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The combination of semiconductors and redox active molecules for light-driven
energy storage systems has emerged as a powerful solution for the exploitation of
solar batteries. On account of this, transparent conductive oxide (TCO)
nanocrystals (NCs) demonstrated to be interesting materials, thanks to the
photo-induced charge accumulation enabling light harvesting and storage. The
charge transfer process after light absorption, at the base of the proper use of
these semiconductors, is a key step, often resulting in non-reversible
transformations of the chemicals involved. However, if considering the
photocharging through TCO NCs not only as a charge provider for the system
but potentially as part of the storage role, the reversible transformation of the
redox compound represents a crucial aspect. In this paper, we explore the
possible interaction of indium tin oxide (ITO) NCs and typical redox mediators
commonly employed in catalytic applications with a twofold scope of enhancing
or supporting the light-induced charge accumulation on the metal oxide NC side
and controlling the reversibility of the whole process. The work presented focuses
on the effect of the redox properties on the doped metal oxide response, both
from the stability point of view and the photodoping performance, by monitoring
the changes in the optical behavior of ITO/redox hybrid systems upon ultraviolet
illumination.
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Introduction

The concept of reversibility in energy transformation is crucial for sustainable
development. Technological progress aims at systems capable of effectively using
resources without compromising their availability, and for this purpose, the concepts of
recycling and reuse both in terms of process and materials become fundamental (Winkler,
2011). With regards to the conversion of renewable sources, sunlight is one of the most
promising prospects. Still, its use is basedmostly on its abundance and worldwide availability
and, therefore, on a rather ineffective consumption. A system capable of performing the
function of direct and reversible electrochemical storage of solar energy would be an ideal
solution (Ghini et al., 2021a; Lv et al., 2018; Moseley and Garche, 2014; Kharkats and
Pleskov, 1994). However, if the materials used for absorption and storage are different and
disjointed, the whole process will inevitably suffer irreversible losses (Podjaski and Lotsch,
2021). One of the most interesting recent solutions concerning the integration of solar
conversion with electrochemical storage is that of redox flow solar batteries (Wedege et al.,
2018). Such systems function as a rechargeable photoelectrochemical cell, in which the
photo-generated charges from a semiconductor can be transferred to a redox couple in a
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solution. In a configuration of this type, the relationship between the
light absorption (optoelectronics) and the faradic charge storage
(electrochemistry) becomes crucial (Schoetz et al., 2022). Many
organic redox couples are currently in use for flow batteries,
depending on parameters such as stability, solubility, and
reversibility (Cao et al., 2018). On the function instead of active
materials for photoelectrodes, wide bandgap semiconductors are the
undisputed protagonists. However, a more specific class of
nanometric compounds made of doped metal oxides stands out
among the others for an additional degree of manipulation of the
light–matter interaction. Indeed, some of these oxides have
demonstrated the possibility of absorbing photons above the
bandgap, generating charges and separating them cut out
increasing their charge density (Kriegel et al., 2020). This
phenomenon is also known as photodoping because the
accumulation of charge carriers occurs primarily, thanks to
illumination (Figure 1). However, the latter is not the only
necessary condition. In order to support such a phenomenon, the
material must be able to delocalize the charges and neutralize those
of opposite sign (Das et al., 2022). One of the most studied examples
is that of tin-doped indium oxide (ITO) nanocrystals (NCs), able of
accumulating hundreds of electrons through exposure to ultraviolet
light (Reynal et al., 2013; Rebecchi et al., 2023). However, to
counterbalance this effect, a material that can accept the photo-
generated holes, a hole scavenger (HS), is normally needed (Ghini
et al., 2021b). The separation of the electron–hole pairs limits the
loss of charges and, therefore, of energy by recombination. To
optimize this characteristic quantitatively and qualitatively, it is
necessary to further investigate the function of holes quenching
to increase the charge density and maintain this charge under non-
illumination conditions. On one hand, the extraction of holes using
an irreversible scavenger can significantly improve the effect of
photodoping and make the use of excess electrons more effective for
further reactions. Such conditions are a typical prerogative of
photocatalysis, one of the most popular applications for the use
of the photoresponse of similar compounds (Reynal et al., 2013;
Denisov et al., 2019). On the other hand, considering the possibility
to re-use the metal oxide, in order to bring thematerial back to a pre-
exposure state, an irreversible extraction of the excess electrons is, in
principle, sufficient, for example, by bringing the NCs back into

