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The sum of the absolute eigenvalues of the adjacency matrix make up graph
energy. The greatest absolute eigenvalue of the adjacency matrix is represented
by the spectral radius of the graph. Both molecular computing and computer
science have uses for graph energies and spectral radii. The Albertson (Alb)
energies and spectral radii of generalized splitting and shadow graphs
constructed on any regular graph is the main focus of this study. The only
thing that may be disputed is the comparison of the (Alb) energies and (Alb)
spectral radii of the newly formed graphs to those of the base graph. By
concentrating on splitting and shadow graph, we compute new correlations
between the Alb energies and spectral radius of the new graph and the prior graph.

KEYWORDS

Albertson (Alb) spectral radius, Albertson (Alb) energy, splitting graph, shadow graph,
eigenvalues

1 Introduction

Let G be a simple undirected connected regular graph with the vertex set V(G) = {v1,
v2, . . . , vz} and edge set E(G). If vk and vl are two nearby vertices of graph G, then vkvl is used
to refer to the edge that connects them.We conventionally writes the vertex degree dk related
to the vertex vk ∈V(G) that represent total counting of edges end at a vertex vk of a graph. The
adjacency matrix for the graph G is a square matrix denoted as A(G) = Adj(G) = [akl], in
which [akl] = 1 when two vertices vk and vl are adjacent otherwise it defines to be as zero,

mathematically it can be formulated asA(G) � 1 ifvk ~ vl,
0 elsewhere.

{ . The adjacency eigenvalues

of G labelled as ( �γ1, �γ2, . . . , �γz) are the eigenvalues of A(G). With the help of these
eigenvalues we define the spectrum of related graph G (Cvetković et al., 2009) and then
concluded their energy.

The graph energy is one of the very few mathematical ideas which are chemically
motivated into the modern subject of mathematics. Additionally, Graph theory encompasses
various invariants that are significant for understanding the properties of a graph. Among
these, the energy and spectral radius hold particular importance. Furthermore, the concept of
graph energy, denoted as ε(G), was initially introduced by Gutman in 1978 (Gutman, 1978).
However, Initially, this notion was met with skepticism and was explored by only a limited
group of scientists due to its unconventional nature. Nevertheless, it wasn’t until the year
2000 that mathematicians truly embraced this concept. At present, the idea of graph energy
has gained substantial recognition due to its wide-ranging applications across diverse
industries. Consequently, there is a surge of interest in this field, leading to the constant
emergence of graph energy and fundamental algebraic identities. Notably, graph energy
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captures the graphical characteristic, while the spectral radius of a
graph represents the largest absolute eigenvalue among all the
eigenvalues of its adjacency matrix, denoted by the notation
℘(G). Moreover, these mathematical tools have found several
applications in algebraic graph theory (Zhang et al., 2022). Both
of these tools, i.e., the energy and spectral radius, play pivotal roles in
comprehending the structural properties and behavior of graphs
across various disciplines. They offer valuable insights into a graph’s
connectivity, stability, expansion, and spread dynamics, making
them indispensable for the analysis and characterization of
graphs in different contexts.

There is a considerable and visible connection between
chemistry and graph theory. Specifically in graph theory, the
degree of a molecular graph vertex corresponds to the valency of
an atom. Moreover, A variety of topological indices have been built
on the product of the degrees dk and dl of the terminal vertices k and l
of the edge (chemical bond) kl, which has attracted the interest of
mathematical chemists. In recent decades, topological indices have
undergone extensive research in a number of fields, including
mathematics (Gutman and Polansky, 2012; Janezic et al., 2015),
physics (Labanowski et al., 1991), biology (Bajorath and Bajorath,
2011). Notably, they have found applications especially in chemical
disciplines (Klein et al., 1992; Trinajstić and Nikolić, 2000), such as
chemical documentation, isomer discrimination, study of molecular
complexity, and other related fields like QSAR and QSPR, drug
design, database choice, etc. A topological index (Gutman, 2013) is a
numerical value intrinsically tied to a graph, serving as a
fundamental characterizer of the graph’s topology while retaining
its consistency through graph transformations. Within the realm of
chemical graph theory, degree-based topological indices assume a
paramount role and hold immense significant. Topological indices
and graph invariants based on vertex degree and the distance
between vertices are commonly serve as indispensable tools in
characterizing molecular graphs. In the work of Gao et al.
(2016a); Gao et al. (2016b) several noteworthy findings on
topological indices of chemical graphs have emerged. These
techniques establish a profound link between a molecule’s
structure attributes and its properties, thereby enabling the
predictions of biological activity for chemical compounds, and
contributing to the development of various chemical applications.
Among these indices, Wiener index, the pioneer and extensively
researched topological index, has accumulate significant attention in
terms of both theoretical standpoint and practical applications.
Similarly, the Zagreb indices, which are degree-based topological
indices, have been the subject of extensive exploration and were
originally introduced by Gutman and Trinajsti�c (Gutman and
Trinajstić, 1972). These indices provide valuable insights into the
graph’s overall structure and the characteristics of its vertices.
Specifically, the first Zagreb index, denoted as ZI1(G), is defined
as the sum of the squares of the vertex degrees within a molecular
graph. On the other hand, the second Zagreb index ZI2(G)
corresponds to the sum of the product of the vertex degrees of
pairs of adjacent vertices. In a mathematical approach, this
relationship is expressed as follow: ZI1(G) � ∑v∈V(G)d

