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The performance of Candida antarctica lipase B (CALB) has been evaluated in 1-
butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4)/water mixtures in a
wide range of molar fractions (χBMIMBF4) with and without 1-dodecyl-3-
methylimidazolium tetrafluoroborate (C12-MIMBF4), a surfactant derived from
BMIMBF4. The main aim of this work is to evaluate the influence of χBMIMBF4 over
micellar aggregates to assess the activity of enzymatic reactions. The investigated
reaction corresponds to the hydrolysis of the substrate p-nitrophenyl laureate in
each χBMIMBF4. The kinetic study for χBMIMBF4 at around 0.2 proved to be a border
point in enzymatic activity. At χBMIMBF4 = 0.1, the lipase activity increases in the
presence of C12-MIMBF4. However, at higher concentrations, BMIMBF4 has a
negligible effect over the lipase activity. These results suggest specific
interactions between water and BMIMBF4 molecules in relation to CALB. This
research highlights the superactivity phenomenon driven by the reaction media
and the micelle interface. In this interfacial interaction, BMIMBF4 acts directly on
the changes induced on the enzyme upon its interaction with the micellar
interface. This study opens a green perspective toward the biocatalysis field.
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1 Introduction

Natural resources facilitate reactions under gentle conditions. Enzymes, derived from
readily available sources, serve as biodegradable, non-hazardous, and non-toxic catalysts.
Typically, enzymatic reactions occur under mild conditions, such as physiological pH, room
temperature, and atmospheric pressure. Leveraging enzymes in processes proves to be
environmentally appealing, cost-effective, and sustainable.

In addition, biocatalysis considers at least 10 of the 12 principles of green chemistry
(GC) (Sheldon and Woodley, 2018). GC, also known as sustainable chemistry, is not a
particular set of technologies, but rather an area of study that emphasizes on the design of
chemical products and processes with the aim of strongly reducing or eliminating chemicals
that may become hazardous when transferred to the environment as waste (Sheldon, 2000).
Catalysis is involved in i) highly selective and short synthesis and ii) products of high purity
from a process that is efficient in energy with less waste compared to non-GC processes
(Sheldon, 2016). Therefore, catalysts play a meaningful role in GC: i) decreasing energy
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requirements; ii) increasing selectivity; iii) diminishing hazardous
conditions; and iv) minimizing side products (Sheldon, 1997;
Sheldon et al., 2007; Vekariya, 2017).

Lipases are a sub-class of enzymes within the esterase family
whose natural function is to hydrolyze long chains of oils and fats
(Schomburg et al., 1991; Fojan et al., 2000). Hydrolytic enzymes have
found widespread application in organic synthesis as ecofriendly
catalysts with versatile substrate specificities. They exhibit high
stereoselectivity, operate under mild reaction conditions, are
readily available commercially, and do not require cofactors
(Dolman et al., 1997; Ventura et al., 2012). Among these
enzymes, Candida antarctica lipase B (CALB) stands out as one
of the most effective catalysts, recognized for its exceptional stability
compared to other lipases. CALB, a monomeric protein composed
of 317 amino acids, belongs to the α/β-hydrolase fold family. Its
active site comprises serine, asparagine/glutamate, and histamine.
Notably, CALB distinguishes itself from most lipases by lacking a lid
covering the entrance to its active site. Demonstrating efficiency,
CALB is a catalyst for hydrolysis in water and esterification in
certain organic solvents (Wu et al., 2013; Rabbani et al., 2015).