contact with atmospheric oxygen (Joost et al., 2018). Nevertheless,
with a view to a more effective technological use, the presence of
sacrificial electron-donor or electron-acceptor compounds becomes
undesirable as they would need to be continuously replaced with
fresh material (Reynal et al., 2013). To use these photoactive metal
oxides in combination with electrochemical storage, instead, it
would be ideal to adopt the active redox couples of the flow
batteries as hole collectors, albeit carefully considering the
working conditions, such as to avoid, for example, unwanted
reactions that could lead to the recombination of the charges.
Moreover, the best use of redox mediators, in this aspect, should
imply multitasking. These compounds can serve as hole acceptors,
supporting the accumulation of the photo-generated electrons on
the semiconductors, but they can also act on charge storage as in a
flow battery configuration or even as a countermeasure to keep
under control the recovery of the initial conditions allowing
recycling of the system.

In this work, we analyzed the possibility of merging and taking
advantage of two different properties, hole scavenging and redox
reversibility, by combining the ITO NCs with three of the most used
species in flow cell batteries, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
(TEMPO), crystal violet, and ferrocene (Fc) (Armstrong et al., 2020),
as reversible hole scavengers, and observed their effect on the
photodoping of the ITO NCs. Particular focus was laid on
understanding the reversibility and the effect of enhancing the
charge storing properties of ITO NCs under illumination.

For this reason, in this work, we have focused the analysis on the
case of ITO NCs and their photo-induced electron accumulation
property as they represent a highly attractive bifunctional material
for solar energy storage (Kriegel et al., 2020; Ghini et al., 2021a).

Materials and methods

The synthesis of indium tin oxide (ITO) NCs was carried out,
according to the following procedure. Indium (III) acetate (CAS:
25,114-58-3), tin (IV) acetate (CAS: 2800-96-6), oleic acid (technical
grade, 90% purity, CAS: 112-80-1), and oleyl alcohol (technical
grade, 85% purity, CAS: 143-28-2) were procured from Sigma-
Aldrich. In the initial step, 13 mL of oleyl alcohol was loaded in
a 100-mL three-neck round-bottom flask and degassed for 3 h at
150°C, under a nitrogen atmosphere. Meanwhile, 263 mg of indium
and 45 mg of tin precursors, along with 2 mL of oleic acid, were
combined in a 50-mL three-neck round-bottom flask. Under
continuous stirring, the flask content was degassed for 3 h under
a nitrogen flux, leading to the formation of tin and indium oleates.
After degassing, the flask containing oleyl alcohol, serving as the
reaction vessel, was maintained under a nitrogen flux of 0.130 L/min
and heated to 290°C. The indium and tin precursors were transferred
into a syringe and injected into the hot oleyl alcohol at a
controlled rate of 0.3 mL/min using a syringe pump. NC
growth continued for 15 min after the injection concluded.
Synthesis was then cooled to room temperature. The resulting
solution was then subjected to centrifugation at 5540 G for
10 min, with ethanol used as an antisolvent. The supernatant
was discarded, and the material was redispersed in hexane.
Subsequently, ethanol was added again, and the solution
underwent a second round of centrifugation under the same