2
G(v) �∑kl∈E(G)(dG(k) + dG(l)) and is ZI2(G) = ∑kl∈E(G)(dG(k)dG(l)).

Moving on, M.O. Albertson (Albertson, 1997) introduced
Albertson matrix, which contains the entries |dG(k) − dG(l)| when
two vertices vk and vl are adjacent (i.e., vk ~ vl) and zeroes elsewhere.

It is occasionally famed as the Albertson Index (Gutman et al., 2005)
and referred to as the third zagreb index in a recent work (Fath-
Tabar, 2011). The topological indicator known as the Albertson
index serves to describe the structural characteristic of molecule,
particulary in the context of quantitative structure activity
relationship (QSAR) research in chemistry. QSAR is a technique
employed for predicting a chemical compound’s biological activity
or characteristic based on its molecular structure. In essence, it
assesses the connectedness, interconnectedness, and robustness of a
graph. It also gauges the effectiveness of information or signal
transmission within the network and the degree of connectedness
between vertices. It’s worth noting that a graph with a higher index
value tends to be more robust and resilient.

The significance of energy and spectral radii of a graph extends
across diverse fields. In the realm of social network analysis, energy
serves as a crucial metric for measuring network stability, while
spectral radius highlights influential nodes within the network.
Likewise, in the domain of electrical circuit analysis, graphs play
a pivotal role in illustrating circuit components and their
interconnections. The energy of a graph becomes a meaningful
measure, reflecting the total energy or power dissipation within an
electrical circuit, while spectral radius aids stability analysis and the
determination of maximum gain or amplification within feedback
systems. Furthermore, the spectral radius determines visual patterns
in the realm of image processing while energy gauges pixel
cohesiveness. Beyond this, the energy of a graph finds utility in
epidemiology and disease spread modeling, where it can illustrate
the potential for disease transmission between individuals. A lower
energy value may indicate a situation that is less contagious,
providing valuable insights for disease control strategies. On the
other hand, the spectral radius plays a key role in the calculation of
the basic reproduction number (R0) in epidemic models, with a
larger spectral radius suggesting a higher potential for an outbreak.
In addition to these applications, recommender systems utilize
energy to gauge user-item compatibility and the spectral radius
to identify influential factors. These metrics offer valuable across a
spectrum of systems, including social networks, electrical circuits,
and epidemiology, enhancing analysis and making predictions more
accurate.

The energy and spectral radii of the original graph and those of
the splitting and shadow graphs have recently been found to have a
substantial relationship. The dimer problem and Huckle′s theory,
which serve as examples of how graph spectra are used in statistical
physics and chemistry, have also been used in this study to make
general findings and emphasise this application. Notably, the
utilization of graph spectra in these domains is well-documented,
as evidenced by the work of Cvetkovic et al. (1980). Furthermore,
Bilal et al. made significant strides in uncovering the significance
correlation between the ISI energies and the ISI spectral radii of the
base graph, as well as those of the splitting and shadow graphs, in
their recent research (Ahmad et al., 2023). These findings illuminate
the structural characteristics of the graph and underscore the
interdependence of these measurements. In a complementary
vein, another recent study by Ahmad and Munir (2022a) offers
noteworthy insights into the strong relation between the ABC
energies and ABC spectral radii of the base graph, as well as
those of the splitting and shadow graphs. Bilal et al. in his recent
study (Ahmad and Munir, 2022b) unveiled some valueable
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relationship concerning the randic and reciprocal randic energy and
spectral radii of original graph and in correspondence to splitting
and shadow graphs. The references (Yu et al., 2004) serve as valuable
resources for insights on spectral radii. In (Shao et al., 2021), Shao
et al. made a notable discovery regarding the minimum augmented
Zagreb energy of trees. Additionally, researchers such as Horn et al.
(Horn and Johnson, 1991) and Gatmacher (Gantmacher, 1959)
delved into matrix analysis in relation to graph energies, further
expanding our understanding of this field. Xavier et al. (2022)
described energy of Cartesian product of graph nework. Samir
et al. (Vaidya and Popat, 2017a) developed one-splitting and
two-shadow graphs of a simple connected graph, revealing that
these graphs’ adjacency energies are constant multiples of the
energies of the original graph. Expanding on these ideas, Samir
et al. (Vaidya and Popat, 2017b) contributed significant findings
related to adjacency energies. In Liu et al. (2019) explored the
distance and adjacency energy of multiple-level wheel networks,
adding another layer of depth to the study of graph energies. The
signless Laplacian and Laplacian energies, as well as their spectra,
were established by Chu et al. (2020) by means of multi-step wheels.
A remarable work on graph energy and its uses was published by I.
Gutman et al. in (Li et al., 2012), which included information on
more than a hundred different types of graph energies and their
applications in various fields. Numerous graph energies have
applications in crystallography (Yuge, 2018), as well as in the
theory of macromolecules (Pražnikar et al., 2019), biology
(Giuliani et al., 2014), protein sequencing (Wu et al., 2015; Yu
et al., 2017), air travel problems (Jiang et al., 2016), and spacecraft
architecture (Pugliese and Nilchiani, 2017).

