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de novo Drug Design (dnDD) aims to create new molecules that satisfy multiple
conflicting objectives. Since several desired properties can be considered in the
optimization process, dnDD is naturally categorized as a many-objective
optimization problem (ManyOOP), where more than three objectives must be
simultaneously optimized. However, a large number of objectives typically pose
several challenges that affect the choice and the design of optimization
methodologies. Herein, we cover the application of multi- and many-objective
optimization methods, particularly those based on Evolutionary Computation and
Machine Learning techniques, to enlighten their potential application in dnDD.
Additionally, we comprehensively analyze how molecular properties used in the
optimization process are applied as either objectives or constraints to the
problem. Finally, we discuss future research in many-objective optimization for
dnDD, highlighting two important possible impacts: i) its integration with the
development of multi-target approaches to accelerate the discovery of innovative
and more efficacious drug therapies and ii) its role as a catalyst for new
developments in more fundamental and general methodological frameworks in
the field.
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1 Introduction

Life involves choices, reaching decisions, and seeking compromises. The major challenge
lies in managing the conflict between the various goals and objectives Miettinen (1999). As in
many real-world problems, the discovery of a new drug with desired pharmacological and
pharmacokinetic properties has several objectives to be considered. For instance, in the
search for new therapeutic drugs, the maximization of (i) the potency of the drug, (ii) the
structural novelty, (iii) pharmacokinetic profile, the minimization of (iv) synthesis costs, and
(v) unwanted side effects are desired goals to be optimized Rosenthal and Borschbach (2017);
Lambrinidis and Tsantili-Kakoulidou (2021). Thus, designing new effective and safe drugs is
inherently a problem with diverse objectives to be optimized concurrently.

Many computational tools have been developed to assist in the design of novel drug-like
molecules, such as quantitative structure-activity relationship (QSAR) Jana et al. (2020);
Wang Z. et al. (2021); Socha et al. (2023), molecular docking and affinity prediction through
machine learning-based scoring functions Guedes et al. (2014) Santos et al. (2020); Guedes
et al. (2021). Flurbiprofen, vaborbactam, and atazanavir are commercially approved drugs
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discovered by computer-aided drug design Sabe et al. (2021). The
term “de novo” in Latin means “anew”, “afresh”, or “from the
beginning”. The goal of de novo drug design (dnDD) is to create
novel molecules with desirable properties from scratch. In this
context, multiple properties mean multiple objectives to be
optimized.

The problem of optimization refers to the task of discovering
feasible solutions until no better solution can be found. The quality
of a solution is evaluated based on an objective, while the feasible
region represents a set of conditions or constraints that limit the
solutions to the problem. In dnDD, an objective can be expressed by
various properties of interest, such as a similarity score to a known
ligand or a binding score with a target receptor Nicolaou et al.
(2009). At the same time, the constraints may be any useful function,
such as chemical stability and synthetic feasibility Nicolaou et al.
(2012).

For a long time, researchers in dnDD neglected the presence of
multiple conflicting objectives Nicolaou et al. (2009), such as
simultaneously maximizing the potency of a drug to a specific
target and minimizing known side effects, which are naturally
present in this type of problem. Due to the complexity of
designing a new molecule, a single objective may not cover the
multi-faceted design issues. Thus, researchers seek new techniques
or design strategies that simultaneously consider the multiple
aspects of this class of problems.

While in a single-objective optimization problem (SingleOOP),
the goal is to optimize only one objective function, in a multi-
objective optimization problem (MultiOOP), more than one
objective must be simultaneously optimized. If the objective
functions are not conflicting, a solution can be found where each
objective reaches its optimum value. However, in MultiOOPs, those
objectives are frequently conflicting (i.e., the improvement of one
objective leads to the degradation of another objective), and also
non-commensurable (i.e., when dealing with objectives that have
different units or scales of measurement). In this case, there is
usually no optimal solution but a set of trade-off solutions
representing a compromise between the conflicting objectives.
Such solutions are called non-dominated solutions, which form
the Pareto (optimal) set, which is the set of solutions that are all
equally optimal concerning the considered objectives.

An automatic dnDD can accelerate the overall drug discovery
process but can be complex and computationally demanding. Since
LEGEND, the first dnDD technique proposed in 1991 Nishibata and
Itai (1991), numerous other methods have been developed to assist
researchers in drug discovery. In particular, Evolutionary
Algorithms (EAs) have been widely used to find the optimal
solution(s) in de novo design Devi et al. (2015); Le and Winkler
(2015). EAs are population-based metaheuristics in which a
collection of candidate solutions evolve under specified selection
rules to a state that minimizes/maximizes a general cost function. In
contrast to classical search methods that usually aggregate the
objective functions into one objective, EAs can be easily applied
to multi-objective optimization problems due to their population-
based nature, allowing EAs to find a set of non-dominated solutions
in a single run. Such methods are called multi-objective EAs
(MultiOEAs).

Research in evolutionary computation has primarily focused on
problems having two or three objectives Coello et al. (2007).

However, many real-world problems have several (more than
three) objectives in their formulation, e.g., car side-impact Deb
et al. (2009), mechanical engineering problems Ursem and
Justesen (2012), water resource management Asafuddoula et al.
(2015), routing planning in agricultural mobile robots Zhang
et al. (2022), wireless sensor network deployment Ben Amor
et al. (2022), among others. Particularly, dnDD has intrinsically
various objectives to optimize, clearly more than three Rosenthal
and Borschbach (2017); Lambrinidis and Tsantili-Kakoulidou
(2021).

“Multi-objective” refers to scenarios involving three objective
functions at most, while “many-objective” is usually adopted to
specify problems with more than three objectives. The growing
interest in the area of many-objective optimization (ManyOO)
motivated the study and the design of new optimization techniques
capable of solving problems with four to twenty or even more objective
functions, as occurs in the nurse scheduling problem, with 25 objectives
to be considered Burke et al. (2004); Sülflow et al. (2007). However,
problems with many objectives present additional challenges compared
to low-dimensional problems, e.g., finding a good approximation of the
Pareto set. Many-objective optimization in real-world applications has
many decision design components that users commonly undertakeDeb
et al. (2023).

Over the past three decades,many-objective EAs (ManyOEAs) have
been the subject of extensive research and practical implementation in
various real-world applications, making them a widely studied and
applied field Safi et al. (2018); Sato and Ishibuchi (2023).

This paper aims to review and enlighten the potential
application of ManyOO in dnDD, with particular emphasis on
EAs. There have been a limited number of examples where
ManyOEAs are applied to dnDD and published in scientific
literature. Thus, the main contributions of this paper are:

• introduce the definition of ManyOOPs and discuss the main
challenges that impact the choice and the design of
evolutionary techniques when the number of objectives of
an optimization problem increases;

• review the different classifications of EAs for solving multi-
objective and many-objective optimization problems;

• present and classify some existing MultiOEAs for dnDD;
• enumerate and categorize several ManyOEAs, from the most
representative to the most recent state-of-the-art techniques,
which have the potential to be applied in dnDD;

• present recent research that employs machine learning
techniques, as they are emerging as a promising class of
methods for multi-objective and possibly for many-
objective dnDD;

• provide a comprehensive analysis of how the various
molecular properties used in the optimization process are
applied as either objectives or constraints to the problem.

As far as we know, this is the first review covering the application
of ManyOO methodologies for the dnDD in addition to the
MultiOO approaches. To organize and classify the different
methodologies employed in these two main areas, “multi-
objective” and “many-objective”, herein, we classify the
optimization algorithms into two classes: multi-objective methods,
in which problems are defined with two or three objectives, and
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many-objective methods, where problems contain four or more
objectives, as illustrated in Figure 1.

The paper is organized as follows. Section 2 provides basic
concepts and definitions regarding multi-objective optimization.
Section 3 presents solutions methods for solving MultiOOPs,
including classical techniques and MultiOEAs. Section 4 discuss
the main challenges faced when dealing with ManyOOPs. A
classification of ManyOEAs is provided, presenting recent and
representative methods for each approach. In Section 5, we
describe applications in dnDD, focusing on the two classifications
of methods proposed (multi-objective and many-objective),
presenting not only techniques based on EAs but also based on
Machine Learning (ML) methods. Recently, hybrid approaches have
emerged, combining EAs withML techniques to increase the potential
of these two classes of methods. Additionally, we will discuss how
researchers distinguish objectives and constraints among the many
molecules’ properties in dnDD. Perspectives concerning theManyOO
approach in dnDD are given in Section 6. The conclusions are
presented in Section 7.

2 Key concepts in the multi-objective
optimization problem

A MultiOOP can be written as

Minimize/Maximize F x( ) � f1 x( ), f2 x( ), . . . , fk x( )( )T

subject to gj x( )≤ 0, j � 1, 2, . . . , J;
hp x( ) � 0, p � 1, 2, . . . , P;
xl
i ≤xi ≤xu

i , i � 1, 2, . . . , n

(1)

where we have k ( ≥ 2) objective functions fi: R
n → R that must be

minimised or maximized. For convenience, we will treat the

MultiOOP as a minimization problem; however, if an objective
function fk(x) needs to be maximized, then it is equivalent to
minimizing the function −fk(x). The vector of objective functions
is denoted by F(x), where x � (x1, x2, . . . , xn)T is a solution
(decision) vector with n variables. Associated with the problem,
there are J inequality and P equality constraints, such that
g: Rn → RJ and h: Rn → RP, respectively. The last set of
constraints in (1) is the bound constraints that restrict each
variable of the decision vector x to a value within a lower xl

i and
an upper xu

i bound, with i = 1, . . ., n. A feasible solution is any
solution x that satisfies all constraints, and the set of all feasible
solutions constitutes the feasible (set) region S ⊂ Rn, which is a
subset of the decision space.