FIGURE 1
Illustration of the photodoping process in one single ITO NC.
After light absorption with light beyond the bandgap (ħω ≥ Eg), an
electron–hole pair is created. If the hole reacts with a hole scavenger
(HS), the electron remains within NC to increase the carrier
density.
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parameters. Finally, the synthesized NCs were stored in octane.
An ITO NC stock solution was prepared by taking an aliquot of
NCs, which was dried up and brought into a glovebox, to be
redispersed in anhydrous hexane with a final concentration of
9.5 mg/mL. Hole scavenger stock solutions were prepared using
anhydrous hexane (Sigma-Aldrich) as the solvent, with a
concentration of 7.4 mg/mL for TEMPO (CAS: 2564-83-2,
Sigma-Aldrich) solutions, 20 mg/mL for ferrocene (CAS: 102-
54-5, Sigma-Aldrich), and 1 mg/mL for crystal violet (CAS: 548-
62-9, Sigma-Aldrich) solutions. All dispersions were prepared in
an argon-filled glovebox to avoid any contact with atmospheric
oxygen.

The photodoping of ITO NCs was carried out by dispersing them
in anhydrous hexane (Sigma-Aldrich) and sealing the dispersion in an
optical cuvette made of Infrasil, with an optical path of 2 mm (Starna
Scientific). To obtain the absorption spectra, 17 µL of ITO NCs were
dispersed in 700 µL of anhydrous hexane and transferred in an optical
cuvette. All quantities were tuned to obtain well-defined spectra

without signal saturation. UV light was then used to illuminate the
cuvette from UV LED (Thorlabs M300L4, central wavelength:
300 nm, bandwidth: 20 nm) placed in a box internally coated with
aluminum foil, placed 12 mm away from the external cuvette window.
The effects of TEMPO, crystal violet, and ferrocene on ITO NC
photodoping dynamics were studied by adding, respectively, 50 µL
(TEMPO), 10 µL (crystal violet), or 10 µL (ferrocene) stock solution to
700 µL of anhydrous hexane, along with 17 µL of ITO NC stock
solution in hexane. A normal photodoping procedure was then
followed, as discussed previously.

Absorption spectra (Agilent Cary 5,000) to monitor the optical
response of the ITO NC solutions were measured upon the addition
of the hole scavengers, both before and after exposure to UV light.
The concentration and chemical composition of NCs were estimated
by inductively coupled plasma mass spectrometry (ICP-OES), while
dimensions and morphology were characterized by transmission
electronmicroscopy (TEM, JEOL JEM-1400Plus - Analytical 120 kV
TEM/STEM).

FIGURE 2
(A) Typical TEM image of ITO NCs. (B) Black curve: ITO NCs before UV light illumination. Red curve: ITO NCs after UV light illumination. The black
curve represents the typical absorption spectrum of ITONC dispersion in hexane. In theNIR, at approximately 1700 nm, the LSPR peak is present, which is
the result of tin aliovalent doping, while the bandgap is found in the UV range. Upon photodoping, the plasmonic peak increases in intensity and shifts the
position toward shorter wavelengths. (C) Photodoping in the presence of a commonhole acceptor, such as ethanol, displays an enhanced andmore
efficient photodoping, as observed by the more intense changes in the plasmon peak. This effect is illustrated with the evolution from the blue to red
curve. The reaction with ethanol, however, results in an irreversible transformation. (D) Possible energy-level alignment of a suitable redox reversible hole
scavenger.
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Results and discussion