In Section 2, we delve into the core concepts centered around the
Albertson Estrada (Alb) energy and spectral radii of splitting and
shadow of regular graphs. Our exploration commences by
examining regular graph G and formulating general results
employing the splitting and shadow graph invariant.
Subsequently, we extrapolate from these general findings to
obtain specific results that pertain to various regular graph types,
including cycle(Cz) graphs, complete graphs(Kz), complete
bipartite(Kz,z) graphs, etc. The Alb spectral radius and energy of
the splitting graph and shadow graph come under scrutiny in
Section 3.

2 Preliminaries

In this section, we will lay out the essential ideas and present
pertinent background data related to our key discoveries. Spectral
graph theory plays a key role in different applications across
different areas ranging from computer science, networking,
chemistry, physics, as well as almost all areas of mathematics.
The application of spectral graph theory in chemistry is highly
significant, particularly in constructing a connection between graph
eigenvalues and the levels of energy of molecular orbital associated
with �π-electrons in conjugated hydrocarbons. In the context of the
H€uckel Molecular Orbital ( �HMO) approximation (Zimmerman,
2011), the levels of energy of �π-electrons in conjugated hydrocarbon
molecules can be more closely related with the eigenvalues of a
chemical graph referred to as the molecular graph. To provide a
tangible example, consider the chemical structure of Perylene

depicted in Figure 1, which serve as a representative conjugated
hydrocarbon with the formula �H. It consists of a total of 20-carbon
atoms, it exhibits a graph with z = 20.

Perylene, H′, is an example of a conjugated hydrocarbon,
characterized by its carbon atom structure illustrate as chemical
graph G′ in above figure. The vertices of the graph G′ are denoted as
1, 2, . . . , 20, which represent the carbon atoms in the chemical
formula H′. In the H€uckel Molecular Orbital ( �HMO) model, the
wave functions of a conjugated hydrocarbon with a specified
number of carbon atoms, indicated as ’z,’ are represented as a
linear combination within an z-dimensional space made up of
orthogonal basis functions. Simultaneously, Hamiltonian Matrix,
which is a square matrix of order z by z, is defined as:

�Hij �
γ, If i � j,
κ, If there is a chemical bond between atoms i and j,
0, If there is no chemical bond between atoms i and j,

⎧⎪⎨⎪⎩
where the parameters γ and κ are constants. As a demonstration, the
( �HMO) Hamiltonian matrix related to Perylene is:

�H �

γ κ 0 0 0 κ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
κ γ κ 0 0 0 κ 0 0 0 0 0 0 0 0 0 0 0 0 0
0 κ γ κ 0 0 0 0 0 κ 0 0 0 0 0 0 0 0 0 0
0 0 κ γ κ 0 0 0 0 0 0 0 0 0 κ 0 0 0 0 0
0 0 0 κ γ κ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
κ 0 0 0 κ γ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 κ 0 0 0 0 γ κ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 κ γ κ 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 κ γ κ 0 0 0 0 0 0 0 0 0 0
0 0 κ 0 0 0 0 0 κ γ κ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 κ γ κ 0 0 0 κ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 κ γ κ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 κ γ κ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 κ γ 0 0 κ 0 0 0
0 0 0 κ 0 0 0 0 0 0 0 0 0 0 γ κ 0 0 0 κ
0 0 0 0 0 0 0 0 0 0 κ 0 0 0 κ γ κ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 κ 0 κ γ κ 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 κ γ κ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 κ γ κ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 κ 0 0 0 κ γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Based on the given example, it is clear that even in the overall
scenario within the ( �HMO) model, it is necessary to address the
eigenvalue-eigenvector dilemma of an approximate Hamiltonian
matrix. This matrix follows a specific structure expressed as:

