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Single-component organic solar
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importance of chemical precision
in conjugated block copolymers
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Organic photovoltaics (OPV) present a promising thin-film solar cell technology

with particular benefits in terms of weight, aesthetics, transparency, and cost.

However, despite being studied intensively since the mid 90’s, OPV has not

entered the mass consumer market yet. Although the e�ciency gap with other

thin-film photovoltaics has largely been overcome, active layer stability and

performance reproducibility issues have not been fully resolved. State-of-the-art

OPV devices employ a physical mixture of electron donor and acceptor molecules

in a bulk heterojunction active layer. These blends are prone to morphological

changes, leading to performance losses over time. On the other hand, in

“single-component” organic solar cells, the donor and acceptor constituents

are chemically connected within a single material, preventing demixing and

thereby enhancing device stability. Novel single-component materials a�ording

reasonably high solar cell e�ciencies and improved lifetimes have recently

emerged. In particular, the combination of donor and acceptor structures in

conjugated block copolymers (CBCs) presents an exciting approach. Nevertheless,

the current CBCs are poorly defined from a structural point of view, while

synthetic protocols remain unoptimized. More controlled synthesis followed by

proper structural analysis of CBCs is, however, essential to develop rational

structure-property-device relations and to drive the field forward. In this

perspective, we provide a short overview of the state-of-the-art in single-

component organic solar cells prepared from CBCs, reflect on their troublesome

characterization and the importance of chemical precision in these structures, give

some recommendations, and discuss the potential impact of these aspects on

the field.

KEYWORDS

organic photovoltaics, one-component active layer, industrial figure of merit, conjugated

block copolymers, structural defects, continuous flow

1 Introduction

Over the last decades, different types of photovoltaic (PV) modules have been developed

to harness solar energy, with silicon panels dominating the market. Among the thin-film

PV technologies, particularly attractive for more specialized applications which require

minimal weight, flexibility, and/or (semi)transparency, organic photovoltaics (OPV) stand

out in terms of “tunability”. The photoactive organic materials can be tailored to the desired

application, e.g., optimal indoor or solar light absorption, color or transparency, etc., up to a

level that can simply not be achieved by other technologies. Moreover, organic solar cells can

be produced by large-scale printing techniques on diverse surfaces. Furthermore, inherent to

their organic nature, no scarce elements are present in the key photoactive components, an

important advantage with respect to sustainability (Yao and Hou, 2022; Zhang et al., 2022;

Rehman et al., 2023).
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Despite these benefits and promises, and the interesting

prototypes provided by companies like ASCA, Heliatek, Héole, and

Epishine, organic solar cells have not seen a (mass) commercial

breakthrough yet. Various reasons for this can be formulated.

In the early days of the field, the power conversion efficiency

(PCE) of organic solar cells seriously lagged behind. On top of

that, the bankruptcy of Konarka (in 2012), one of the enterprises

focusing on OPV commercialization, discouraged other start-ups

and potential investors. Afterwards, when the 10% efficiency limit

was finally overcome, the rise of competing technologies with a

spectacular growing path in terms of efficiency—notably perovskite

PV—reduced the interest in OPV, both from the industrial and

academic side. Luckily, some academics persevered and kept on

working on new materials and fundamental aspects of OPV. This

has led to an impressive jump in PCE, up to almost 20% for

single-junction devices to date (Liu K. et al., 2023; Wang et al.,

2023). This can largely be attributed to the emergence of powerful

non-fullerene acceptors (NFAs), with a number of important

benefits compared to traditional fullerenes (e.g., complementary

near-infrared absorptivity and reduced energy losses) (Wang et al.,

2022; Zhou et al., 2022). This efficiency boost has caused renewed

enthusiasm which, combined with some skepticism on lead-based

perovskite solar cells, may lead to an OPV revival.

Nevertheless, some hurdles remain and require dedicated

attention. A first important matter is the operational stability

under outdoor conditions (Duan and Uddin, 2020; Park S. et al.,

2020; Wang et al., 2020). Besides photostability issues of the

active organic components, the need of a driving force to split

excitons—a result of the low permittivity of organics—rests on

the intimate (nanoscale) mixing of two different materials, i.e.,

an electron donor (D) and acceptor (A) material. However,

the bulk heterojunction (BHJ) morphology resulting from the

solution deposition of the two organic materials is commonly

thermodynamically unstable. Over time, external stress factors

inherent to the solar cell operation (i.e., heat and illumination)

stimulate unfavorable phase separation. A second important facet

hindering commercialization is the lack of reproducibility in device

performance. This can partly be related to the variation in molar

mass distribution and a varying level of structural defects in the

state-of-the-art push-pull conjugated polymers. While continuous

flow chemistry enables to address the molar mass issue (Beckers

et al., 2022; Smeets et al., 2023), it has not fully been embraced by

the community, and the aspect of structural defects has been largely

neglected, despite some recent efforts (Pirotte et al., 2018; Ma et al.,

2022; Smeets et al., 2023; Vanderspikken et al., 2023).