ITO NC photodoping

The ITO NCs used in this study have a pseudospherical shape,
with an average diameter of approximately 13 nm (Figure 2A).
Figure 2B shows the typical absorption spectrum of ITO NCs,
displaying the main features of the material, which are the
bandgap in the UV spectral region, the localized surface plasmon
resonance (LSPR) in the near-infrared window (NIR) region,
approximately 1,700 nm, and the visible transparency. To first
analyze the progress of photodoping, we monitored the evolution
of the LSPR peak of the ITO NC solution in hexane. The LSPR
spectral position and intensity are, in fact, dependent on the density
of free charge carriers, which increases upon light-induced charge
accumulation (Rebecchi et al., 2023). In particular, photodoping will
induce a blue shift and intensity increase (Rebecchi et al., 2023).
Figure 2B shows how ITO NCs in solution, alone, can undergo
photodoping. Indeed, comparing the absorption spectrum of ITO
before and after UV light exposure, it can be seen both a blue shift in
position and intensity increase of the LSPR peak. Typically,
sacrificial hole scavengers (HS) play an essential role in the
photodoping process of colloidal NCs, contributing to the
efficient generation of charge carriers. Photodoping of different
materials has been found in the literature, such as titanium
nanoparticles (Joost et al., 2018) and zinc iron oxide (ZIO) (Brozek
et al., 2018). These have been tested with a variety of hole scavengers
such as methanol (Wei et al., 2019), ethanol (Joost et al., 2018;
Armstrong et al., 2020; Ghini et al., 2021b), and triethanolamine
hydrochloride (TEA) (Zayats et al., 2003). In all cases reported,
stable charge accumulation can only be achieved, upon switching off
the ultraviolet illumination, and by addingHS. Nonetheless, the role of a
hole quencher can also be played by other elements in the system. The
solvent, for example, can help in hole scavenging as for the case of
alcohols (Eglitis et al., 2020). Different ligands also demonstrated the
possibility to act as a hole acceptor for the negative photocharging of
semiconductor NCs (Hu et al., 2019a; Hu et al., 2019b; Mic et al., 2020).
However, photo-generated holes can follow different paths if no hole
scavenging occurs. One is hole trapping, which can occur on intrinsic
defects or trap states within the NC structure (i.e., oxygen vacancies)
(Gierster et al., 2022). Under such conditions, the photo-generated
charges can incur non-radiative recombination mechanisms like trap-
assisted or Auger recombination (Cohn et al., 2012) and phonon-
induced energy release. These competing alternative routes will hinder
the photo-generated electron accumulation process.

In the literature, there are reports about the photodoping of ZnO
and FICO (fluorine indium cadmium oxide). Indeed, ZnO can
photodope only in the presence of a hole quencher, as a
consequence of its very fast recombination dynamics (Cohn
et al., 2012). Similarly, FICO can only accumulate electrons if
photo-generated holes are consumed (Kriegel et al., 2016) with a
hole-quenching compound (e.g., ethanol). In our case, we observe
photodoping in the absence of HS, as shown in Figure 2B. We
speculate that it might be a consequence of the concomitant effects
of oleate ligand passivation (usually characterized by fast trapping/
de-trapping equilibrium) (Yan et al., 2021), defects in the lattice
(oxygen vacancies) (Gan et al., 2013), and surface states in the
depletion region (Ghini et al., 2022).

As a reference for our proposed mechanism, we decided to test
the photodoping effect with the support of a well-known hole
scavenger, ethanol (Figure 2C). The presence of this molecule,
even a small amount, increases the photodoping efficiency of
ITO NCs. In the first place, in Figure 2C, it is shown how the
ITO spectrum from the as-prepared state state (black curve) is not
substantially modified upon adding 30 µL of ethanol (EtOH) to the
cuvette (blue curve). Under this condition, we can safely analyze the
ITO behavior. Then, comparing the ITO/EtOHmixture before (blue
curve) and after UV exposure (red curve), it is shown how ITO
photodoping is enhanced, as compared to the case with no EtOH.
Indeed, with the addition of EtOH, the LSPR peak intensity has
increased by 16%, while without EtOH, photodoped plasmon
resonance has increased by 5.3%. For the sake of clarity, we show
this difference in Supplementary Figure S1, where we compare the
photodoping process using the normalized LSPR absorbance of ITO
NCs and ITO NCs with the addition of ethanol, both in the as-
prepared and photodoped states for similar exposure time (15 min).
In any case, this increase in efficiency comes at the cost of
irreversibly oxidizing EtOH molecules. In the literature, it is
reported that upon exposure to photodoped NCs (Katsiev et al.,
2017), ethanol oxidizes to acetaldehyde, following the two-step
mechanism described in Eqs 1–3. The process typically involves
two of the photo-generated holes in two successive reactions. The
first one induces the formation of a hydroxyethyl radical, which can
subsequently trap the second hole for the complete oxidation
(Katsiev et al., 2017). In addition, as counter evidence of the
ethanol transformation upon photodoping, we were able to
observe the changes in the spectral region surrounding the
absorption peak typical of the stretching of the -OH group of the
ethanol molecule. It is demonstrated in Supplementary Figures S2A,
B how this peak’s intensity decreases after photodoping, proving
that ethanol was consumed during the process in favor of the
formation of its oxidized species (NIST, 2023).