�H � γIz + κA G′( ) (2.1)
Here, γ and κ represent specific constants, Iz denotes the z-

dimensional unit matrix and the adjacency matrix of a specific graph
G′ is signifies as A(G′) comprising the z vertices, which represents
the carbon-atom framework of the underlying conjugated molecule.
The energy levels of total �π-electron are determined by the respective
eigenvalue of the adjacency matix of G′. By virtue of above equation,
the energy levels εk associated with the �π-electrons exhibit a
straightforward connection to the eigenvalues ηk of the graph G′.

εk � γ + κ ηk; k � 1, 2/ , 20. (2.2)
Within the framework of the �HMO approximation, the

collective E of all �π-electrons illustrated as E � ε�π(G) � ∑z
k�1gkεk.

In this context, the term ’occupation number’ refers to gk, which
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signifies the quantity associated with the given property. The main
point to note is that the number of �π-electrons (denoted by z) in the
conjugated hydrocarbons being studied is equal to the sum of
individual counts (g1 + g2 + / + gz). Consequently, this implies
that ε(G) � ∑z

k�1 | ηk |.
Let [Alb(G)] = xkl referred as Albertson matrix of the graph G

specified in (Albertson, 1997) possessing entries,

xkl �
|dk − dl|, if vk and vl are adjacent,
0 if k � l,
0 elsewhere.

⎧⎪⎨⎪⎩
Here, the degrees of the vertices vk and vl are dk and dl

respectively. Let eigenvalues of the Albertson matrix of the graph
G are define as �ξ1, �ξ2,/ �ξz. The Alb eigenvalues makes up the Alb
spectrum of the graph. If distinct eigenvalues �ξ1, �ξ2,/ �ξz of
Albertson of the graph G are define with multiplicities
�m1, �m2, . . . , �mz, respectively, then

spec Alb( ) � �ξ1 �ξ2 / �ξz
�m1 �m2 / �mz

( ). (2.3)

With the help of this spectrum, Albertson (Alb) energy of a
graph (G) is defined as

Albε G( ) �∑z
i�1

�ξ i
∣∣∣∣∣ ∣∣∣∣∣.

In Spectral graph theory, spectral radius stand together with
graph energy symbolize as ℘Alb(G) and define as:

℘Alb G( ) � maxzi�1 �ξi
∣∣∣∣∣ ∣∣∣∣∣,

Where �ξi indicated as the eigenvalue of the Albertson matrix
ranging from 1 ≤ i ≤ z. The following definition are crucial to our
conclusions.

Definition 1.1 Splitting graph Spls(G) of a connected graph G is
obtained by adding new s vertices to each vertex v of a graph G,
making sure that every new vertex is connected to every vertex that is
adjacent to v in the graph G.

Figures 2, 3 should the situation as in Defintion 1.1.

Definition 1.2 Shadow graph Shs(G) of a connected graph G is
established by taking s copies of G, say G1, G2, . . . , Gs then join each
vertex u in Gi to the neighbours of the corresponding vertex v in Gj,
1 ≤ i, j ≤ s.

Figure 4 should the situation as in definition 1.2. (Neumaier,
1992) Let AϵRm×n, BϵRp×q. Then A⊗B is given by

A ⊗ B �

a11B . . .a1nB
. . . .
. . . .
. . . .

am1B . . .amnB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Proposition 1.1 (Neumaier, 1992) Assuming that α is an eigenvalue
of A and β is an eigenvalue of B, let’s write AϵMm, BϵMn. Then an
eigenvalue of A ⊗ B is αβ.

3 Albertson energy and spectral radii of
generalized splitting graphs

In this section, we compare the Albertson energies (Alb) and
spectral radii of generalized splitting and shadow graph of a regular
graph G with the corresponding Albertson energies (Alb) and
spectral radii of its original graph. It is essential to emphasize
that G denotes any k-regular graph.

Theorem 1. If a graph G is k-regular, then the Albertson energy for
the generalized splitting of a regular graph is define as,
Albε(Spls(G)) � Adjε(G)(2ks �s√ ).