The notable difference between single-objective and multi-
objective optimization is that in MultiOOP, the objective
functions constitute a multi-dimensional space called the
objective space Z ⊂ Rk. The elements of Z correspond to the
objective vector z � F(x) � (z1, z2, . . . , zk)T, where zi = fi, ∀i = 1, .
. , k. For each solution vector x in the decision space, there is an
objective vector z in the objective space. Such mapping relates an
n-dimensional solution vector (in the decision space) to a k-
dimensional objective vector (in the objective space). An
illustrative example of these two spaces is shown in Figure 2.
For clarity, suppose that A, B, and C are three different
compounds and f1 and f2 are affinity predictions given in pKi

of each molecule against two different targets (e.g., one
therapeutic protein and one protein considered as an off-
target related to side effects). Our objectives are to maximize
the affinity value of these compounds against “target 1” and to
minimize the affinity against “target 2”. Hence, for each solution
in the decision space (e.g., represented by the SMILES of a
particular molecule), there is a corresponding point in the

FIGURE 1
Classes of optimization methods adopted in this work, where k is the number of objectives. Flowchart generated with the Miro program (https://
miro.com/).
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objective space (represented by the affinity prediction of the
compound against each target).

2.1 Pareto optimality

In MultiOOP, several objectives must be simultaneously optimized.
Usually, no single solutionwould give the best values for all the objective
functions. Instead, in a typical MultiOOP with conflicting objectives, a
set of solutions is superior to the others when all objectives are
considered. Such solutions are those where none of the objectives
can be improved without deteriorating at least one of the other
objectives. Those solutions are called Pareto-optimal solutions due to
the Italian economist Vilfredo Pareto, who introduced this theory in
1896 Pareto (1964). The optimal solution for a MultiOOP is based on
the Pareto optimality concept, in which two solutions are compared
based on whether one dominates the other.

Definition 2.1. A decision vector x ∈ S dominates another vector y ∈
S (x ≺y) if and only if

fi x( )≤fi y( ) ∀i ∈ 1, . . . , k{ } and ∃j ∈ 1, . . . , k{ }: fj x( )<fj y( )

where k is the number of objectives.

Definition 2.2. A decision vector x* ∈ S is a Pareto-optimal solution
if no other x ∈ S dominates x*. The set of all Pareto optimal solutions
in the decision space is called Pareto-optimal set, or simply Pareto set
(PS), and its image in the objective space is called Pareto-optimal
front, or Pareto front (PF).

The Pareto-optimal set is the best collection of solutions to the
MultiOOP. Research in the area of MultiOO is concerned with the
problem of how to identify the PS or at least a good approximation
of it. The ideal approach would be to find (i) a set of solutions as
close as possible to the PF and (ii) as diverse as possible along that
front Deb (2001). A typical PF is illustrated in Figure 3, where f1 and
f2 are two objective functions that must be simultaneously
minimized. Four different points (solutions values) are shown in
this figure: solution A dominates solution B, as f1(A) < f1(B) and
f2(A) < f2(B); A also dominates solution C for the same reason.
However, solutions A and D are non-dominated by each other since
f1(A) < f1(D) but f2(A) > f2(D). The Pareto-optimal solutions (dots in
blue) that form the PF are those in which no objective can be
improved without making at least one other objective worse.

The concept of dominance is of the utmost importance in this
type of optimization problem, as it allows the comparison of two
different solutions concerning distinct objective functions. Hence, to
find the non-dominated set of solutions, the dominance relation ≺ is
used to identify the best between two given solutions.

3 Solution methods

There are different ways to deal with a MultiOOP, usually
consisting of three stages: model building, optimization, and
decision-making Branke et al. (2008). First, we formulate the

FIGURE 2
Hypothetical decision space (left) and objective space (right) associated with objectives f1 and f2 for the molecules (A, B and C) represented by the
SMILES strings.

FIGURE 3
Pareto-optimal solutions for a two-objective minimization
problem.
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optimization problem in which the decision variables, objectives,
and constraints are specified. Second, an optimization technique
is used to find the best compromise solutions. Since the Pareto
optimal solutions are equally acceptable, a decision maker (DM),
who usually has expertise in the problem domain, must decide
which solution(s) best suits your preferences. Following the
approaches that distinguish when the DM interacts with the
optimization procedure, the methods can be classified as
Miettinen (1999):

• No-preference: no information about the importance of
the objectives is assumed, and the DM’s preferences are
not considered. The problem can be solved by any method
used to find a single optimum solution. The solution
obtained is presented to the DM, which will accept or
reject it.

• A priori: the hopes and opinions of the DM are taken into
consideration before the solution process. Usually, one
preferred Pareto-optimal solution is obtained. Those
methods, known as preference-based, require the DM to
know the priority of each objective beforehand.

• A posteriori: the PS is first generated, and then the DM is
supposed to select the most preferred solution from this set of
alternatives. The preference information is considered after
the optimization process.

• Interactive: the DM preferences are progressively used during
the search procedure and are adjusted as the search continues.

The most intuitive and simple way to solve a MultiOOP is to
convert it into a SingleOOP. The so-called classical methods
mainly propose different ways of scalarising the objectives.
These are commonly used methods that have existed for
many decades. Most of them are aggregation-based
techniques, which aggregate the objective functions into one
objective. Only one Pareto-optimal solution can be found in
these methods at each execution. To obtain different Pareto-
optimum solutions, the SingleOOP must be solved several
times, with different parameters for finding solutions in the
entire Pareto-optimum region. The weighted sum, the ε-
constraint, and the weighted Tchebycheff Miettinen (1999)
methods are examples of such classical techniques. The
weighted sum method is probably the most used classical
approach due to its simplicity and ease of use. In this
process, a weighting coefficient is associated with each
objective function, and a weighted sum of the objectives is
minimized. For each function fi, there is a weight wi

associated, such that 0 ≤ wi ≤ 1 for all i = 1, . . ., k, with ∑k
i�1wi �

1 (weights are normalised). By using this technique, the
MultiOOP given in Eq. 1 is converted into a SingleOOP as
follows

Minimise ∑
k

i�1 wifi x( )
subject to x ∈ S

(2)

Considering that the ideal approach for solving MultiOOPs
would be to find many different trade-off solutions as close as
possible to the PF and as diverse as possible along that front, it
becomes clear that classical methods need a great effort to meet these

goals. As they combine multiple objectives into one, some
knowledge of the problem is required. Note that the optimization
of a single objective results in a single-point solution. In this way,
multiple runs must be performed to generate different alternatives to
the DM. Moreover, if the variable space is discontinuous and some
objectives have many local minima, these methods may not work
properly Srinivas and Deb (1994).

Differently, multi-objective evolutionary methods seek to
optimize the problem in its original form, with independent
objectives, providing in each execution a set of Pareto-optimal
solutions. EAs have become extremely popular over the last years
as a non-classical, stochastic search technique to solve multiOOPs.
Next, we present a short overview of this class of methods and their
main differences compared to the classical approaches.

3.1 Multi-objective evolutionary algorithms
(MultiOEAs)

The process of evolution of species inspires EAs, and they
differ from classical methods in various ways. The most
prominent is using a population of candidate solutions instead
of a single solution, as in classical methods. This characteristic
allows those methods to find many Pareto-optimal solutions in a
single run. Although they do not guarantee to find the optimal
trade-off solutions, they can provide a satisfactory
approximation set, which is (hopefully) not too far away from
the true PF.

In the field of evolutionary computation, Genetic Algorithms
(GAs) are the most popular ones. Developed by J. H. Holland in
the 60s (Holland, 1962; Holland, 1975), they are based on the
evolution of a population of individuals. Initially, a population of
candidate solutions is randomly generated. For every individual,
an objective function associates a fitness value indicating its
suitability to the problem. At each iteration, individuals are
selected to form the parents. Those parents are reproduced
using different operators (e.g., crossover, mutation) to
generate new offsprings. Then, a replacement scheme is
applied to determine which individuals of the population will
survive from the offsprings and the parents. This process is
repeated until a stopping criterion is reached. A general
scheme of an EA is given in Algorithm 1.

1 Set k = 0;

2 Randomly generate an initial population of solutions;

3 Evaluate each solution in the initial population;

4 while k < G do

5 Selection of individuals;

6 Apply mutation and crossover operators to obtain

new solutions;

7 Evaluate solutions;

8 Select individuals for the next-generation;

9 Set k = k + 1;

Algorithm 1. Pseudocode of a general EA.