Water is considered the greenest solvent based on its chemical
nature and quantity. However, some enzymatic reactions that
contain hydrophobic substrates cannot take place in aqueous
media (Xu et al., 2017). On the other hand, the removal of water
from catalytic processes that proceed in aqueous media is extremely
expensive due to its high boiling point (Sheldon and Woodley,
2018), which creates the need for water replacement toward
conventional organic solvents (COSs). Hence, COSs have been
used in biocatalysis to increase enzyme stability, improve the
solubility of hydrophobic reagents, and to prevent unwanted side
reactions (Zaks and Klibanov, 1984). However, COSs are highly
volatile due to their significant vapor pressure, flammability, and
toxicity. Moreover, the inhibitory activity rates related to the enzyme
are much lower in COSs than in water (Zaks and Klibanov, 1984;
Carrea and Riva, 2008; Sheldon, 2016; Xu et al., 2017). Khmelnitsky
et al. (1994) reported that the enzymatic activity in COSs can be
increased by lyophilization with large amounts of salt (KCl). An
alternative to the COS are ionic liquids (ILs). Further studies of
enzymatic catalysis in room-temperature ionic liquids (RTILs) have
shown increases in their rate coefficients compared with COSs (Itoh,
2017). RTILs are molten salts composed entirely of cations and
anions that melt below 100°C (Welton, 1999; Weingärtner, 2008)
with remarkable physicochemical properties, i.e., being non-
flammable, non-corrosive, and non-volatile and bulk physical
constant, which can be tuned by combining different cations and
anions (Freemantle, 1998; Chiappe et al., 2007). High combinatorial
flexibility has converted these materials into “designer solvents” or
“task-specific” solvents (Freemantle, 1998; Chiappe et al., 2007)
whose properties can be specified to suit the requirements of a
particular reaction (Reichardt and Welton, 2011). For these reasons,
RTILs have gained importance in the biocatalysis field, being
recognized as a very promising reaction medium. RTILs have
shown that enzymes have the same catalytic behavior compared
to water and COSs, improving enzyme selectivity, activity, and
stability and preventing unwanted side reactions (Xanthakis
et al., 2006; de Gonzalo et al., 2007; Sheldon, 2016). Previous
studies have shown that RTILs with hydrophobic anions are less
denaturing than COSs displaying high catalytic activities, while

hydrophilic RTILs depend on the anion/cation moieties and alkyl
chains, displaying harmful effects on enzyme activity/stability
(Khmelnitsky et al., 1994; Sheldon et al., 2007; Van Rantwijk and
Sheldon, 2007).

Since the 1990s, several types of enzymatic reactions in non-
aqueous media have been studied, searching for alternative reaction
media with an impact on GC (Gupta, 1992; Ballesteros et al., 1995;
Cheong et al., 2022; Xue et al., 2022; Migowski et al., 2023). These have
mainly considered proteases and lipases (Gupta, 1992; Ballesteros et al.,
1995). The results based on the rate of the enzymatic reactions highlight
the key role of hydrophobicity and polarity of the environment (Laszlo
andCompton, 2001). Studies in solvent effects in enzymatic catalysis are
a complex process as differences in enzyme hydration (Halling, 1994)
and solvation of the enzyme and substrate must be considered. So, the
key role of solvent effects focuses on the enzymatic activity for each
solvent studied (Halling, 1994; Klibanov, 1997; Eckstein et al., 2002),
and there is great scope within this field yet to be explored. Sheldon et al.
(2002) published a second article on enzymes in RTILs and first on
CALB in 1-butyl-3-methyl imidazolium hexafluorophosphate
(BMIMPF6) and 1-butyl-3-methyl imidazolium tetrafluoroborate
(BMIMBF4) comparing those RTILs with some COSs (Lau et al.,
2000). Currently, a great number of publications show that RTILs
based on hydrophobic anions, such as BF4

−, PF6
−, and

bis(trifluoromethylsulfonyl)imide (NTF2
-) are less denaturing than

some COSs, and they are responsible for higher catalytic activities
(Van Rantwijk and Sheldon, 2007; Abe et al., 2008). However,
hydrophilic anions, such as nitrate, acetate, or lactate anions, have a
deleterious effect on the enzyme activity/stability by the formation of a
strong hydrogen bond (HB) or Coulombic interactions (Sheldon et al.,
2002; Lau et al., 2004). Therefore, anion studies based on RTILs have
suggested that employing less polar RTILs may maintain a protective
water layer around the enzyme, thereby contributing to its stabilization
(Micaêlo and Soares, 2008; Attri et al., 2011). Perhaps, this first shell of
solvation might play a key role in enzyme activity through the HB
established between the enzyme and anion(RTIL) (Sheldon et al., 2002).
So, the anions should be able to accept the HB in order to maintain the
structural conformation of the enzyme, discarding small and charged
anions able to penetrate the protein matrix, reducing the flexibility or
mobility of the enzyme active site (Anderson et al., 2002; Sheldon et al.,
2002). On the other hand, increasing the alkyl chain in the cation leads
to an increase in the hydrophobicity and van der Waals interactions
responsible for the partial or total obstruction of the active site of the
enzyme hindering the substrate–enzyme interaction and reducing the
lipase activity (Fan et al., 2016).