Proof. Let G be a k regular graph with vertex set V(G) = {v1, v2,
v3, . . . , vz} and Spls(G) be the splitting graph of graph G with vertex
set V(Spls(G)) = {v11, v12, . . . , v1z, v21, v22, . . . , v2z, . . . , vs1, vs2, . . . ,
vsz} ∪ V(G). Then Alb(Spls(G)) matrix can be written as follows

Alb Spls G( )( ) �
ℵ1 ℵ2 . . . ℵ2

ℵ2 ℵ1 . . . ℵ1

..

. ..
.

1 ..
.

ℵ2 ℵ1 / ℵ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s+1

,

where the matrix ℵ1 is defined by ℵ1 = Alb(G), and the matrix ℵ2 is
defined by ℵ2 = ksAdj(G).

Alb Spls G( )( ) �
Alb G( ) ksAdj G( ) . . . ksAdj G( )

ksAdj G( ) Alb G( ) . . . Alb G( )
..
. ..

.
1 ..

.

ksAdj G( ) Alb G( ) / Alb G( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s+1

�
Alb G( ) + 0Adj G( ) Alb G( ) + ksAdj G( ) . . . Alb G( ) + ksAdj G( )
Alb G( ) + ksAdj G( ) Alb G( ) + 0Adj G( ) . . . Alb G( ) + 0Adj G( )

..

. ..
.

1 ..
.

Alb G( ) + ksAdj G( ) Alb G( ) + 0Adj G( ) / Alb G( ) + 0Adj G( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s+1

�
Alb G( ) . . . Alb G( )

..

.
1 ..

.

Alb G( ) / Alb G( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s+1

+
0Adj G( ) ksAdj G( ) . . . ksAdj G( )
ksAdj G( ) 0Adj G( ) . . . 0Adj G( )

..

. ..
.

1 ..
.

ksAdj G( ) 0Adj G( ) / 0Adj G( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s+1

� Alb G( ) ⊗
1 . . . 1
..
.
1 ..

.

1 / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
s+1

+ Adj G( ) ⊗
0 ks . . . ks
ks 0 . . . 0
..
. ..

.
1 ..

.

ks 0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s+1

.

According to the definition of the Albertson index, Alb(G) = 0 if
and only if a graph G is regular.

FIGURE 1
Perylene H′ and it’s molecular graph G′.
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0Alb Spls G( )( ) � 0 + Adj G( ) ⊗
0 ks . . . ks
ks 0 . . . 0
..
. ..

.
1 ..

.

ks 0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s+1

.

Let [B] = ekl with their respective entries is define as ekl �
0 ks . . . ks
ks 0 / 0
..
. ..

.
1 ..

.

ks 0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s+1

.

To find Albε(Spls(G)), it is required to obtain all of [B]’s
eigenvalues. Right now, the [B] eigenvalues are being calculated.
Because it has rank two this implies that [B] has only two eigenvalues
that are not zero. The symbol like α2 and α3 are stand for the
eigenvalues of [B]. Therefore, it is evident that

α2 + α3 � tr B( ) � 0. (3.1)
Consider [B2] = fkl having entries defines as fkl �

s(ks)2 0 . . . 0
0 (ks)2 / (ks)2
..
. ..

.
1 ..

.

0 (ks)2 / (ks)2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s+1

.

Then the trace of above matrix is defines as

α22 + α23 � tr B2( ) � s ks( )2 + s ks( )2 � 2k2s3. (3.2)
Equations 3.1, 3.2 when solved yields, α2 � ks

�
s

√
, and

α3 � −ks �s√
. The defining equation of [B] is denoted by the

symbol Ch(B). Last but not least, we approach at Ch(B), which
can be defined as.

Ch(B) � αs−1(α − (ks �s√ ))(α + (ks �s√ )) � αs−1(α2 − (ks �s√ )2) � 0.

As a result, we are left with the following spectrum

specB � 0 ks
�
s

√( ) − ks
�
s

√( )
s − 1 1 1

( ). (3.3)

Considering that Alb(Spls(G)) = Adj(G)⊗B. Proposition 1.1 is
applied, and the result is

Albε Spls G( )( ) �∑z
i�1

specB( )�ξ i)∣∣∣∣∣ ∣∣∣∣∣
�∑z

i�1
| ± ks

�
s

√( )�ξi|
�∑z

i�1
|�ξ i| ks �s√ + ks

�
s

√[ ]
� Adjε G( ) 2ks

�
s

√[ ].
0Albε Spls G( )( ) � Adjε G( ) 2ks

�
s

√[ ].
In view of the above theorem we may interpret this result for

some families of regular graphs, i.e., for cycle graph (Cz), complete
graph (Kz), crown graph (Hz,z), complete bipartite graph (Kz,z),
prism graph (Yz) and hypercube graph (Qz) by assigning values for k
with respect to that regular graphs.