Following these baseline steps, GAs are known to be very
efficient in solving real problems in several fields Slowik and
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Kwasnicka (2020). As they do not require additional
information about the problem, like continuity or
differentiability, they are also well-suitable to solve black-box
optimization problems1.

The need to find trade-off solutions as close as possible to the Pareto
optimal front (good convergence) and as diverse as possible along that
front (good diversity) are the most important issues in MultiOOP.
Therefore, search algorithms must be designed to obtain multiple
solutions, each offering a different trade-off for the objective
functions. In a simplistic case, this may be achieved by storing each
found solution in an “archive” that maintains only non-dominated
solutions. The way this archive is maintained, how individuals are
selected and recombined, whether elitism is used or not, and how fitness
assignment is applied characterize the various MultiOEAs. They can be
classified into three main categories according to the different strategies
employed Emmerich and Deutz (2018).

3.1.1 Pareto-based
The earliest attempts for solving MultiOOPs with MultiOEAs

were based on the Pareto dominance relation. The main idea is that
the fitness value is assigned to individuals based on the Pareto-
dominance principle to achieve good convergence. An explicit
diversity preservation scheme is also employed to maintain the
diversity of solutions. Some of the most representative techniques of
this class of methods are the Strength Pareto EA (SPEA/SPEA-II)
Zitzler and Thiele (1998, 1999); Zitzler et al. (2001), the Pareto
Archived Evolution Strategy (PAES) Knowles and Corne (1999,
2000), the Niched Pareto GA (NPGA/NPGA2) Horn et al. (1994);
Erickson et al. (2001) and the Non-dominated Sorting GA (NSGA/
NSGA-II) Srinivas and Deb (1994); Deb et al. (2002).

The primary concern with the Pareto-based approach arises
when the number of objectives increases, particularly beyond three
objectives. In such cases, it becomes increasingly challenging for
these techniques to select solutions, as most of the solutions in the
population tend to be non-dominated by one another. Section 4
discusses some of the main difficulties that arise when the number of
objectives increases.

3.1.2 Indicator-based
In this approach, performance metrics, also known as quality

indicators, are employed to define the selection mechanisms.
Performance metrics are used to assess the quality of an
approximation set generated by an algorithm. It assigns a real
value to one or more approximation sets depending on certain
quality aspects, such as (i) convergence toward the Pareto optimal
region and (ii) diversity of solutions along the PF. The underlying
idea of those techniques is to optimize the indicator value of the non-
dominated set generated throughout the evolutionary process.

From the literature, it is not difficult to notice that the HV
indicator is the most widely adopted metric for evaluating indicator-
based optimizers and assessing non-dominated sets’ quality. This
metric calculates the volume of the dominated region by the
obtained solution. Although there are many efforts to reduce the
computational complexity of the HV computation, it is also known
that the high computational cost involved when the number of
objectives increases could limit the use of this metric Beume et al.
(2009); Guerreiro and Fonseca (2018). However, the theoretical
properties of the HV justify its widespread acceptance Zitzler et al.
(2003).

A recent survey on indicator-based MultiOEAs can be found in
Falcón-Cardona and Coello (2020), where the authors presented
solution methods from their origins up to their applications by
current state-of-the-art approaches.

3.1.3 Decomposition-based
The pioneering work on decomposition-based methods was due

to Zhang and Li (2007), who first proposed in 2007 the
Multiobjective EA Based on Decomposition (MOEA/D). In this

FIGURE 4
Illustration of parallel coordinates (left) and radar (right) plots for different solutions in a 6-objective optimization problem. Each coloured solid line
represents one non-dominated solution.

1 In black-box optimization, the objective function and/or constraints are
approximated by computational methods that provide an answer (output)
to the problem, given a set of input values. In practice, they often occur
when the computation of the objective functions and/or constraints
requires an expensive computer simulation or when their functional
form are unknown.
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approach, the MultiOOP with k objectives is decomposed into M
single-objective subproblems through some aggregation technique.
These M subproblems, represented by M-weighted vectors, are
simultaneously optimized in a single run. Different weight
vectors need to be used to generate a set of Pareto-optimal
solutions. The MOEA/D explores the neighborhood relationship
between these subproblems to solve the original problem in (1)
efficiently.

A variety of methods was proposed for improving the design of the
components of the MOEA/D, motivated by the existing limitations of
the method. Later investigations tried to improve its performance by
seeking new ways of, for instance, (i) decomposing the problem, (ii)
generating the weight vectors, (iii) improving the efficiency of genetic
operators, and iv) enabling the application of themethod toManyOOPs
Trivedi et al. (2017); Xu et al. (2020).

4 Dealing with many-optimization
problems

ManyOOPs are those having more than three objectives. As
previously mentioned, drug design problems usually have more than
three objectives to be optimized simultaneously, making them
potential candidates for problems to be treated with ManyOO
approaches.

4.1 Main challenges

The presence of many objectives introduces several challenges
that affect the choice and the design of evolutionary techniques. The
difficulty of optimizing a large number of objectives is due to the so-
called curse of dimensionality. The PF takes different forms
depending on the number of objectives, e.g., a two-objective
problem results in a PF that is a curve or line, while a three-
objective problem generates a PF that is a surface. As the number of
objectives increases beyond four, the PF may be represented by a
hypersurface or other higher-dimensional shape. Therefore, the
number of solutions needed to represent the entire PF grows
exponentially with the number of objectives Saxena et al. (2013).
When the number of objective functions increases, one has to deal
with the following issues Ishibuchi et al. (2008):

• almost all solutions in the population become non-
dominated by each other, leading to a phenomenon
called dominance resistance Purshouse and Fleming
(2007). Such characteristic severely deteriorates the
convergence of MultiOEAs;

• scaling issues may be encountered in choosing the
appropriate size of the population since the number of
points needed to approximate the entire Pareto front
increases exponentially with the number of objectives
Saxena et al. (2013);

• beyond 3D space, visualizing the solution set in the objective
space becomes less intuitive and needs special techniques, such
as parallel coordinates or radar plots (Figure 4). Moreover,
that makes it harder for the DM to choose the best solution.

• performance metrics are also affected by the curse of
dimensionality, e.g., the HV and the IGD metrics have their
performance compromised Ishibuchi et al. (2016);

• classical aggregation techniques (presented in Section 3) are
not limited to problems with up to three objectives. However,
the difficulties pointed out in such methodology grow
increasingly, e.g., setting the weights of a large number of
coefficients.

Given the difficulties mentioned above, the importance of
treating ManyOOPs as a distinct class of problem is evident. In
Allmendinger et al. (2022), the authors reflect on the question:
“What if we increase the number of objectives?” In their paper,
theoretical implications are presented on how the presence of many-
objectives can impact the performance of MultiOEAs when solving
the NK-landscapes problem Verel et al. (2013). They identified a
series of drawbacks of dominance-based (e.g., NSGA-II Deb et al.
(2002)), indicator-based (e.g., IBEA Zitzler and Künzli (2004)), and
decomposition-based (e.g., MOEA/D Zhang and Li (2007))
MultiOEAs, along with recommendations for enhancing these
techniques in the context of ManyOOPs. Thus, it is clear that
MultiOEAs encounter performance limitations when applied to
problems with more than three objectives. Therefore,
evolutionary techniques that can be effectively applied to
ManyOOPs are often referred to as ManyOEAs and represent
the cutting edge of multi-objective optimization research. The
following sections will cover different EAs strategies to deal with
ManyOOPs efficiently.

FIGURE 5
Illustration of dominated areas by solution x using three dominance relations: (left) Pareto dominance, (middle) α-dominance and (right) CNα-
dominance.
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4.2 Many-objective evolutionary algorithms
(ManyOEAs)

Unsurprisingly, new methods have been proposed to improve
existing MultiOO techniques, and new methodologies have been
developed in recent years. For readers interested in exploring
existing many-objective algorithms across various domains, we
recommend referring to the extensive list provided in the articles
Mane and Narasinga Rao (2017); von Lücken et al. (2019). We
will reference a few relevant strategies and introduce more
recently published approaches. Herein, we classified
ManyOEAs into five categories according to the approach
adopted to treat the problem in a ManyOO context: relaxed
dominance, indicator, decomposition, dimensionality reduction
and hybrid techniques. The Supplementary Material includes
pseudocodes for some of the referenced methods.

4.2.1 Relaxed dominance
As previously mentioned, when the number of objectives

increases, almost all solutions in the population become non-
dominated by each other. Hence, for MultiOEAs based on the
Pareto dominance relation, the selection pressure towards the PF
is compromised. A path explored to circumvent the scalability issue
of dominance-based methods is to use relaxed forms of Pareto
dominance to reduce the impact of dominance resistance. Such an
approach can enhance the selection pressure toward the PF and
provide a way of regulating the convergence of MultiOEAs.