Three approaches to working with non-conventional solvents in
biocatalysis are i) pure solvent; ii) co-solvent in aqueous systems,
and iii) biphasic systems (Kragl et al., 2002). In general, the solvent
effect over the catalytic performance is described as i) stripping off
the water layer around the enzyme interface; ii) penetrating the
micro-aqueous phase to interact with the enzyme in order to change
the conformation and/or active site; and iii) interacting directly with
substrates and products or modifying their partitioning between
hydrophilic and hydrophobic phases (Yang, 2009; Ventura et al.,
2012). In summary, the influence of the reaction media over the
enzymatic reaction is studied in terms of improving selectivity,
activity, and stability. This influence depends on the catalyzed
reaction and nature of the enzyme under study. Therefore, it is
significant to elucidate under what circumstances and how the
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biocatalyst preserves its biological function and stability in these
solvents. Currently, the research on relationships between solvents
and enzyme functions is a large field to explore in order to identify
suitable solvents that ensure enzyme stability/activity.

Despite the green features of the ILs, it is worth highlighting
their potential damage to the environment (Pernak et al., 2001;
Amde et al., 2015). Gonzalves et al. (2021) evidenced that the effect
of these non-conventional solvents exerts an action over different
organisms, suggesting that a critical role is centered over the cation
based on their lipophilicity feature compared to the minor role of the
anion (Gonzalves et al., 2021).

More recently, ionic liquids have been used as a surfactant in
order to improve the lipase activity. In fact, surfactants immersed in
ILs are a promising reaction medium because the interactions
established (surfactant–water–IL) are minimized due to i) the
nature of the surfactant headgroup and counterions (Calderón
et al., 2019) and ii) solvation effects (Wijaya et al., 2016; Vicent-
Luna et al., 2017). Then, this work uses BMIMBF4 as a reference
solvent and its long chain derivative, i.e., 1-dodecyl-3-
methylimidazolium tetrafluoroborate (C12-MIMBF4), and our
main aim is to evaluate the influence of molar fractions of
BMIMBF4/water mixtures over micellar aggregates in order to
assess the activity of the enzymatic reaction. The investigated
reaction corresponds to the hydrolysis of the substrate
p-nitrophenyl laureate (p-NPL) in each reaction medium (see
Scheme 1 below). This work shows a comparative study of the
activity of CALB in pure and solvent mixtures at different molar
fractions of BMIMBF4/potassium phosphate buffer solution
(considered water) and the same molar fractions with C12-
MIMBF4, respectively.

2 Experimental section

2.1 Materials and methods

2.1.1 Materials
BMIMBF4 and C12-MIMBF4 were purchased from Merck and

IoLiTec, respectively. The specifications for BMIMBF4 were purity

(HPLC) >98% and water (KF) < 0.1%. C12-MIMBF4 was not fully
tested based on regulation (EC) 1272/2008. CALB, p-NPL (purity≥98%
by gas chromatography [GC]) 1, p-nitrophenol (p-NP, purity (DSC
assay) > 99.5%), and dimethyl sulfoxide (DMSO, purity (GC) > 99.9%)
were acquired from Sigma. The salts KH2PO4 and K2HPO4 were
acquired from Merck (purities (alkalimetric assay) > 99.5%). All
reagents were used as soon as delivered. Ultrapure water was used
for the preparation of the aqueous solutions used (Merck Millipore
Simplicity™ UV water purification system).

2.1.2 Lipase activity assays
This study uses pure BMIMBF4 and phosphate buffer as the

aqueous media, 50 mM and pH = 7.0, and BMIMBF4/buffer
mixtures in a wide range of molar fractions (χ) with/without the
presence of a surfactant derived from the same ionic liquid, C12-
MIMBF4 (10 mM). Each mixture was prepared by weighting the
proper amount of the IL and buffer in a screw-capped vial. To favor
mixing, each mixture was shaken and sonicated for 1 min and then
left to equilibrate overnight before use. In all cases, the mixtures
appeared homogeneous after this treatment. In those mixtures with
C12-BMIMBF4, it was added after to be shaken and sonicated.