Proposition 3.1. i) Alb energy of generalized splitting graph of Cz is

Albε(Spls(Cz)) � (4s �s√ )

4 cot
π

z
, if z ≡ 0(mod4),

4 csc
π

z
, if z ≡ 2(mod4),

2 csc
π

2z
, if z ≡ 1(mod2).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

ii) Alb energy of generalized splitting graph of Kz is
Albε(Spls(Kz)) � [4(z − 1)2s �s√ ].

iii) Alb energy of generalized splitting graph of Hz,z is
Albε(Spls(Hz,z)) � [8(z − 1)2s �s√ ].

iv) Alb energy of generalized splitting graph of Kz,z is
Albε(Spls(Kz,z)) � [4z2s �s√ ].

v) Alb energy of generalized splitting graph of Qz is

Albε(Spls(Qz)) � (2zs �s√ )

(z + 1)
2

z + 1
z + 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, forz � odd,

z
z
z

2

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠, forz � even.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
vi) Alb energy of generalized splitting graph of Yz is

Albε Spls Yz( )( ) �∑z−1
j�0

|2cos 2πj
z

( ) + 1| + |2cos 2πj
z

( ) − 1|( ) 6s
�
s

√( ).

Proof. i) Cycle graphs, often known as cyclic graphs or just
cycles, are a type of mathematical graph that has a
closed loop structure. Since cycle graphs (Cz) are 2-
regular graphs 0 k = 2, and

Adjε(Cz) �

4 cot
π

z
, if z ≡ 0(mod4),

4 csc
π

z
, if z ≡ 2(mod4),

2 csc
π

2z
, if z ≡ 1(mod2).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
. Hence

the result may be obtained by using Theorem 1.
ii) Complete graphs, also referred to as fully connected graphs, are

a kind of straightforward undirected graphs in which each pair
of distinct nodes is joined by a single edge. Complete graphs are
(z − 1)-regular graphs 0 k = (z − 1), and Adjε(Kz) = 2(z − 1),
can be calulated algebrically. Hence, we established result by
using Theorem 1.

FIGURE 2
A base graph H(3,3) and it’s respective Spl2(H(3,3)).
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iii) Crown graph (Hz,z) on 2z vertices is an undirected graph with
two sets of vertices {u1, u2, . . . , uz} and {v1, v2, . . . , vz} with an
edge from uk to vl, whenever k ≠ l. It is therefore equivalent to the
complete bipartite graph (Kz,z) with horizental edges removed.
Crown graphs are (z − 1)-regular graphs (k = z − 1), just like the
complete graph while it’s energy defined as Adjε(Hz,z) = 4(z − 1).
Thus, Theorem 1 can be used to reach at the result.

iv) Complete bipartite graphs consist of two sets of vertices say A
and B, in which every vertex in set A is linked to every vertex of
set B. we get k = z for complete bipartite graphs because it is z-
regular graphs and their respective energy is defined as
Adjε(Kz,z) = 2z, by applying some basic algebra. Hence, by
applying Theorem 1, the result can be achieved.

v) Hypercube graphs, also known as z-cube graphs, are a type of
mathematical graph that depicts the connectedness among the
vertices of a z-dimensional hypercube. Just like the complete
bipartite, Hypercube graphs are also z-regular graphs 0 k = z
and Adjε(Qz) � (z+12 )(z+1z+1

2
), when z is odd, and

Adjε(Qz) � z(zz
2
), when z is even (Stanley, 2008). Thus, the

claim can be achieved by applying Theorem 1.
vi) Prism graphs denoted as Yz are a type of mathematical graph that

are produced by adding additional edges to connect the matching
vertices on either side of two cycles. Since the three-dimensional
representation of these graphsmimics the shape of a prism, they are
known as prism graphs. A z-prism graph has 2z set of vertices and
3z set of edges, and it is equivalent to the generalized Petersen graph
P(z, 1). Prism graphs are 3-regular graphs because it is a part of the
cubical graphs, 0 k = 3 and Adjε(Yz) � ∑z−1

j�0(|2cos(2πjz ) + 1| +
|2cos(2πjz ) − 1|) in (Gera and Stnic, 2011). Thus, the conclusion can
be establish by applying Theorem 1.

Example 3.1. Consider Latin square graph (L3) which is 6-regular
with 9 vetices. Albertson index for Latin square (L3) is defined as

Alb L3( ) �
0 / 0
..
.
1 ..

.

0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
9×9

.

