angular resolved flux for both, NO2 (squares) and
O2 (circles) desorption. For comparison, a cos(θ)-distribution is
shown, which would be expected for thermal desorption. We
observe a narrow cos8(θ)-angular distribution for O2 desorption,
whereas NO2 desorption resembles the cos(θ)-distribution
indicative of a thermalized (or equilibrium) desorption process.

FIGURE 4
Plot of the experimental velocity distributions f(v) for NO2 and O2

against the velocity v. For comparison, thermal distribution at the
desorption peak’s temperature are shown. All curves are normalized
to an integral of one.

TABLE 1 Mean experimental velocities 〈v〉, energies 〈E〉, and the
correspondingmean thermal velocities 〈vth〉 for a desorption temperature 〈T〉
of desorbing NO2 and recombinatively-desorbing O2 from Ag (111).

Compound 〈T〉/K 〈v〉/m s−1 〈vth〉/m s−1 〈E〉/eV

NO2 425 530 520 0.0731

O2 595 1,010 795 0.186

FIGURE 5
Polar plot of angular resolved flux for distinct TPD peaks for NO2

(squares) andO2 (circles) desorption from Ag (111) after NO2 exposure.
Thermal cos(θ) (solid) and non-thermal cos8(θ) (dashed) distributions
are shown for comparison. The integrals are normalized to one.
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From the presented desorption dynamics, details of the
underlying potential energy surface (PES) are obtained. The
narrow angular distribution of O2 desorption indicates an
activated desorption process. Molecules have to overcome a
barrier, on which they get accelerated into the gas phase. This is
known to result in very peaked angular distributions (Comsa and
David, 1985). In contrast, the release of NO2 after surface nitrate
decomposition appears with a broad angular distribution, indicating
a non-activated thermalized desorption process.

Also, velocities of desorbing molecules provide valuable
information about the underlying PES. Figure 6 shows the
translational energy distribution of recombinatively-desorbing O2

from Ag (111). The distributions are obtained from the velocity
distributions displayed in Figure 4. The O2 distribution is clearly
shifted towards higher energies; NO2 resembles a thermal distribution.

The shift of the hyperthermal O2 energy distribution can be used
to quantify energy-dependent sticking probabilities using the
concepts of detailed balance (White and Beuhler, 2004). In an
activated adsorption process, an energy barrier in the adsorption
trajectory suppresses sticking at low incident translational energies.
As a consequence, molecules with low translational energy are
missing in translational energy distributions of desorption
(Comsa and David, 1982; Michelsen and Auerbach, 1991; Shuai
et al., 2017; Kaufmann et al., 2018). Following the principles of
detailed balance, we can fit the hyperthermal distribution in Figure 6
using the product of a flux-weighted thermal energy distribution and
a sticking function (see Eq. 2).

f Etr, Tsurf( ) � K · Etr · exp − Etr

kB · Tsurf
( ) · S Etr( ) (2)

Here,K is a constant factor, Etr is the translational energy of desorbing
molecules, Tsurf is the surface temperature and S(Etr) is the sticking
function.We apply an error function to describe sticking (see Eq. 3) as
has been done in previous studies for activated adsorption processes

and plot the sticking function in Figure 6 as dashed lines (Michelsen
and Auerbach, 1991; Michelsen et al., 1992; Luntz, 2000).

S Etr( ) � 1
2

1 + erf
Etr − E0

W
( )( ) (3)

W represents the width and E0 represents the inflection point. We fit
our data with a E0 = 0.224 eV as shown in Figure 6. Not that the
inflection point corresponds to the onset of adsorption and is related to
the energy barrier height. This height is often strongly dependent on the
adsorbate’s rotational and vibrational state. State-resolved permeation
studies on energy distributions of the H2/Cu(111) system reveal for
instance significant enhanced sticking probabilities for vibrationally
excited molecules (Michelsen and Auerbach, 1991). However, in this
work, we universally ionize desorption products without quantum state
resolution. The translational energy distribution should therefore be
considered as an averaged distribution of different states with unknown
populations. We define also the maximum observable O2 translational
energy Emax

tr similar to the method developed by Fingerhut et al. (2021).
In their work on formate decomposition on hydrogenated Pt (111), they
identified Emax

tr as lower limit of the energy barrier in the entrance
channel.