The substrate solution (p-NPL) was prepared in DMSO at
58 mM, and it was directly injected (10 µL) in each reaction
medium. Lipase activity was measured by UV–Vis
spectrophotometry using an Agilent 8453 UV–Vis spectrometer.
Aliquots from a stock solution (50 μL) of lipase were added to
2.5 mL of each reaction medium containing the p-NPL. The release
of p-NP was recorded by following the increase in absorbance at
410 nm. The concentration of p-NP was determined from
absorbance data using a calibration curve. The initial reaction
rates were calculated during the first 150 s of the initial segment
of the reaction profiles. The enzymatic solution was prepared by
adding 10 mg by 1 mL of potassium phosphate buffer solution.
From the plots of p-NP release vs. time obtained at different p-NLP
concentrations while keeping the amount of CALB added to each
kinetic experiment constant, the dependence of the initial reaction
rates with p-NPL was established. The determination of the
Michaelis–Menten kinetic parameters (kcat and KM) was
performed according to the following equation:

SCHEME 1
General picture of the hydrolysis reaction of the substrate p-nitrophenyl laureate (p-NPL) mediated by CALB.
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v � kcat E0[ ] S[ ]
KM + S[ ] , (1)

where v corresponds to the rates of CALB-catalyzed hydrolysis of
p-NPL. [E0] is the enzyme concentration used in the hydrolysis
experiments, and [S] corresponds to the substrate concentration at
which the associated reaction rate was determined (Calderón
et al., 2019).

2.1.3 Critical micelle concentration determination
Conductivity measurements were used to evaluate the critical

micelle concentration (CMC) of C12-MIMBF4 using an Adwa
AD3000 conductometer provided with a 4-pole conductivity
probe. The conductivity of water (buffer phosphate), BMIMBF4,
and BMIMBF4/water mixtures was briefly measured upon adding
some stock solution (c.a. 50–200 μL) of C12-MIMBF4 (100 mM),
prepared in the corresponding solvent mixture. CMC values were
determined at the breaking point observed in the plots of
conductivity, expressed in mS/cm vs. [C12-MIMBF4] in all the
ranges of molar fraction with respect to BMIMBF4 (see
Supplementary Figures S1, S2 in electronic Supplementary
Material) (Evans, 1956).

3 Results and discussion

In order to obtain useful kinetic information that can be
compared with the data obtained in pure media and solvent
mixtures, special emphasis was placed on the evaluation of the
extent of the influence of the micellar aggregates at a fixed molar
concentration of surfactant (10 mM). This concentration was
used in order to ensure that the surfactant concentration is
beyond the CMC, where the presence of micellar aggregates
acquires relevance. Figure 1 shows the relationships between
the variation in the CMC of C12-MIMBF4 and the molar
fraction to respect to BMIMBF4 (χBMIMBF4). All the χBMIMBF4

solutions were prepared in 50 mM buffer phosphate, pH = 7.0,
and pure BMIMBF4. The CMC is in the range 4–10 mM of the

surfactant without p-NPL (full circles in Figure 1). On the other
hand, with p-NPL, the range is between 1 and 5 mM of the
surfactant (full triangles in Figure 1).

Figure 1 shows two trends related to the variation in the CMC vs.
IL content (in the presence and absence of the substrate), expressed
as χBMIMBF4. For the first trend (full circles, without p-NPL), there is
a decrease with the initial addition of the IL (χBMIMBF4 = 0.1);
however, the CMC remains relatively constant until close to
χBMIMBF4 = 0.4. Past this point, the CMC values steadily
increase, with a value close to 10 mM without p-NPL and a
much lower value in the presence of p-NPL (close to 4 mM).
Overall, the CMC is lower in the presence of p-NPL throughout
the whole χBMIMBF4 range. The same fact was reported by Ventura
et al. (2012); Łuczak et al. (2015). This observation is particularly
interesting, given the fact that the significant change in CMC is
attributable to the cosurfactant behavior displayed by the substrate
(up to a concentration of 0.58 mM), which is readily incorporated
into the micellar moiety. On the other hand, this is also relevant as a
consideration for the substrate concentrations used in the enzymatic
assays (10−5–10−4 M) because this concentration ensures no
significant changes are introduced in the micellar moiety due to
the incorporation of the substrate.