Relaxed Pareto dominance (RPD) relations modify the Pareto
dominance concept for better-discriminating solutions for selecting
the best ones with enhanced selection pressure. The α-dominance
Ikeda et al. (2001), ϵ-dominance Laumanns et al. (2002), cone
ϵ-dominance Batista et al. (2011), θ-dominance Yuan et al.
(2016), CN-dominance Dai et al. (2014), CNα-dominance Liu
J. et al. (2019), and MultiRPD Zhu et al. (2022) are some
examples of RPDs. Figure 5 illustrates the dominated area of a
solution x using three different dominance relations: (a) the Pareto
dominance, (b) the α-dominance and (c) the CNα-dominance for a
bi-objective problem. Observe that the α-dominance and the CNα-
dominance expand the domination area compared to the Pareto
dominance. Under these relaxed definitions, a solution is expected to

have a greater chance of being dominated by other solutions and the
selection pressure towards the PF is enhanced.

In Li et al. (2015a), one can find diverse RPD-based methods,
each applying a different RPD approach. Recently, the CNα-
dominance proposed in Liu J. et al. (2019) combines two existing
dominance relations, the α-dominance Ikeda et al. (2001) and the
CN-dominance Dai et al. (2014). The idea was to strengthen the
selection pressure by expanding the dominated area by combining
two other RPDs, as shown in Figure 5. (c) Computational
experiments considered a non-dominated neighbor Immune
Algorithm (NNIA) as the baseline method. The NNIA with the
proposed CNα-dominance was compared against the NNIA with
four different dominance relations. The results demonstrated the
superiority of the CNα-dominance against different dominance
relations in terms of solution quality and selection pressure on
benchmark problems with five to fifty-five objectives.

4.2.2 Indicator
To improve the convergence ability of ManyOEAs, extensive

research has been conducted on fitness evaluation mechanisms
based on quality indicators (Falcón-Cardona and Coello, 2020).
As mentioned previously, the high-dimensional problem
encountered in ManyOO may turn the application of HV-based
MultiOEAs impracticable despite the many efforts to mitigate its
computational cost. The first method that attempted to accelerate
the HV computation and make it scalable for a large number of
objectives was proposed by Bader et al. Bader et al. (2010); Bader and
Zitzler (2011). The main idea of the hypervolume estimation
algorithm (HypE) was not to calculate the exact values of the
HV but instead to provide an estimate of this value through
Monte Carlo simulations. Experimental results showed that HypE
achieved competitive performance regarding the average HV on
benchmark problems with up to fifty objectives.

The Two-archive methodology (Two-Arch/Two-Arch2)
Praditwong and Yao (2006); Wang et al. (2015) was the first to
divide the non-dominated solution set into two archives, one that
promotes convergence (CA) and another that emphasizes diversity
(DA). CA and DA employ different updating rules that reflect their
respective roles in the optimization process. In Two-Arch2, the
update rule of CA is based on the quality indicator Iϵ+ from IBEA
Zitzler and Künzli (2004), and the DA archive is updated based on
the Pareto dominance rule. This method falls under the hybrid
approach category. The results demonstrated that Two-Arch and
Two-Arch2 outperformed other ManyOEAs in terms of
convergence with comparable diversity quality in problems
having two to eight objectives for the Two-Arch and up to
twenty objectives for the Two-Arch2.

4.2.3 Decomposition
In decomposition-based methods, the ManyOOP is divided into

several SingleOO subproblems using a set of weight vectors. The
basic idea is to find a set of well-distributed, non-dominated
solutions along the PF using generated weight vectors so the
diversity of the population is controlled explicitly by weight
vectors. Ideally, each solution in the population is associated with
a subproblem.

The most representative algorithms of this class are the MOEA/
DD Li K. et al. (2015) and the NSGA-III Deb and Jain (2014); Jain

FIGURE 6
Parallel coordinate plot illustrating four objective values for three
solutions with possible redundant objectives.
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and Deb (2014), which are extensions of the MOEA/D Zhang and Li
(2007) and NSGA-II Deb et al. (2002), respectively. Those methods
may also be classified as hybrid, employing a decomposition-based
approach to maintain population diversity, while the Pareto
dominance rule controls the algorithm’s convergence. Both
methods outperform many contemporary MultiOEAs. It is worth
noting that the performance of those methods strongly depends on
the shape of the PF Ishibuchi et al. (2017).

The MOEA/D with Update when Required (MOEA/D-UR)
method de Farias and Araújo (2022) proposed a new scheme to
adapt the weight vectors depending on whether they show signs of
convergence. An additional technique for partitioning the objective
space was proposed to increase the spread of individuals in the
population to estimate the level of regularity of the PF’s shape. The
computational experiments show that the MOEA/D-UR has
competitive performance compared to ten state-of-the-art
ManyOEAs in test problems and real-world problems with up to
fifteen objectives.

4.2.4 Dimensionality reduction
The visualization of objectives in large dimensional space can be

difficult. See, for example, Figure 6 (a), in which seven objective
values are presented for many different solutions (each represented
by a color). The more pronounced the slope of the line connecting
two solutions, the higher the likelihood of a possible conflict between
them. In dimensionality reduction-based methods, the idea is to
decrease the problem’s difficulty by reducing the number of
objectives by identifying redundant objectives Brockhoff and
Zitzler (2006, 2007). For many problems, a smaller set of m (m <
k) conflicting objectives exist that can generate the same PF as the
original problem Yuan et al. (2018). For instance, Figure 6 shows the
parallel coordinates plot of three solutions x1 (blue), x2 (red) and x3
(yellow) and four objectives. The figure indicates that the objective
functions f1 and f3 are redundant, since f1 (x1) < f1 (x2) < f1 (x3) as
well as f3 (x1) < f3 (x2) < f3 (x3), that is, when f1 is minimized f3 is also
minimized. Therefore, we can consider {f1, f2, f4} as the minimum
objective set that preserves the dominance structure.

A list of many dimensionality reduction frameworks and
ManyOEAs based on them is presented in Li B. et al. (2015), in
which the methods are classified as online and offline. Online
methods reduce the number of objectives gradually during the
search process. In contrast, offline methods reduce the number of
objectives after obtaining the PS. These methods can reduce the
computational load of ManyOEAs and assist DMs in distinguishing
points based on non-redundant objectives. However, an open
question is whether the loss of information can cause problems
in the optimization process.

A different approach for reducing the number of objectives was
proposed by de Freitas et al. (2015), where the authors introduced the
Aggregation Tree (AT). The AT tool allows the visualization of
redundancies and conflict between objectives in the form of a tree
by using the concept of harmony to reduce the number of objectives.
The more harmonic the two objectives are, the more suitable they are
to be aggregated into a group of objectives without much loss in the
representation of the PS. This technique was used in a multi-objective
GA, the GAPF algorithm, to solve a protein structure prediction
problem in which the AT was used to arrange seven terms of the
energy function into a three-objective problem Rocha et al. (2017).

4.2.5 Hybrid approach
Hybrid techniques have been proposed to balance convergence

and diversity in ManyOOPs. The method proposed in Zou et al.
(2021), MaOEADRA, is based on dominance and decomposition
approaches. An elitism mechanism is exploited to balance the
convergence and diversity of the evolutionary process.
Simultaneously, a reference point adaptation scheme is designed
to “learn” the true PF shape of different problems. Computational
results showed that the MaOEADRA outperformed seven state-of-
the-art algorithms on various test problems with up to fifteen
objectives.

The IDEA algorithm Xia et al. (2023) couples indicator-based
and decomposition-based mechanisms. The decomposition-based
approach promotes population diversity, while the Ir∞ Yuan et al.
(2021) metric is used as the indicator value for achieving population
convergence and distinguishing individuals. The performance of the
method was evaluated on test problems with up to fifteen objectives.
The results demonstrated that IDEA is effective in solving
ManyOOPs.

5 Applications in de novo drug design

In the field of Computational Chemistry, MultiOO has been
adopted for decades to obtain trade-offs among the objectives
considered Handl et al. (2007); Ekins et al. (2010); Nicolotti et al.
(2011); Parikh et al. (2023). A multitude of multi-objective
approaches can be found in the literature, and we do not intend
to describe or cite them exhaustively. This section describes some
reported studies that explicitly apply multi-objective and many-
objective strategies in dnDD. Following the previously defined
classifications, the methodologies reviewed are mainly classified
as aggregation-based and Pareto-based methods.

Recalling the preferences of the DM, the aggregation methods
that will be cited in the next sections are mainly based on (i) a priori
information, when the DM’s preferences are considered before the
optimization process, and thus only a single final solution is
generated, and (ii) a posteriori information, when a set of Pareto
optimal solutions are generated for the DM to choose the best-suited
solution.

5.1MultiOOmethods: optimizing up to three
objectives

5.1.1 Aggregation-based
The GANDI algorithm Dey and Caflisch (2008) is a fragment-

based approach that generates molecules by joining pre-docked
fragments with a list of fragments provided by the user. In the paper,
GAHolland (1975) and Tabu Search (TS) Glover and Laguna (1997)
algorithms are used in combination to match those fragments.
While the GA was used to generate new fragments by applying
genetic operators, the TS was adopted to link those encoded
fragments. GANDI is an a priori method that scalarises the
scoring functions into one, providing a single optimal solution.
The weighted sum approach was used to aggregate three scoring
functions to be minimized: a force field-based binding energy and
two measures of similarity to a user-defined structure. Forbidden
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connections were avoided to prevent the generation of unstable
molecules. When applied to the CDK2 kinase, the proposed method
generated 1.809 molecules, of which eight were present in the ZINC
database and commercially available Irwin and Shoichet (2005).