ITO + ħω → e− CB( ) + h+ VB( ), (1)
CH3CH2OH + h+ → CH3

_CHOH +H+, (2)
CH3

_CHOH + h+ → CH3CH � O +H+. (3)
As alreadymentioned, the aim of this study is to exploit the same

mechanism to enhance photodoping while retaining the ability to
recover pre-illumination conditions, thus regenerating the hole-
scavenging molecules and ITO NCs. The ideal candidates are
molecules that can undergo reversible redox reactions while
having a favorable energy-level alignment with the band structure
of ITO NCs (Figure 2D).

TEMPO

TEMPO is a very well-known stable and versatile free radical
molecule which can undergo reversible redox reactions (Figure 3A).
Its main applications are its function as a catalyst in oxidation
reactions (Wakui et al., 1999) and as a mediator in electrochemical
reactions (Nutting et al., 2018; Ok et al., 2019). In the context of
electrochemical systems, TEMPO serves as a mediator, facilitating
charge transfer processes and promoting efficient electron transfer
reactions (Nakatsuji et al., 1997; Sharma et al., 2023). Its redox
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potential, specifically the reversible TEMPO/TEMPO+ couple,
allows it to act as a redox catalyst, participating in numerous
electrocatalytic processes, including the oxidation of various
organic substrates (Wakui et al., 1999; Ryan et al., 2019).
TEMPO’s ability to undergo single-electron transfer reactions
while remaining relatively inert to further reactions makes it a
valuable tool for electrochemical investigations and applications,
including in energy storage devices (Gatti et al., 2021), organic
synthesis (Nutting et al., 2018), and sensors (Wu et al., 2020).

Considering the electrochemical reversibility and versatility of
TEMPO, and its favorable energy-level alignment with the ITO NC
band structure (Ok et al., 2019) (Figure 3B), TEMPO’s impact on the
photodoping dynamics of ITO NCs was investigated. Two distinct
experimental conditions were set in order to assess possible
interactions of UV light on TEMPO and to assess whether it
could act as an electron scavenger as well. In the first set of
experiments, TEMPO was added to the ITO NC solution prior
to illumination (Figure 3C). In the second set of experiments,
TEMPO was added after illumination in absence of any hole
scavenger (Figure 3D). Figure 3C displays the absorption spectra
of a TEMPO solution in hexane (purple curve), ITO NC solution
with TEMPO (green dashed curve), and photodoped ITO NCs with
TEMPO (red curve). The LSPR peak of ITO NCs in this mixture
does not exhibit significant changes in intensity or position before

and after illumination. Indeed, after photodoping, the increase in
peak intensity is only approximately 1.7%, which is significantly
lower than the values for both EtOH-added or pristine ITO NC
solutions, as reported in the previous section. For a better
understanding of the role of TEMPO on the photodoping
process, hence, we performed the reverse experiment, where
TEMPO is added after illumination (Figure 3D). ITO NCs alone
in solution demonstrate the ability to undergo photodoping, moving
from the blue to the red curve in Figure 3D, as already reported in
Figure 2B. Upon the addition of TEMPO, however (green dashed
curve in Figure 3D), the position and intensity of the LSPR peak
return to values comparable to those observed in the as-prepared
state. The outcome of both experiments suggests that TEMPO is
acting as an electron scavenger, rather than a hole scavenger. The
addition of TEMPO before photodoping prevents the accumulation
of electrons, as observed by a static LSPR position after light
absorption. Furthermore, the addition of TEMPO after
photodoping reverts the effect on LSPR, bringing the LSPR peak
back to its initial position and intensity. These conclusions are
supported by similar dynamics of LSPR peak position and intensity,
as reported in the literature (Brozek et al., 2016; Ghini et al., 2021b;
Shubert-Zuleta et al., 2023). Indeed, in these studies, the authors
were investigating the effect of different electron scavengers on
photodoped NCs. TEMPO electron scavenging ability, however,