Figure 2 shows the variation in the lipase-catalyzed reaction rate
at different χBMIMBF4 in the presence (10 mM of C12-MIMBF4, red
color in Figure 2) and absence of the surfactant (black color, in
Figure 2). These results suggest that in the enzymatic reaction, i) in
pure solvents (buffer phosphate, χBMIMBF4 = 0.0 and BMIMBF4,
χBMIMBF4 = 1.0, respectively), the rate coefficients are negligible; ii)
at χBMIMBF4 = 0.1, the activity of lipase is increased with the presence
of C12-MIMBF4 by 50% compared with the same reaction without
the surfactant, reaching the highest value obtained (superactivity
phenomena); iii) in the order 0.1 ≤ χBMIMBF4 ≤ 0.4, their rate
coefficients decrease close to 25% and 80%, respectively, with respect
to the lipase-catalyzed rate reaction obtained at χBMIMBF4 = 0.1. In
the cited range of molar fractions, the rate coefficient values are
overturned, being they improved without the surfactant; and iv) at
χBMIMBF4 > 0.4, the enzyme activity decreases systematically (see
inset in Figure 2).

Figure 1 agrees with Figure 2 because the range of χBMIMBF4,
where the CMC is almost constant (0.1 ≤ χBMIMBF4 < 0.4), recorded
the highest enzyme activity. So, the best activity is recorded in the
presence of C12-MIMBF4 compared to pure BMIMBF4 or any
mixture of it. The formation of micelles is being promoted by
the self-aggregation of C12-MIMBF4, which is responsible for the
increase in the anion–water interactions and the IL–water interface.
Stamatis et al. (1999) reported that the presence of micelles provides
a large increase in the interfacial area, increasing the interaction
between the substrate and the enzyme active site. This significant
increase in enzyme activity is known as superactivity (Spreti et al.,
1999; Ventura et al., 2012; Sintra et al., 2014; Matteis et al., 2016;
Calderón et al., 2019). This result is attributable to the reaction
media because in water (buffer phosphate) and pure BMIMBF4,
there are no significant responses. In mixtures of IL/water, the
enzymatic activity increases, but the same mixtures in the
presence of C12-MIMBF4 showed increased superactivity
phenomena, suggesting a preferential solvation process (Ben-
Naim, 1990; Klahn et al., 2011; Alarcón-Espósito et al., 2016;
Alarcón-Espósito et al., 2017).

FIGURE 1
Variation in the critical micelle concentration (CMC) of C12-
MIMBF4 with the molar fraction of BMIMBF4 in an aqueous solution,
without p-NPL (•) and 0.58 mM p-NPL (▲).
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Furthermore, Figure 2 shows two environments close to
χBMIMBF4 = 0.2, being it value the border line, which is rich in
water composition. For this reason, it is significant to elucidate
how enzyme superactivity effects are induced by C12-MIMBF4 in
IL/water mixtures. Previous studies on IL/water mixtures have
demonstrated that the presence of water in the IL modifies their
physical and chemical properties, for instance, viscosity, density,
electrical conductivity, solvation, and solubility properties
(Seddon et al., 2000; Cammarata et al., 2001; Alarcón-Espósito
et al., 2015; Sánchez et al., 2018a; Sánchez et al., 2018b; Danna
and Harper, 2019). Seddon et al. (2000) reported on the relevance
of the HB in mixtures and their incidence in structural changes
(Elaiwi et al., 1995). On the other hand, Sánchez et al. (2018c)
suggested two strongly demarcated zones in BMIMBF4/water
mixtures. One of them was rich in water, which showed strong
preferential solvent effects by the aqueous phase, while the other
zone predominantly shows the “anion” solvent effects displayed
by the IL composition (Alarcón-Espósito et al., 2016; Sánchez
et al., 2018c). The authors established a relationship between the
β parameter of Kamlet–Taft (βKT) with χBMIMBF4, where the βKT

value was related to the ability of the solvent to accept the HB
(Kamlet and Taft, 1976; Kamlet et al., 1977; Kamlet et al., 1983).
Then, while χBMIMBF4 increases until 0.2, the βKT values increase
at the same time, but since χBMIMBF4 > 0.2, the βKT parameter is
shown to be high but constant and close to pure BMIMBF4. This
result agrees with that obtained by Fazio et al. (2008), who
reported that high quantities of water in a mixture (IL/water)
can weaken the structural network of the IL by increasing
water–anion and water–water interactions, with a gradual loss
of cation–anion interaction in the IL and displacing the cationic