The method proposed by Devi et al. (2014) used a GA guided by
the scalarisation of two objective functions, drug-likeness (by
Lipinski’s Rule of 5 Lipinski (2004)) and similarity (by Tanimoto
similarity Loving et al. (2010)) to a known reference molecule from
the e-Drug3D database. The weights of the objectives are set a priori.
Two experiments were conducted, one using a local anesthetic drug
(lidocaine) and another using an anti-cancer molecule (furano-
pyrimidine) as reference molecules. For each reference molecule,
the authors analyzed the proposed method using one (Tanimoto
similarity alone) and two objectives (using a weighted sum of the
similarity and drug-likeness functions). For the furano-pyrimidine
molecule, the two-objective version of the method could generate
drug-like molecules more efficiently than the one-objective
formulation.

The MoGADdrug method, introduced in Devi et al. (2021), is a
fragment-based GA that constructs new molecules from a set of
chemical fragments and a reference molecule as inputs. Building
upon previous work Devi et al. (2014), which considered only two
fragments (acid and amine), this method incorporates a variable-
length representation to construct new solutions considering
double amine fragments, thus allowing three fragment types.
The objective function is a weighted sum of the oral bio-
availability score Lipinski (2004), and the 2D similarity based
on the Tanimoto coefficient Brown (2009), with the weights
being set a priori. The MoGADdrug could design drug-like
molecules similar to lidocaine, furano-pyrimidine derivative,
imatinib, atorvastatin, and glipizide.

5.1.2 Pareto-based
The Compound Generator (CoG) method Brown et al. (2004)

represents the first instance of a MultiOEA being applied in dnDD.
The authors used Genetic Programming (GP), in which the topology
of molecules is represented by graphs, where the graph nodes
represent the atoms. Special mutation and crossover operators
were implemented to generate new molecules, and no constraints
were imposed in the search space. The problem was formulated as a
two-objective optimization problem, where they simultaneously
maximize the evolved solutions regarding the Tanimoto
similarity Bajusz et al. (2015) between the candidate molecule
and two compounds representative of different chemical classes.
The authors performed two experiments: one using two similar
molecules and another using two diverse molecules. The results
demonstrated that the graph-based CoG could generate a set of
novel molecules that are visibly similar to the target compounds in
both experiments.

Another graph-based framework, MEGA Nicolaou et al. (2009),
tested the creation of new selective estrogen receptor (ER)
compounds, aiming to maximize the docking score for the
“positive” target receptor ER-β and minimize scores for the
“negative” but closely related target ER-α. To generate molecules
with desired chemical profiles similar to the known ligand
tamoxifen, they used filters based on the Rule-of-Five (Ro5) and
Tanimoto similarity scores as constraints. The authors pointed out
the uneven nature of the objectives, i.e., identifying solutions with

reduced binding affinity for ER-α is substantially simpler than
designing compounds with increased binding affinity for ER-β.
This may lead to intense search space exploration towards the
“easier” objective. To circumvent this situation, a mechanism
called niching was used to preserve the diversity of the molecules,
ensuring that the objectives were treated equally and there were no
dominance conditions in favor of a specific objective. In addition,
they applied Pareto-elitism to prevent good solutions from being
“lost” during the generations. The authors reported that both
mechanisms generated many non-dominated solutions while
increasing the PF extension.

In Daeyaert and Deem (2017), synthesizable molecules were
generated using a GA named Synopsis Vinkers et al. (2003). The
authors proposed an improved version of the de novo program
Synopsis that incorporates the non-dominated sorting procedure
from NSGAII Deb et al. (2002). The proposed algorithm was
evaluated to optimize two objectives: the docking scores,
computed by the Autodock Vina program Trott and Olson
(2010), associated with the fibroblast growth factor (FGFR) and
the vascular endothelial growth factor (VEGFR), aiming to generate
dual selective inhibitors for cancer. Moreover, thirteen additional
scores were used as constraints to avoid generating unwanted
molecules. The obtained solutions exhibit good predicted binding
energies to their targets and possess structural and physicochemical
parameters falling within the typical range for drug-like molecules.
The use of the Pareto dominance approach enabled the generation of
high-affinity compounds within the imposed restrictions, unlike the
aggregated single-objective approach, which rarely produces good-
quality solutions.

In the works of Devi et al. (2019, 2020), two multi-objective
methods were explored for dnDD of new drug-like molecules: the
monkey algorithm (MoMADrug) Devi et al. (2019) and the biofilm
algorithm (MOBifi) Devi et al. (2020). MoMADrug is inspired by the
behavior of monkeys, while MOBifi is inspired by the life cycle of
bacteria in a biofilm. Both methods were adopted in the context of
fragment-based de novo design and considered the Tanimoto
similarity to known compounds Brown (2009) and oral-
bioavailability scores Lipinski (2004) as the objectives to be
maximized. In addition to these two objectives, MOBifi also
employed the Veber score Veber et al. (2002) as a third objective
related to oral bioavailability. In Devi et al. (2019), the authors
compared the MoMADrug against the MoGADdrug Devi et al.
(2021), which uses a weighted sum of the objectives. Their results
showed that MoMADrug could produce a more diverse set of
solutions due to its multi-objective nature and its use of Pareto
dominance criteria.

The MOBifi Devi et al. (2020) was originally evaluated in three
unconstrained benchmark problems from CEC 2009 Zhang et al.
(2008) with three objectives against five other multi-objective
methods. It was found that MOBifi is a competitive method in
terms of the inverted generational distance (IGD) and the maximum
spread (MS) performance metrics. The MOBifimethod was applied
to generate drug-like molecules based on reference anti-diabetic
compounds from herbal plants. These generated molecules were
further docked against the therapeutic targets tyrosine phosphatase
1B (PTP1B) and α-glucosidase (AGS) associated with the diabetes
treatment. Two generated compounds exhibited docking scores
similar to the reference inhibitor (rutin), indicating their
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potential as anti-diabetic agents. Since the fragments used in the
dnDD strategy were generated from the commercially available
databases Enamine and e-Lead3d, based on the predetermined
coupling reactions concept Yuan et al. (2011), the designed
molecules have a high probability of being successfully
synthesized and purchased from the chemical vendors.

The proposed approach known as Deep Evolutionary Learning
(DEL) introduced in Grantham et al. (2022) combines a deep
generative model (DGM) with multi-objective evolutionary
algorithms (MultiOEA) for dnDD. DEL leverages a fragment-
based variational autoencoder (FragVAE) and NSGAII
components, including non-domination rank and crowding
distance, to design new molecules. By operating in the
continuous latent representation space generated by the neural
generative model, DEL avoids the limitations of a discrete
structural space. The DGM is iteratively fine-tuned based on the
newly generated populations of samples with better properties. The
quantitative estimation of drug-likeness (QED), synthetic
accessibility score (SAS), and logP were selected as objectives in
DEL. Extensive validation of the approach was performed to assess
its population validity, novelty, and diversity across various
benchmarking sets, including those in the MOSES framework.

Based on the DEL framework, in Mukaidaisi et al. (2022), a
graph-based DGM, called JTVAE (Junction Tree Variational
AutoEncoder), is integrated into DEL to provide a latent
representation space for the MultiOEA exploration. Unlike
FragVAE, which utilizes SMILES fragmentation, the JTVAE
employs graph fragmentation following the subgraph-by-
subgraph strategy. Binding affinity score (BAS) predicted with
the docking program QVina, SAS, and logP of the generated
molecules are the three objectives to be optimized. During the
optimization process, non-dominated ranking is performed. The
VAE model is refined by selecting the high-quality generated
molecules possessing significant BAS, SAS, and logP properties
for the next-generation. Computational experiments were
conducted comparing DEL + FragVAE with the JTVAE
approach on the ZINC dataset and on a variant of ZINC that
included drug molecules from the DrugBank database (ZINC +
DrugBank dataset). The results demonstrated that both methods
improved the properties of the molecules along the generations and
that the JTVAE has a higher HV value than FragVAE. These
experimental results confirm that the JTVAE approach, when
compared to the FragVAE approach, improves the properties of
molecules during the optimization process and leads to a higher HV
value.

The DrugEx is a ligand-based approach that applies RNN-based
reinforcement learning to generate new chemical structures in the
SMILES format. The first version of DrugEx Liu X. et al. (2019) was
designed to generate ligands by performing single-objective
optimization using the predicted affinity against the human
adenosine A2A receptor as the objective through a random forest-
based quantitative structure-activity relationship (QSAR) model.

In the second version, DrugEx v2 Liu et al. (2021) expanded its
usage to include multi-objective optimization by applying the
concept of mutation and crossover into the Reinforcement
Learning (RL) framework and a Pareto ranking procedure to
handle the different objectives. The performance of DrugEx
v2 was compared to ORGANIC Sanchez-Lengeling et al. (2017)

and REINVENT Olivecrona et al. (2017) methods by considering as
objectives the affinity prediction against either multiple targets or a
single target while considering off-target effects. For multiple targets,
the desired molecules should exhibit a high affinity towards A1A and
A2AA receptors. In contrast, in the target-specific scenario, the
designed molecules should display high affinity towards A2A

while maintaining low affinity to A1. In addition, low affinity to
the hERG channel (Ether-à-gogo-Related Gene, the α subunit of a
potassium ion channel) is required in both cases. The generated
molecules showed a large percentage of validity, low duplication,
and similarity to known ligands.