FIGURE 3
(A) Typical redox reactions of the TEMPO molecule (central molecule). (B) Energy alignment between ITO NC bands and TEMPO molecule energy
levels. (C) A typical TEMPO absorption spectrum is shown in purple, adding no signatures in the region of the plasmon. The mixture of ITO and TEMPO
(dashed green curve) displays the sum of the two spectra, indicating no ground state interaction between TEMPO and ITO NCs. After photodoping, a
slight increase in the plasmon resonance intensity is observed (red curve). (D) To test the hypothesis that TEMPO can act as a hole and an electron
acceptor, photodoping was performed in the absence of any hole scavenger. It resulted in the increase of LSPR peak intensity (from blue to red curves).
Finally, the addition of 50 µL of the TEMPO stock solution resulted into the decrease in the plasmon peak back to its initial condition (green dashed curve).
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highlights the possible reversibility of the photodoping processes
itself and a light-driven charging of TEMPO.

Crystal violet

At this point, it is worth highlighting, again, how it is
important that the addition of the hole scavenger to a solution
containing ITO NCs does not compromise the chemical–physical
stability of the system. In addition to the compatibility from from
the solubility point of view solubility and, therefore, in terms of
the solvent that has to be used to “host” both the nanoparticles
and the redox species, it is necessary to verify that the presence of
the new molecule does not activate processes of degradation or
aggregation of the metal–oxide nanoparticles. This is the case, for
example, of crystal violet, as illustrated in Supplementary Figure
S3. This compound finds similar applications, as for the case of
TEMPO and, also, as a ligand for other semiconductors (Jun
et al., 2017), favoring charge transfer (Cañamares et al., 2008). In
our case, however, the addition of crystal violet de-stabilizes the
ITO NC solution, as evidenced by the decrease in the LSPR peak
intensity and the subsequent broadening of the peak after
photodoping.

Ferrocene

Finally, we wanted to investigate the possible exploitation of
the ferrocene/ferrocenium system in combination with the ITO
NC photodoping process. Ferrocene is a metal–organic compound
consisting of two cyclopentadienyl anions (C5H5-) coordinated to
a central iron (Fe2+) cation. It has diverse uses, such as in catalysis
for various inorganic transformations (Lin et al., 2017). In
electrochemical studies, ferrocene serves as a reference
compound for potential measurements due to its well-defined,
reversible redox couple (Fe2+/Fe3+), which enables accurate

calibration and characterization of electrochemical systems
(Pape et al., 2015). Moreover, the use of ferrocene in
electrochemical energy storage devices, such as redox flow
batteries and supercapacitors, showcases its potential as a
promising candidate for advancing sustainable and high-
performance energy technologies (Armstrong et al., 2020).
Reversibility-based switching functions are also used in
molecular electronic applications (Tahara et al., 2015; Karmakar
et al., 2020). In addition, ferrocene and its derivatives have been
used as ligands acting as molecular hole acceptors on photoexcited
semiconductor quantum dots (Dorokhin et al., 2009; Ding et al.,
2015; Dutta et al., 2019; Vogel et al., 2022). Their properties found
application, for example, as reversible traps or redox mediators in
photocatalysis (Olshansky et al., 2015; Olshansky et al., 2017; Li
et al., 2021). Charge transfer processes were observed using the
ferrocenium/ferrocene redox couple with perovskite NCs (Dubose
and Kamat, 2019). Its use in electrochemistry and its favorable
energy alignment (Manfredi et al., 2020) with the ITO band
structure (Figure 4A) made ferrocene a good candidate for this
study.