moiety. For the enzymatic reaction investigated in this study, this
suggests that it takes place at low compositions of BMIMBF4 and
the presence of large concentrations of micellar aggregates. Our
results suggest that the presence of this critical composition of
BMIMBF4 has a direct influence on the enzyme and surfactant.
This environment increases the catalytic rate constant (kcat),
being less efficient in pure media and other mixtures
characterized by a high composition of BMIMBF4. In our
study, a significant decrease in lipase activity is observed at
BMIMBF4 concentrations greater than χBMIMBF4 > 0.4.
Ventura et al. (2012) reported that enzyme inhibition is
related to strong interactions of the cation with the non-polar
residues of the enzyme-active site (Constantinescu et al., 2007;
Bekhouche et al., 2011), and such interactions could lead to an
obstruction of the active site. Fluorescent measurements related
to pyrene were reported by Sánchez et al. (2018c) for all mixtures
at different molar fractions, showing that at χBMIMBF4 ≤ 0.2, the
polarity of the mixtures diminishes dramatically with the
addition of BMIMBF4, as the water content in the mixture
decreases. The authors suggest that χBMIMBF4 ≤ 0.2 is
attributable to a reaction medium with high degrees of
freedom and more susceptible to establish an HB.

Figure 3 shows the Michaelis–Menten kinetic parameters
derived from the Lineweaver–Burk data analysis from the lipase
activity assays (Viparelli et al., 1999; Biasutti et al., 2008; De Martino
et al., 2018). The analyzed χBMIMBF4 in Figure 3 corresponds to those
mixtures where the lipase activity shows its higher activities (see
Figure 2). In Figure 3, the plot between kcat vs. χBMIMBF4 shows that
the maximum value of kcat is displaced toward a lower χBMIMBF4

with a maximum value at χBMIMBF4 = 0.15 in the absence of the

FIGURE 2
Reaction rate for the lipase-catalyzed decomposition of p-NPL as a function of the molar fraction of BMIMBF4 in an aqueous solution, without C12-
MIMBF4 (▬) and 10 mM C12-MIMBF4 (▬). Inset: zoom of the data in the region of BMIMBF4 displaying lower CALB activity (region at χBMIMBF4 > 0.4).
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surfactant (full circles), and at 10 mM of C12-MIMBF4, the
maximum value of kcat is located at χBMIMBF4 = 0.1 (empty
squares). In Figure 3, the relationship between the affinity
constant, denoted by KM vs. χBMIMBF4, displays more variability
at lower χBMIMBF4 in the absence (full circles) and presence of C12-
MIMBF4 (empty squares). Particularly,KM decreases at χBMIMBF4 >
0.15. Interestingly, KM at χBMIMBF4 = 0.1 shows a peak in the
presence of C12-MIMBF4 and at χBMIMBF4 = 0.15 in the absence of
the surfactant. Finally, in Figure 3, the plot between kcat/KM vs.
χBMIMBF4 shows the catalytic efficiency in mixtures of BMIMBF4

with and without C12-MIMBF4. The magnitude of kcat/KM

determined with (empty squares) and without C12-MIMBF4 (full
circles) is higher in the range of χBMIMBF4 between 0.1 and 0.25, with
a maximum value at χBMIMBF4 = 0.1 for both trends. However, at
χBMIMBF4 = 0.05 without C12-MIMBF4 (full circles), a decrease in
catalytic efficiency is observed.

Further inspection of the Michaelis–Menten catalytic
parameters shows that there is a synergistic effect between
BMIMBF4 and the imidazolium-based surfactant. All
experimental conditions considered, a complete incorporation of

FIGURE 3
Michaelis–Menten parameters for the lipase-catalyzed solvolysis of p-NPL and its dependence on the molar fraction of BMIMBF4. Parameter
calculated based on the data obtained in the presence and absence of the surfactant: no surfactant (•) and 10 mM C12-MIMBF4 (□).
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the substrate into the micellar moiety can be expected, with the
interfacial reaction taking place at the micelle/water interface, which
appears to be enhanced by the presence of BMIMBF4. This is
particularly interesting, considering that the influence of
BMIMBF4 in the absence of the surfactant is regarded to have a
moderate/high impact on the enzyme activity. Given that, in the
presence of C12-MIMBF4, the studied lipase-catalyzed reaction
requires the interaction of the enzyme with the micellar surface

to have access to the substrate, there are at least three possible effects
responsible for the observed phenomenon:

i) High substrate concentration and its incorporation into the
micelles: The enzymatic reactions can take place in micellar
environments; however, the occupation of the substrate and
enzyme in themicelles is lower under the experimental condition
considered. Moreover, BMIMBF4 can influence changes in the
surfactant CMC values measured, which leads to changes in the
concentration of micelles in the system (assuming a constant
surfactant aggregation number), but these changes do not fully
correlate with the observed catalytic behavior.