In the latest version, DrugEx v3 Liu et al. (2023) adopted a
graph-based transformer model as the generative model,
considering user-defined scaffolds as inputs to create new
molecules with desired chemical profiles. A novel encoding
scheme for atoms and bonds was proposed based on an
adjacency matrix to enable the transformer model to handle
molecular graph representations. Unlike the previous versions,
DrugEX v3 was evaluated considering two objectives: (i) the
drug-likeness using the QED score and (ii) the affinity score
towards the A2A receptor predicted with the random forest-
based QSAR model. A Pareto-based ranking scheme was
employed to rank molecules based on the average Tanimoto
distance instead of the commonly employed crowding distance.
SMILES and graph representations were tested on four deep
learning (DL) architectures. According to the results, all the
molecules generated by the newly proposed method using the
provided scaffolds were valid, and most exhibited a high
predicted affinity towards A2A.

5.2 ManyOO methods: dealing with more
than three objectives

5.2.1 Aggregation-based
In a recent study, Elend et al. (2022) enhanced a Pareto-based

ManyOEA proposed in Cofala et al. (2020) by incorporating a neural
language model trained on the ZINC database to improve the quality
of generated molecules. The goal was to generate molecules that
inhibit the therapeutic target Mpro of SARS-CoV-2 by considering
multiple objectives such as predicted binding affinity (BA),
quantitative estimate of drug-likeness (QED), natural product-
likeness (NP), toxicity filter (TF), and synthetic accessibility (SA).
A weighted sum approach was used to aggregate the objective values
in which weights were set a priori. The proposed Evolutionary
Molecular Generation Algorithm (EMGA) designed new molecules
based on the SMILES representation. The transformer architecture
in the neural language model was used as a mutation operator to
generate molecule fragments, while a (μ + λ) Evolutionary Strategy
(ES) was employed to perform a randomized search in the molecular
structure search space. From the molecules generated by EMGA,
twenty-one chemically valid molecules were selected for molecular
dynamic (MD) simulations. Among them, two were identified as
stable and had the potential to inhibit Mpro.

The ATOM Generative Molecular Design (ATOM GMD)
proposed in McLoughlin et al. (2023) involves a two-stage
process of a variational autoencoder (VAE) and a many-objective
GA operating in the latent space. The VAE is used to map molecular
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structures to the continuous latent space. Specifically, a JTVAEmaps
a population of structures to a learned continuous latent space. The
encoder component of the JTVAE converts each SMILES structure
into a continuous latent vector, and the decoder component
performs the opposite transformation. The GA-based approach
searches for optimal molecules in the latent space, employing
crossover and mutation operations to generate new molecules
with desirable properties. The cost function of this ManyOO
approach is a weighted sum of terms based on 12 predicted
properties, including efficacy and safety (binding affinities against
the therapeutic target histamine H1 receptor and the off-targets
M2 and hERG predicted with QSAR models), pharmacokinetic
profile (Ro5), and developability properties (SAS). The weights
are set a priori. Focusing on developing potent and selective
H1 antagonists, the ATOM GMD approach generated several
molecules, of which 106 compounds were further synthesized
and experimentally evaluated. Six tested compounds were found
to bind H1 at nanomolar concentrations selectively. During the
training, the authors included molecules from Neurocrine
Biosciences, ChEMBL, and GoStar with known affinity against
H1 and compounds structurally similar to the known
H1 antagonists from the Enamine REAL Space. This was done to
bias the generation of new structures towards the desired profile.
Despite being a preprint at the time of our review, to the best of our
knowledge, this is the first published work that successfully applied
ManyOO, EAs, and ML methods with experimental validation. This
highlights the powerful application of Multi/ManyOO strategies in
the context of dnDD.

5.2.2 Pareto-based
Recently, Verhellen (2022) evaluated the performance of graph-

based implementations of NSGA-II and NSGA-III against a
weighted sum method on case studies from the GuacaMol
benchmark suite for dnDD Brown et al. (2019) and from
datasets constructed to simulate polypharmacology scenarios. The
number of optimized objectives ranged from four to five, depending
on the benchmark molecule analyzed, including molecular weight,
logP, similarity, affinity to a target, and/or blood–brain–barrier
permeability. The optimization procedure removed undesired
molecules from the population based on structural ADMET
filters. Both approaches outperform the weighted sum method in
terms of the HV indicator. Regarding efficiency, NSGA-III
outperformed NSGA-II by performing fewer function evaluations
in all benchmarks. However, both approaches showed similar
performance on the analyzed chemical benchmarks. By
conducting this comparison, the authors provided valuable
insights for effectively applying Multi/ManyOO approaches
in dnDD.

Molecules for anti-breast cancer were produced inMei andWu
(2022) using an enhanced ManyOEA variant, AGM-MOEA
Panichella (2019). The proposed method applies the crossover
operator from Differential Evolution Price et al. (2005), non-
dominated sorting from NSGA-II Deb et al. (2002), and a
normalization method from NSGA-III Deb and Jain (2014) for
generating and selecting molecules. Six objectives were
simultaneously optimized: pIC50 and ADMET properties (Caco-
2, CYP3 A4, hERG, HOB, MN), and three performance metrics
measured the quality of the PF obtained. To highlight the

importance of adopting a ManyOO approach, the authors
demonstrated the conflicting nature of the objectives and
emphasized that a simple aggregation of the objectives could be
a difficult task. A comparative analysis was conducted between the
proposed framework and three other methods: NSGA-II, NSGA-
III, and the original AGE-MOEA. The results indicated the
superiority of the proposed method regarding the performance
metrics.

Cofala et al. (2020) proposed a method that combined a (μ + λ)
ES and an NSGA-II-based method to design an inhibitor for SARS-
CoV-2’s main protease. The ManyOEA proposed uses the SELFIES
representation for designing new molecules. Five molecular
properties were used in the optimization process: binding affinity
(BA) computed by the QuickVina2 binding scoring function, QED,
SAS, natural product-likeness (NP), and medical chemical filters
(MC). Two experiments used the N3 inhibitor and lopinavir, an HIV
main protease inhibitor, as ligands targeting the main proteaseMpro
receptor. First, a SingleOO experiment was conducted, where the
fitness function was composed of a weighted sum of the five
properties. In preliminary experiments, the authors observed that
(i) molecules with high binding scores suffer from low QED scores,
and (ii) defining the weights for the objectives could be difficult,
concluding that a many-objective approach might be more
appropriate. Hence, a many-objective analysis was also
conducted, in which the HV metric was used to evaluate the
final set of solutions. For the SingleOO experiment, the authors
highlighted the conflicting nature of the objectives, which resulted in
a trade-off between QED and NP scores versus SA and BA scores.
Even so, according to the binding scores, the best molecule found in
the SingleOO approach achieved better scores than those of N3 and
lopinavir. On the other hand, the ManyOO provided a higher
diversity of molecules when compared with the SingleOO case,
achieving satisfactory values for all properties.

A Generative Adversarial Network (GAN), proposed by Abbasi
et al. (2022), combines an autoencoder with a GAN to convert
SMILES strings into latent space vectors and use them as real data in
GAN training. To generate molecules that exhibit multiple desired
properties, an optimization step based on feedbackGAN Gupta and
Zou (2019) is applied, incorporating the NSGA-II method to
generate non-dominated solutions that will be included in the
training set. The case study analyzed aimed to find ligands that
bind both to the Kappa Opioid Receptor (KOR) and the A2A
receptor (ADORA2A). The other properties to be optimized
include the binding affinity pIC50, the molecular topological
polar surface area (TPSA), the solubility (LogP), and the SAS.
The strategy adopted was evaluated based on several metrics,
such as validity, uniqueness and novelty. The proposed
framework generated molecules with a high level of diversity
(over 0.88) and 100% uniqueness but a low percentage of validly
generated molecules (30.2%).

5.3 Objectives or constraints?

In implementing different dnDD strategies, determining which
of the desired properties should be considered as objectives or
constraints is a very important aspect. Nicolaou et al. (2009)
classified their objectives as primary (objectives used to guide the

Frontiers in Chemistry frontiersin.org12

Angelo et al. 10.3389/fchem.2023.1288626

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1288626


TABLE 1 Multi-objective and many-objective methods for de novo drug design.

Method Molecular
generation

Objectives Constraints Constraints
handling
technique

Multi/
ManyOO
approach
(final result)

REF.