We indicate this threshold as black arrow in Figure 6 at ca. 0.57 eV
(≈1850 m s−1). For these fast molecules, we assume no internal energy
and that the recoil against the surface from the transition state results
only in minor Ag phonon excitation. This value should therefore be
the lower limit to the real energy barrier height as we do not account
for excitation of the solid.

Interestingly, these values are significantly lower than calculated
sticking probabilities based on first principles theory (Goikoetxea et al.,
2012; Kunisada and Sakaguchi, 2014). Kunisada and Sakaguchi
calculate state-resolved sticking by performing quantum dynamics
calculations of O2 dissociative desorption on Ag (111) on a before
computed PES (Kunisada et al., 2011). Depending on the adsorption
site, they predict the onset of adsorption between 1.2 eV and 2.1 eV O2

incident energy. They also calculate a significant influence of vibrational
excitation on the dissociation probability by reducing the onset by ca.
30% when comparing O2 (v = 0) to O2 (v = 3). However, this reduction
is still not sufficient to explain the discrepancy between the
experimentally measured onset of this study of 0.57 eV and the
minimum value of 0.8 eV (O2 (v = 3) for a bridge site) of the
theoretical work. We therefore suspect that we do not map a direct
dissociation trajectory but desorption from another intermediate
surface state under the experimental conditions applied in this study.

In a systematic molecular beam surface scattering approach, Kleyn
et al. studied the interaction of O2 molecular beams with Ag (111) at
150 K identifying several scattering pathways using ToF detection
techniques (Raukema and Kleyn, 1995; Kleyn et al., 1996; Raukema
et al., 1997). From the ToF of scattered O2, translational energy
distributions are obtained, which can be attributed to different
surface states prior to desorption. In general, for the O2/Ag (111)
system, three adsorption states exist: a shallow physisorption well, a
molecular chemisorption well, and a dissociative chemisorbed state
(Campbell, 1985). At low incident translational energies, scattered
oxygen exhibits low velocities, indicating desorption from the
physisorbed state. At elevated incident energies, two significantly
faster scattering channels are observed. The fastest channel depends
on the incident energy indicating directly scattered O2. In contrast, the
other fast channel is independent on the incident energy, so that the

FIGURE 6
The translational energy distribution of recombinatively-
desorbing O2 (solid line) from Ag (111) can be modeled with the
product (dashed) of a thermal energy distribution (dash-dotted) and a
sticking function S (dotted). Highlighted is the maximum
observed translational energy Emax

tr . E0 is the energy barrier and W the
width parameter in Eq. 3.
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authors assign this pathway to transient trapping desorption from the
molecular chemisorption potential energy well. Adsorption in this
state is activated with a threshold mean energy of about 0.2 eV, and
exhibits electron transfer from the surface to the adsorbate. The
molecular chemisorption state can serve as precursor state for
dissociative chemisorption (Kleyn et al., 1996). Recent calculations
indicate an energy barrier of 0.8 eV between both states (Hinsch et al.,
2021). The mean final energy of O2 molecules originating from the
molecular chemisorption state recorded by Kleyn et al. is 0.14 eV
(Kleyn et al., 1996). It is close to 0.19 eV, which we measured in this
study. The lower translational energy could be caused by the
significant colder surface temperature of 150 K. This is indication
that the desorption state, which we observe in TPD experiments at
590 K, is identical to the intermediate molecular chemisorption state
observed in molecular beam surface scattering experiments.

4 Conclusion

We performed velocity resolved surface desorption experiments of
recombinatively desorbingO2 fromAg (111) by combining ion imaging
techniques with temperature programmed desorption. Desorption
occurs at 590 K, is clearly hyperthermal, and exhibits a narrow
angular distribution indicating an activated desorption process.
Velocity distributions are similar to previously reported distributions
from molecular beam surface scattering experiments. For both studies,
the energetics of desorbing molecules indicate desorption from an
intermediate molecular chemisorption state. Recent theoretical papers
calculate significantly higher barriers for oxygen sticking on Ag (111)
than we deduce from the translational energy distribution (Kunisada
and Sakaguchi, 2014). The here presented data will be a valuable
experimental benchmark to refine theoretical models crucial for a
better understanding of surface dynamics in metal oxidation processes.
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