ii) Increased enzymatic activity due to enhanced micellar
partition of the enzyme: Similar to i), an increase in the
local concentration of the enzyme on the micellar surface
might lead to increased activity. However, considering a low
micellar occupancy of the substrate molecules, the impact of
the increased enzyme concentration should be minimal.

iii) Enhanced lipase activity due to changes in the intrinsic nature of
the micellar interface: According to the available data in the
present work, particularly the determination of the counterion
occupancy at the micellar interface, it can be proposed that the
interaction between the enzyme and the micelles, taking place at
the water/micelle interface, leads to a modification of the enzyme
activity attributed to conformational changes of the enzyme. This
is further enhanced by the presence of BMIMBF4, more
specifically, by the BF4

− anion, which is largely incorporated
at the water/micelle interface.

FIGURE 4
Counterion binding fraction (β) for micelles of C12-MIMBF4 as a
function χBMIMBF4 in aqueous solutions. Full circles correspond to
micelles without p-NPL, and full triangles correspond to micelles with
0.58 mM p-NPL.

FIGURE 5
Estimated number of substrate molecules per micelle ratio as a function of BMIMBF4 content in the studied aqueous mixtures. Bars correspond to
different substrate concentrations (left to right): 2.0 × 10−4 M; 1.5 × 10−4 M; 7.5 × 10−5 M; 5.0 × 10−5 M; 2.5 × 10−5 M; and 1.0 × 10−5 M (data are given in
Supplementary Material).
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In order to address these possible effects, particularly those
related with interfacial changes (point iii) in the previous paragraph)
taking place in the micellar moiety, i.e., the zone delimited by the
interaction between the solvent and the headgroups of C12-MIMBF4,
the counterion binding to the micellar surface was determined
(Khalid et al., 2017). Figure 4 shows the counterion binding
fraction (β) for micelles of C12-MIMBF4 as a function of
χBMIMBF4 in aqueous solutions. The degree of β was calculated
according to the following equation:

β � 1 − α( ), (2)
where α corresponds to the ratio between the slopes of the post- and
pre-CMC segments of conductivity vs. χBMIMBF4 plots (please refer

to Supplementary Figures S1, S2 in electronic Supplementary
Material). Figure 4 shows two zones strongly demarcated. The
first zone, rich in water at the range 0 ≤ χBMIMBF4 0.2, is
characterized by strong variations in β-values. This parameter
suggests an increase in counterions binding to the micelle. The
second zone, at χBMIMBF4 > 0.2, corresponds to a plateau, suggesting
that the β-values are independent of χBMIMBF4.

Figure 4 shows differences in the micellar environment in the
presence of the substrate (0.58 mM, full triangles). The β-values are
at least 20% higher than without the presence of the substrate. This
fact suggests that the substrate operates as a cosurfactant in the
micellar environment. Then, the number of available adsorption
sites for the incorporation of the surfactant counterions (BF4

−) is

SCHEME 2
Depiction of the microenvironment for the lipase-catalyzed degradation of p-NPL. (A)Water/BMIMBF4 mixtures; (B) 10 mM C12-MIMBF4 in low-IL
content water/BMIMBF4 mixtures; and (C) 10 mM C12-MIMBF4 in high-IL content water/BMIMBF4 mixtures.
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improved. At χBMIMBF4 > 0.2, the β-value is close to unity (full
triangles), suggesting that the interaction of the enzyme with the
solvent/headgroup interface takes place in a surface saturated with
BF4

− anions, diminishing the catalytic activity (see Figure 2) with the
increase in χBMIMBF4.