Multi-objective methods

GANDI GAb and TSb Force field-based binding
energy and 2D/3D similarity
measure to a known ligand

Chemical validity Special move operators
and elimination of
compounds with steric
clashes

Aggregation-based
(single solution)

Dey and
Caflisch
(2008)

MOGA GAb Oral bio-availability and
Tanimoto similarity with
known ligands

Synthetic accessibility Special move operators Aggregation-based
(single solution)

Devi et al.
(2014)

MoGADdrug GAb Oral bio-availability and
Tanimoto similarity with
known ligands

Synthetic accessibility Special move operators Aggregation-based
(single solution)

Devi et al.
(2021)

CoG GPb Tanimoto similarity between
two compounds

Chemical validity Special move operators Pareto-based Brown et al.
(2004)

MEGA GA-basedb Docking score against multiple
targets

Tanimoto similarity with
known ligands and Ro5

Special move operators Pareto-based Nicolaou et al.
(2009)

Synopsis GAb Docking score against multiple
targets

RotB, longest sp3-sp3 chain,
reactive groups, volume, logP,
PSA, molar refractivity,
interaction with specific regions
of the targets (hinge,
backpocket, hydrophobic)

Feasibility rules Pareto-based Daeyaert and
Deem (2017)

MoMADrug Monkey
Algorithm

Tanimoto similarity with
known ligands and Ro5

- - Pareto-based Devi et al.
(2019)

MOBifi Biofilm
Algorithm

Tanimoto similarity with
known ligands, Ro5 and Veber
rules

- - Pareto-based Devi et al.
(2020)

DEL DGMb (VAE) QEDa, SASa and logP Chemical validity Elimination of invalid
and duplicated SMILES
strings

Pareto-based Grantham
et al. (2022)

DEL-based DGMb (JTVAE) Affinity prediction, SASa and
logP

Chemical validity Elimination of invalid
and duplicated SMILES
strings

Pareto-based Mukaidaisi
et al. (2022)

DrugEx v2 DRLb Affinity prediction towards
two targets and one off-target

- - Pareto-based Liu et al.
(2021)

DrugEx v3 Graph
Tansformer

QEDa and affinity prediction to
a pre-defined receptor

Chemical validity Repair technique Pareto-based Liu et al.
(2023)

Many-objective methods

EMGA NLMb

(Transformer)
Predicted affinity, QEDa,
natural product-likeness,
toxicity scores and synthetic
accessibility

- - Aggregation-based
(single solution)

Elend et al.
(2022)

ATOM-GMD DGMb (JTVAE) 12 predicted properties,
including terms related to
efficacy and safety (on and off-
target affinities predicted with
QSAR models), Ro5 and
accessibility scores

- - Aggregation-based
(non-dominated
solutions)

McLoughlin
et al. (2023)

NSGAII and
NSGAIII-based

GA-basedb Ranged from four to five
(molecular weight, logP,
similarity, affinity prediction to
a target of interest, and/or
blood–brain-barrier
permeability)

ADMET filters Elimination of
undesirable compounds

Pareto-based Verhellen
(2022)

(Continued on following page)
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search procedure) and secondary (objectives acting as constraints
that can be used as filters to restrict the search space). Properties
serving as objectives are typically related to the similarity to a known
ligand (e.g., Tanimoto similarity) or binding affinity scores with one
or more receptor target(s) of interest. Constraints usually involve
descriptors related to pharmacokinetic prediction (e.g., Lipinski’s
Ro5) and synthetic accessibility. However, it is important to
highlight that the researchers define the premises of
development, not existing a rule to state which properties must
be defined as an objective or a constraint.

Binding affinity scores are widely used as an objective in the
optimization procedure to consider the potency of a compound
against the therapeutic targets of interest. However, ignoring other
information (objectives) important for a lead compound to pass
clinical trials and reach the market can affect the quality of the
designed molecules Fu et al. (2022). Therefore, several works also
include pharmacokinetics-related descriptors in a Multi/ManyOO
context, such as QED, logP and SAS.

As previously mentioned, when the number of objectives
increases (> 3), the number of Pareto-optimal solutions becomes
intractable. Hence, in selecting the number of objectives, the
researchers must also consider this issue when choosing an
appropriate technique to deal with the different objectives and
constraints. To alleviate this drawback, in Daeyaert and Deem
(2017), it was proposed to define some objectives as constraints
so that the dimension of the problem could be restricted to two or
three objectives, allowing the application ofMultiOEAs as the search
procedure. On the other hand, many works adopted a scalarization
procedure to aggregate the many objectives into one, using an a prior
optimization method, thus transforming a multi-objective problem
into a single-objective optimization process. In both approaches,
detailed knowledge of the problem is required to define the most
suitable properties that should be used as objectives or to set the
weight vectors to obtain a Pareto-optimal solution (hopefully) in a
desired region of the objective space.

It is also crucial to avoid the use of redundant objectives that
would increase the complexity of the problem without providing a
real increase in accuracy. For example, in the MOBifi Devi et al.
(2020), they adopted two correlated objectives for drug-likeness
(Veber and Lipinski’s rules). Despite these metrics adopts different

parameters, the Veber’s rule is proposed as an improved model for
oral bioavailability, thus probably not being conflicting with the
Lipinski’s rule. As already described elsewhere, the MultiOO
approaches aim to optimize only conflicting objectives. Therefore,
the selection of the objectives can also be guided by dimensionality
reduction methods to reduce the number of effective objectives,
discarding correlated metrics.

EAs are originally unconstrained search techniques, requiring
additional mechanisms to deal with constraints. A simple approach
is to discard unwanted solutions during the search process.
However, this strategy may not be adequate since the usual
assumption is that the first generations of EAs may contain
diverse infeasible but still promising solutions. Some examples of
alternative approaches to deal with constraints include Mezura-
Montes and Coello (2011); Rahimi et al. (2023):

• penalty functions to add a penalty value to the objective
function for infeasible solutions;

• move operators and special representation schemes that
guarantee the generation of feasible solutions;

• repair techniques to move unfeasible points back to the
feasible space;

• feasibility rules for selecting feasible and infeasible
individuals; and

• hybrid approaches that combine different strategies to treat
constraints

Among those techniques, special move operators and repair
techniques are used mainly to guarantee the generation of feasible
solutions. For instance, the GANDI Dey and Caflisch (2008)
methodology enforces feasibility by forbidding certain
connections on the molecule. CoG Brown et al. (2004) applies
special mutation and crossover operations on the graph
representation. Synopsis Daeyaert and Deem (2017) enforces
feasibility rules in which constraint violations are considered for
selecting a new compound. Invalid and toxic molecules are
discarded in DEL Grantham et al. (2022) and during the
optimization process of EMOA Cofala et al. (2020). A repair
mechanism is used in DrugEx v3 Liu et al. (2023) to correct
chemically invalid molecules.

TABLE 1 (Continued) Multi-objective and many-objective methods for de novo drug design.

Method Molecular
generation

Objectives Constraints Constraints
handling
technique

Multi/
ManyOO
approach
(final result)

REF.

AGM-MOEA EA-basedb Affinity prediction and
ADMET properties (Caco-2,
CYP3 A4, hERG, HOB, MN)

- - Pareto-based Mei and Wu
(2022)

EMOA EA-basedb Affinity prediction, QEDa,
natural product-likeness,
toxicity scores and SASa

Toxicity filters Elimination of toxic
molecules

Pareto-based Cofala et al.
(2020)

GAN-based GANb Affinity prediction, topological
polar surface area (TPSA),
LogP and SASa

- - Pareto-based Abbasi et al.
(2022)

aQED, Quantitative estimation of drug-likeness; SAS, Synthetic accessibility score.
bGA, Genetic Algorithm; TS, Tabu Search; GP, Genetic Programming; EA, Evolutionary Algorithm; DGM, Deep Generative Model; GAN, Generative Adversarial Network; DRL, Deep

Reinforcement Learning; NLM, Neural Language Model.
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Recently, a helpful tool proposed by Schoenmaker et al. (2023)
for molecular correction through a generative deep learning method
could be used as a repair technique to correct invalid but interesting
compounds.

Table 1 summarises the multi-objective and many-objective
techniques cited in the previous sections, including their choice
of objectives and constraints, the constraint handling techniques
applied, and the Multi/ManyOO approach adopted.

It is important to highlight that even considering only objectives,
such as machine learning predicted binding affinities, related to
diverse targets through many-objectives methodologies in dnDD
could per se provide a robust framework for designing and
optimizing more effective drug candidates. In fact, there is a
crescent interest in the development of new compounds targeting
multiple targets in a polypharmacology context (on-targets), for
example, to reduce bacterial resistance, whereas avoiding the
interaction with receptors related to side effects (off-targets)
Zieba et al. (2022); Raghavendra et al. (2018); Wang H. et al.
(2021); Dias et al. (2017). Furthermore, by incorporating diverse
objectives and constraints related to potency, selectivity, and
pharmacokinetics, ManyOO methodologies might enable the
design of compounds that exhibit improved overall performance
and a higher probability of success in clinical trials.

6 Discussion

The application of multi-objective techniques has become well-
established in the field of dnDD. This strategy improves the
solutions’ quality by considering multiple objectives
simultaneously, leading to a more realistic representation of the
problem. It is worth noting that a few papers Luukkonen et al.
(2023); Liu et al. (2021) emphasize the importance of addressing
problems with more than three objectives in diverse areas. However,
the proper exploration of ManyOO approaches in dnDD is still
scarce despite its significant potential.