Figure 4B presents the photodoping results on ITO NCs and the
ferrocene solution. First, as illustrated in Figure 4B, the spectra of
ITO and mixed ITO-ferrocene show no remarkable difference in the
position and intensity of the LSPR peak, indicating no interactions at
the ground level. Upon illumination, under these conditions, ITO
NCs undergo photodoping, as demonstrated by the blue shift and
intensity increase of the LSPR peak (as indicated by the red arrow).
Photodoping increases the intensity of the LSPR peak by 8.3%,
improving its performances with respect to using only ITO without
any hole scavenger. To assess the reversibility of the photodoping
process, the cuvette was stored in an argon-filled glovebox for 3 h.
Absorption spectra were then taken. Figure 4B shows how the
photodoped ITO NC spectrum redshifts overtime and reduces in
intensity after 3 h. For the sake of clarity, we included in
Supplementary Figure S4 a zoomed-in view describing the
changes in the LSPR peak. This ability of ITO NCs to recover

FIGURE 4
(A) ITO NC band structure compared to ferrocene energy-level alignment. (B) Absorption spectra of ITO NCs (black curve), ITO NCs mixed with
ferrocene previously (blue dashed curve) and after photodoping (red curve), and the same system 3 h after illumination (gray curve). ITO NCs and
ferrocenemixture consists of the sum of the two spectra, indicating no ground-state interactions. (C)Close-up of panel (B) grey in the UV range focusing
on the changes in ferrocene absorption.
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pre-photodoping levels of LSPR peak intensity and position, even in
an oxygen-free environment, might suggest the ability of oxidized
ferrocene in extracting stored electrons in charged NCs. The typical
absorption features, as illustrated in the inset of Figure 4B, confirm
the presence of ferrocene in the systems. The ferrocene optical
response is characterized by two main transitions, approximately at
322 nm and 442 nm (Paul et al., 2019), with a low molar extinction
coefficient, whereas its oxidized form, ferrocenium, usually presents
an absorption band shifted toward the red (approximately
600–700 nm). Figure 4C shows a close-up view of the UV range
of the absorption spectra from Figure 4B. It displays the absorption
spectra for ITO NCs mixed with the ferrocene solution previously,
after photodoping and after 3 h (same color legend, as in Figure 4B).
After photodoping, we observed a decrease in the contribution in the
UV region of the absorption in correspondence of one of the peaks
of ferrocene. Then, the spectral shape recovers after 3 h. This effect
suggests a reversible mechanism of oxidation and reduction of
ferrocene upon interaction with photodoped ITO NCs. We could
not find any specific signature of the oxidized form of ferrocene in
the red-NIR range. Assuming a similar or lower concentration of
ferroceniumwith respect to ferrocene, this effect could be ascribed to
the lower extinction coefficient and the presence of the ITO NC-
LSPR peak tail.

Conclusion

We analyzed the possible use of different redox couples to further
enhance the effect of photodoping in ITO NCs and develop a new
hybrid system that is more convenient for energy applications and
capable of undergoing cycles of re-use. For this purpose, we tested well-
known compounds, TEMPO, crystal violet, and ferrocene. We studied
the charge transfer interactions with ITONCs depending on the photo-
activation of the latter. As for the case of the TEMPO molecule, we
observed how the presence of the redox mediator could induce a
transfer of the photo-generated electrons from ITO, which can lead to
the re-generation of the semiconductor. Compatibility is equally
important from the energy perspective and the chemistry of the
system to develop a stable hybrid solution, as evident in the
experiment with crystal violet. Ferrocene has demonstrated to be an
attractive alternative that can, in fact, support the increase in charge
density of the doped metal oxide nanoparticles, offering hole-trapping
channels. Moreover, the oxidation of ferrocene revealed a useful
reversible characteristic, making use of the photo-generated charges.
These results indicate an interesting new candidate for future
applications like solar redox flow battery systems.
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