The matrix for 1-splitting of Latin square (L3) of order 3 is figure
out from the following figure: define as:

Spl1 L3( ) �

0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6
0 0 0 0 0 0 0 0 0 6 6 6 0 0 0 6 6 6
0 0 0 0 0 0 0 0 0 6 6 6 0 0 0 6 6 6
0 0 0 0 0 0 0 0 0 6 6 6 0 0 0 6 6 6
0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 0 0 0
0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 0 0 0
0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 0 0 0
0 0 0 6 6 6 6 6 6 0 0 0 0 0 0 0 0 0
0 0 0 6 6 6 6 6 6 0 0 0 0 0 0 0 0 0
0 0 0 6 6 6 6 6 6 0 0 0 0 0 0 0 0 0
6 6 6 0 0 0 6 6 6 0 0 0 0 0 0 0 0 0
6 6 6 0 0 0 6 6 6 0 0 0 0 0 0 0 0 0
6 6 6 0 0 0 6 6 6 0 0 0 0 0 0 0 0 0
6 6 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0
6 6 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0
6 6 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
18×18

.

(3.4)
More precisely, Alb(Spl1(L3)) can be written as follow

Alb Spl1 L3( )( ) � ℵ1 ℵ2

ℵ2 ℵ1
[ ]

2×2

.

Where the matrix ℵ1 is defined by ℵ1 = Alb(L3) and the matrix
ℵ2 is defined by ℵ2 = 6Adj(L3).

Alb Spl1 L3( )( ) � Alb L3( ) 6Adj L3( )
6Adj L3( ) Alb L3( )[ ]

2×2

� Alb L3( ) + 0Adj L3( ) Alb L3( ) + 6Adj L3( )
Alb L3( ) + 6Adj L3( ) Alb L3( ) + 0Adj L3( )[ ]

2×2

� Alb L3( ) Alb L3( )
Alb L3( ) Alb L3( )[ ]

2×2

+ 0Adj L3( ) 6Adj L3( )
6Adj L3( ) 0Adj L3( )[ ]

2×2

� Alb L3( ) ⊗ 1 1
1 1
[ ] + Adj L3( ) ⊗ 0 6

6 0
[ ].

Since Latin Square is a regular graph, so by the defintion of the
Albertson index Alb(L3) = 0.

0Alb Spls L3( )( ) � 0 + Adj L3( ) ⊗ 0 6
6 0
[ ].

Let [B] = ckl with their respective entries is define as ekl � 0 6
6 0
[ ].

FIGURE 3
A base graph of (Y5) and it’s associated Spl1(Y5).
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To find Albε(Spl1(L3)), it is required to obtain all of [B]’s
eigenvalues. Because it has two rank this implies that [B] has only
two eigenvalues that are not zero. Symbols α2 and α3 stand for the
eigenvalues of [B]. Therefore, it is evident that

α2 + α3 � tr B( ) � 0. (3.5)
Consider [B2] = fkl with their defining entries is fkl � 36 0

0 36
[ ].

It’s trace is defined as:

α22 + α23 � tr B2( ) � 36 + 36 � 72. (3.6)
Equations 3.5, 3.6 when solved yield the following results

α2 � 6
�
2

√
, and α3 � −6 �

2
√

. The characteristic polynomial for [B]
is denoted by Ch(B), and represented as.
Ch(B) � (α − 6

�
2

√ )(α + 6
�
2

√ ) � (α2 − (6 �
2

√ )2) � 0. As a result,

we are left with this spectrum, specB � 6
�
2

√ −6 �
2

√
1 1

( ). In light

of the fact that Alb(Spl1(L3)) = Adj(L3)⊗B, by applying Proposition
(1.1) we get the following outcome:

Albε Spl1 L3( )( ) �∑2
i�1

specB( )�ξ i∣∣∣∣∣ ∣∣∣∣∣
�∑2

i�1
| ± 6

�
2

√( )�ξ i|
�∑2

i�1
|�ξ i‖± 6

�
2

√ |
� Adjε L3( ) 6

�
2

√ + 6
�
2

√( )
� Adjε L3( ) 12

�
2

√( ),since

spec(Adj(L3)) � 6 −3 0
1 2 6

( ) 0Adjε((L3)) � 12

0Albε Spl1 L3( )( ) � 144
�
2

√
.

Another approach: Spectrum of Alb(Spl1(L3)) is easily observed
by a direct computation of matrix Alb(spl1(L3)) defined in Equation
3.5 as:

spec Alb Spl1 L3( )( )( � 0 −36 36 18 −18
12 1 1 2 2

( ).
Utilizing spec(Alb(Spl1(L3)) we arrive at
Albε(Spl1(L3)) � 144

�
2

√
.We can easily verify this outcome from

Theorem 1.