The issue of dimensionality in dnDD has been recognized by
researchers as an important topic that needs consideration Nicolaou
et al. (2009); Devi et al. (2014); Grantham et al. (2022). Despite the
use of ManyOEAs in Mei and Wu (2022); Verhellen (2022), none of
these papers explicitly address the significantly more complex and
challenging nature of problems that arise when dealing with more
than three objectives. It is relevant to observe that in Cofala et al.
(2020), five objectives are employed in the optimization process
using the NSGA-II method, a MultiOEA more suitable for handling
problems with up to three objectives. As previously mentioned,
NSGA-II encounters additional difficulties as the number of
objectives increases. In such scenarios, NSGA-III or other
ManyOEAs could be more appropriate alternatives for handling
the problem. Hence, it is important to highlight the following
reflections.

1. ManyOO methods still have not received enough attention from
the dnDD community. Among all the papers cited herein, only a
few of them Elend et al. (2022); McLoughlin et al. (2023);
Verhellen (2022); Mei and Wu (2022); Cofala et al. (2020)
simultaneously optimized more than three objectives. One is a
preprint, and the others were recently published. Although dnDD

research has increased rapidly over the years, its application to
the many-objective case seems recent.

2. Although ManyOEAs were used in those papers, rarely is there
an emphasis on the fact that they are dealing with a much more
complex and challenging class of problems compared to cases
with up to three objectives.

3. We observed that many papers adopt aggregation-based
techniques, most of which apply the weighted sum
aggregation approach. It is important to note that other
aggregation-based techniques are more efficient and equally
simple to implement. The assumption that the optimization
problems are always convex to justify the efficient use of
weighted sum aggregation is not always valid in a complex
and challenging problem such as the dnDD.

4. Some papers considered multi-target evaluations in the context
of polypharmacology and/or off-targets, but they are often
limited to two or three targets simultaneously. However,
there are important contexts in which binding affinity
against multiple targets could be considered at the same
time, for example, when developing new compounds against
infectious diseases (multiple targets for the same pathogen
could improve drug efficacy) or in the case of kinase
inhibitors (off-targets panel containing dozens of kinases to
evaluate selectivity).

5. The main purpose of Multi- andManyOOmethods is to generate
trade-off solutions considering conflicting objectives, not to
improve the predictions of the objectives independently. For
that reason, as in the single-objective problems, one should care
about the accuracy of the adopted methods for calculating/
predicting the objective values.

Aggregation-based and weight-based approaches are widely
used because they simplify the problem by reducing its
dimensionality. However, it is important to highlight that
methods based on a priori aggregation provide only one solution
among the several possibilities of existing non-dominated solutions.
As stated earlier, using aggregating techniques is the easiest way to
approach the problem, but it oversimplifies and fails to inform the
user about the trade-offs between the objectives. Besides, with the
increase in the number and diversity of objectives, choosing and
normalizing weight vectors becomes progressively difficult. Thus, to
overcome these issues and take advantage of a more diverse set of
non-dominated solutions, we believe many-objective Pareto-based
approaches will increase prevalence in dnDD and be the center of
novel methodological developments. We also are convinced that,
given its intrinsic attributes—namely, the quantity and variety of
objectives and constraints, along with the diversity of possible
approaches in their prioritization—many-objective dnDD
optimization might indeed serve as a source of inspiration for
new developments in more fundamental and general
methodological frameworks within the field of ManyOO.

Although this paper does not focus on machine learning (ML)
techniques, it is important to mention that recent papers have
demonstrated a notable increase in the number of works
incorporating ML techniques and evolutionary computing
algorithms and concepts in their models, particularly in
generative models. For those interested in this field,
comprehensive reviews of ML techniques for dnDD can be found
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in Mouchlis et al. (2021); Bilodeau et al. (2022); Wang et al. (2022);
Luukkonen et al. (2023). While few of them briefly mention papers
exploring MultiOO, with the majority utilizing MultiOEAs, only the
recently published paper Luukkonen et al. (2023) gives special
attention to ML methods for multi-objective dnDD. They also
list multi-objective ML-based methods, including EAs,
reinforcement/conditional learning, and recurrent neural
networks. We believe new developments involving ML
techniques and ManyOEAs should generate powerful tools for
dealing with dnDD.

7 Conclusion

This work presented an overview of MultiOO and ManyOO
approaches applied in dnDD, particularly those based on
evolutionary computation and machine learning techniques. We
provide a general review of the definitions involved in MultiOOPs
andManyOOPs, emphasizing themain challenges that appear when the
number of objectives of an optimization problem increases. Our review
could trace possible improvements and drawbacks in designing new
optimization techniques by examining how the molecular properties are
utilized in the dnDD problem to define objectives and constraints.

The increasing interest in applying ManyOO in dnDD is
evident, in which evolutionary computation, coupled with ML
methods, has continuously strengthened. Those approaches
evolve toward efficiently solving the dnDD problem regarding
the number of objectives and/or constraints considered. Still,
given the multitude and diverse dnDD’s characteristics as a
ManyOO process, it may serve as a catalyst for new
developments in more fundamental and general methodological
frameworks within the ManyOO field.

Finally, integrating multi-target drug development and many-
objectives optimization approaches has great potential for
accelerating the discovery of innovative and more efficacious
drug therapies.
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Zieba, A., Stȩpnicki, P., Matosiuk, D., and Kaczor, A. A. (2022). What are the
challenges with multi-targeted drug design for complex diseases? Expert Opin. Drug
Discov. 17 (7), 673–683. doi:10.1080/17460441.2022.2072827

Zitzler, E., and Künzli, S. (2004). “Indicator-based selection in multiobjective search,”
in Parallel problem solving from nature - PPSN VIII. Editors X. Yao, E. K. Burke,
J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, et al. (Berlin Heidelberg:
Springer), 832–842.

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: improving the strength Pareto
evolutionary algorithm. Switzerland: ETH Zurich, Computer Engineering and Networks
Laboratory. Technical report.

Zitzler, E., and Thiele, L. (1998). An evolutionary algorithm for multiobjective
optimization: the strength Pareto approach. Switzerland: ETH Zurich, Computer
Engineering and Networks Laboratory. Technical report.

Zitzler, E., and Thiele, L. (1999). Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE Trans. Evol.
Comput. 3 (4), 257–271. doi:10.1109/4235.797969

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., and da Fonseca, V. (2003).
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7 (2), 117–132. doi:10.1109/tevc.2003.810758

Zou, J., Zhang, Z., Zheng, J., and Yang, S. (2021). A many-objective evolutionary
algorithm based on dominance and decomposition with reference point adaptation.
Knowledge-Based Syst. 231, 107392. doi:10.1016/j.knosys.2021.107392

Frontiers in Chemistry frontiersin.org19

Angelo et al. 10.3389/fchem.2023.1288626

https://doi.org/10.1109/TEVC.2016.2608507
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1016/j.asoc.2011.08.048
https://doi.org/10.1016/j.asoc.2011.08.048
https://doi.org/10.1021/jm020017n
https://doi.org/10.1016/j.ejor.2012.12.019
https://doi.org/10.1039/d2sc00821a
https://doi.org/10.1021/jm030809x
https://doi.org/10.1002/widm.1267
https://doi.org/10.1109/tevc.2014.2350987
https://doi.org/10.1038/s41467-021-23659-y
https://doi.org/10.1016/j.sbi.2021.10.001
https://doi.org/10.1021/acs.est.0c07040
https://doi.org/10.3390/math11020413
https://doi.org/10.1109/access.2020.2973670
https://doi.org/10.1109/tevc.2020.2999100
https://doi.org/10.1109/tevc.2020.2999100
https://doi.org/10.1109/tevc.2017.2672668
https://doi.org/10.1021/ci100350u
https://doi.org/10.1109/tevc.2015.2420112
https://doi.org/10.1109/tevc.2007.892759
https://doi.org/10.1109/tevc.2007.892759
https://doi.org/10.1016/j.compag.2022.107274
https://doi.org/10.1007/s11047-022-09889-z
https://doi.org/10.1080/17460441.2022.2072827
https://doi.org/10.1109/4235.797969
https://doi.org/10.1109/tevc.2003.810758
https://doi.org/10.1016/j.knosys.2021.107392
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1288626

	Multi-and many-objective optimization: present and future in de novo drug design
	1 Introduction
	2 Key concepts in the multi-objective optimization problem
	2.1 Pareto optimality

	3 Solution methods
	3.1 Multi-objective evolutionary algorithms (MultiOEAs)
	3.1.1 Pareto-based
	3.1.2 Indicator-based
	3.1.3 Decomposition-based


	4 Dealing with many-optimization problems
	4.1 Main challenges
	4.2 Many-objective evolutionary algorithms (ManyOEAs)
	4.2.1 Relaxed dominance
	4.2.2 Indicator
	4.2.3 Decomposition
	4.2.4 Dimensionality reduction
	4.2.5 Hybrid approach


	5 Applications in de novo drug design
	5.1 MultiOO methods: optimizing up to three objectives
	5.1.1 Aggregation-based
	5.1.2 Pareto-based

	5.2 ManyOO methods: dealing with more than three objectives
	5.2.1 Aggregation-based
	5.2.2 Pareto-based

	5.3 Objectives or constraints?

	6 Discussion
	7 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