Some reports have associated the interfacial phenomenon
influencing the interaction between the micelle-bound substrate
and lipase with the potential distribution of substrate molecules
among the population of micelles present under a given
experimental condition (Huang et al., 2008; Wu et al., 2008).
Figure 5 shows the estimated number of substrate molecules per
micelles with respect to χBMIMBF4. Equation 3 allows us to
estimate the concentration of micelles calculated by means of
an approximate aggregation number (N), which is determined by
geometrical considerations (surfactant hydrophobic chain length
and headgroup approximate size), as well as hydrodynamic
radius data determined by dynamic light scattering
measurements,

N � 4π
Lc + r( )2
a0

, (3)

where LC corresponds to the surfactant chain length and r and a0
are the radii and surface area of the surfactant headgroup,
respectively.

Figure 5 shows an ideal scenario, where the substrate
molecules are distributed as evenly as possible among the total
number of micelles. Hence, the system is always dealing with low
substrate occupancy in the micelles in the complete range of
substrate concentrations considered. This indicates that the high
efficiency achieved by the catalytic process takes place at the
solvent/micelle interface, especially under the influence of
BMIMBF4. On the other hand, the loss of activity observed
with the increase in χBMIMBF4 and its effect over the micellar
solutions are not greatly affected by changes in the population of
substrate molecules. This fact agrees with Figures 1, 4. Figure 1
(full triangles) shows the decreases in micelle concentration with
the increase in CMC observed with the increase in χBMIMBF4.
Figure 4 (full triangles) shows changes in the enzyme–micelle
interaction, which might lead to loss of activity due to the
inability of lipase to interact with the micellized substrate
molecules, being only able to interact with substrate molecules
solubilized in χBMIMBF4-rich aqueous media.

As a plausible description of the aforementioned phenomena,
Scheme 2 shows the effect of the micelles on the studied enzymatic
reaction. Scheme 2 is a general picture that describes more easily
the effect of the micelles on the enzymatic reaction. Scheme 2A
shows the enzymatic reaction in water–BMIMBF4 mixtures.
Schemes 2B shows the enzymatic reaction in micelles of C12-
MIMBF4 in the presence of water–BMIMBF4 mixtures (low
χBMIMBF4). Both schemes (A and B) show the substrate
molecules available for the enzyme. However, Scheme 2B shows
the interfacial interaction that leads to enhanced lipase activity.
BMIMBF4 operates directly on the changes induced in the enzyme
upon its interaction with the micellar interface. Scheme 2C shows
the enzymatic reaction in micelles of C12-MIMBF4 in the presence
of water–BMIMBF4 mixtures at high χBMIMBF4. BMIMBF4 and
C12-MIMBF4 share the imidazolium moiety and the BF4

−

counterion. Then, the presence of either of these species should

be responsible for the modification of the micelle-induced
enzymatic activity changes. Scheme 2C shows large counterion
binding to the micellar moiety, which might indicate that the
changes in lipase activity derive from the large local negative
charge density directly influencing the enzyme conformation.
This conformational change lead to the observed activity
changes, with no relevant changes in the extent and/or
mechanism of interaction of the enzyme with the water/micelle
interface. A pertinent alternative will be integrated to a reliable
molecular dynamics study in order to support the proposed
explanation to the phenomenon described for the surfactant/
ionic liquid/enzyme system under study.

Finally, one of the major limitations to the specific contributions
made by the surfactant molecules in micellar aggregates lies in the
fact that the concentration of micelles cannot be further increased
without losing a significant amount of activity, attributable mainly to
amounts of the enzyme that ends up adsorbed in micelles devoid of
substrate molecules, hence lowering the effective concentration of
the active enzyme in the system. Additionally, large micellar
concentrations lead to changes in the aggregation number and
geometry of the micelles, introducing further considerations to
the overall phenomenon.

4 Conclusion

BMIMBF4 can increase the catalytic rate of CALB in the
hydrolysis of the p-NPL reaction at low χBMIMBF4, particularly in
the presence of C12-MIMBF4. The significant influence of low
χBMIMBF4 over lipase activity suggests that specific interactions
occur between BMIMBF4 and lipase. Fluorescence analysis
reveals this zone to be rich in water with strong preferential
solvent effects mediated by the aqueous phase, showing a
predominant “anion” solvent effect by the IL composition. These
experimental conditions suggest a complete incorporation of the
substrate into the micellar moiety. Hence, the interfacial reaction
takes place at the micelle/water interface, enhanced by the presence
of BMIMBF4, attributable to conformational changes in the enzyme,
and the possibility to incorporate the BF4

− anion at the water/micelle
interface, thus influencing directly the interfacial catalytic
performance of the enzyme.
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