Theorem 2. If a graph G is k-regular graph, then the spectral radius
for the generalized splitting of a regualr graph is deifned as,
℘Alb(Spls(G)) � ℘Adj(G)(ks �s√ ).

Proof. Using same justifications as Formula (3.3) in Theorem 1, we

have spec(B) � 0 (ks �s√ ) −(ks �s√ )
s − 1 1 1

( ). In light of the fact

that Alb(Spls(G)) = Adj(G)⊗B. By applyning the Proposition (1.1),
we get

℘Alb Spls G( )( ) � maxz
i�1 specB( )�ξ i∣∣∣∣∣ ∣∣∣∣∣

� maxz
i�1 ± ks

�
s

√( )�ξ i∣∣∣∣∣ ∣∣∣∣∣
� maxz

i�1 �ξ i
∣∣∣∣∣ ∣∣∣∣∣ ks �s√( )

� ℘Adj G( ) ks
�
s

√( ).
0℘Alb Spls G( )( ) � ℘Adj G( ) ks

�
s

√( ).
By assigning values for k with respect to specific regular

graphs, we can interpret the outcome of the aforementioned
theorem for some families of regular graphs, such as the cycle
graph (Cz), complete graph (Kz), crown graph (Hz,z), complete
bipartite graph (Kz,z), prism graph (Yz), and hypercube graph
(Qz) as follows:

Proposition 3.2. Albertson (Alb) spectral radii of generalized
splitting graph of:

i) Cz is ℘Alb(Spls(Cz)) � 4s
�
s

√
.

ii) kz is ℘Alb(Spls(Kz)) � (z − 1)2s �s√
.

iii) Hz,z is ℘Alb(Spls(Hz,z)) � (z − 1)2s �s√
.

iv) Kz,z is ℘Alb(Spls(Kz,z)) � z2s
�
s

√
.

v) Qz is ℘Alb(Spls(Qz)) � z2s
�
s

√
.

vi) Yz is ℘Alb(SplsYz)) � 9s
�
s

√
.

Proof. i) As the cycle graphs are 2-regular graphs, so we have k = 2
and ℘Adj(Cz) = 2. Thus, Theorem 2 can be used to
achieve the desired result.

ii) For complete graphs, we have k = (z − 1) because it is a (z − 1)-
regular graphs and ℘Adj(Kz) = (z − 1). Thus, by adopting
Theorem 2, the required result can be produced.

iii) We pursue our argument in the same way as in (ii).
iv) Complete bipartite graphs are z-regular graphs 0 k = z and

℘Adj(Kz,z) = z. The Theorem 2 can therefore be used to achieve
the desired result.

v) We continue the same argument as in (iv).
vi) Since prism graphs are 3-regular graphs0 k = 3 and ℘Adj(Yz) = 3.

Hence, Theorem 2 can be used to produce the desired result.

FIGURE 4
Sh2(H3,3), the 2-shadow graph of H3,3.
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4 Remark

SinceAlb(G) = 0 if and only if graphG is regular, and the shadow
graphs for a regular graph G is again a regular graph 0

Alb(shs(G)) = 0, and hence their respective Albertson (Alb)
energies and Albertson (Alb) spectral radii is zero,
i.e., Albε(shs(G)) = 0 and ℘Alb(shs(G)) = 0.

5 Conclusion

One of the important development in spectral graph theory,
which successfully bridging the realm of mathematics and
chemistry, is a graph energy theory that stand with spectral
radius. These ideas are explored in the literature by several
academic works. We must take on the issue of analyzing the
spectral radii and energy of larger graphs. We have presented
remarkably comprehensive findings by focusing on splitting and
shadow graph invariants. Our research demonstrate that spectral
radii and energies of larger graphs are multiples of what was seen in
the base graph. Such findings provide insightful information about
how to understand the resilience of network and the spread of
viruses inside them. The main focus of this research work is on the
Albertson energies and Albertson spectral radius of the generalized
splitting and shadow graphs built on any regular graph G in analogy
of the classical ideas of graph energy and spectral radius. Finally we
conclude that, the new Albertson energies as well as spectral radii of
the modified graph are multiple of the respective energy and spectral
radii of the original regular graph known as base graph.

It is important to highlight that, a similar strategy can be used to
establish a connection between the spectral radii and energy of the
splitting and shadow graph created from a regular graph by choosing
any alternative topological index. Graph theory encompasses
numerous other operation, such as product and joins,
complement and dual graphs, union of graphs, and various kinds
of graph product, etc. As a future prospect, one could explore the
option of employing different graph operations and then compare
the spectral radii and energy of the original graph with those of the

newly constructed graphs resulting from the aforementioned
operation.
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