To overcome the BHJ instability, OPV scientists envisaged the

combination of the separate D and A molecules into one single

material. Initial efforts on these so-called “single-component”

organic solar cells (SC-OSCs) mostly focused on the “double cable”

approach, wherein D-type conjugated polymers were decorated

with pendant fullerene moieties (He et al., 2021, 2022; Zhang et al.,

2022; Li et al., 2023). The rise of high-performance NFAs and

the polymerized versions thereof [i.e., polymerized small molecule

acceptors or PSMAs (Du et al., 2021; Kataria et al., 2022; Yue et al.,

2022)] boosted OPV performance and opened up a new avenue

for another attractive class of SC-OSCs based on conjugated block

copolymers (CBCs). Solar cells prepared from these CBCs combine

efficiencies up to 15% with enhanced long-term stability and

simplified active layer preparation (He et al., 2021, 2022; Wu et al.,

2022; Cheng et al., 2023; Li et al., 2023; Liu B. et al., 2023; Zheng

et al., 2023). Self-assembly of CBCs into ordered microstructures

avoids aggregation of the individual D or A materials, which allows

deposition of ready-to-use inks via various coating techniques

(Cheng et al., 2023; Liu B. et al., 2023; Zheng et al., 2023), opening

the door for large-area OPV applications. However, additional steps

need to be taken in terms of precise control over and analysis of

the CBC composition (vide infra), which essentially defines charge

generation and transport. Thereto, this perspective presents the

state-of-the-art in CBC synthesis, discusses on the difficulties faced

in their preparation, purification, and characterization, suggests

potential solutions, and emphasizes the importance of chemical

precision as a leverage for further development of the SC-OSC and

the wider OPV field.

2 Conjugated block copolymers

The first CBCmaterial (P3HT-b-PFTBT) affording a reasonable

PCE (3.1%) in SC-OSCs was reported in 2013 (Guo et al., 2013).

Now, over 10 years and numerous reports later, an impressive

rise in efficiency is observed (Figure 1A), facilitated by important

parallel developments in the BHJ OPV field [i.e., the surge of high-

performance PSMAs (Du et al., 2021; Kataria et al., 2022) and D

polymers such as PM6 (Zhang et al., 2015) and D18 (Liu et al.,

2020)]. In 2022, Wu et al. (2022) synthesized a CBC based on PM6

and a Y-series PSMA (PYIT). The resulting material (PM6-b-PYIT)

(Figure 1D) yielded the most efficient CBC-based SC-OSCs to date

(14.9% PCE). In terms of peak efficiency, state-of-the-art binary

polymer:NFA (>19%) (Liu K. et al., 2023;Wang et al., 2023) and all-

polymer OSCs (>18%) (Bi et al., 2023) still outperform SC-OSCs.

However, CBC-based solar cells are quickly catching up and show

untapped potential (Li et al., 2021; Wu et al., 2021, 2022; Cheng

et al., 2023; Zheng et al., 2023). In some cases, SC-OSCs have even

been shown to outperform their binary all-polymer counterparts

(Figure 1B). Furthermore, as expected and confirmed by several

studies, they often show better long-term stability (Figure 1C).

This combination of high efficiency and stability results in an

enhanced industrial figure of merit (i-FOM; combining the PCE,

photostability, and “synthetic complexity”) for SC-OSCs (He et al.,

2022), illustrating the economic relevance of this approach.

The chemical structure of a CBC can be generally described

as an alternating arrangement of conjugated D and A fragments

along the polymer’s main chain (Figure 1D) (He et al., 2021; Li

et al., 2023). They are commonly produced via a stepwise synthesis

protocol using the palladium-catalyzed Stille cross-coupling to link

electron-rich (“push”) and electron-deficient (“pull”) monomers

as well as the D and A blocks together. Different strategies exist

to achieve the desired conjugated co-block polymeric material

(Li et al., 2023). Frequently, the D block is created first through

Stille polymerization. By limiting the reaction time, relatively short

chains with active (bromide and/or stannyl) chain ends are formed.

Next, a purification step may follow, e.g., precipitation in methanol

and subsequent Soxhlet extractions to remove (very) low-molar-

mass chains, catalysts, ligands, and any unreacted monomer. In

a next step, the individual A monomers are added to the active

D polymer chains under the same conditions to incorporate the
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FIGURE 1

(A) Evolution of the power conversion e�ciency of SC-OSCs based on CBCs (data in Supplementary Table 1). (B) E�ciency comparison of

CBC-based SC-OSCs and their binary all-polymer counterparts (data in Supplementary Table 2). (C) Stability comparison for the CBC-based and

all-polymer solar cells from (B) upon long-time exposure to illumination and thermal stress (details in Supplementary Table 2). (D) Illustration of CBC

preparation via one- and two-pot synthesis pathways and chemical structure of the prototype material PM6-b-PYIT.

A blocks. The inverse approach, i.e., preparation of the active

A block first and addition of the D monomers afterward, has

been reported by Tseng et al. (2022). They postulated that the

higher solubility of the A block would ensure a more homogenous

polymerization of the second (D) block.

In practice, a simplified approach without purification step is

used more often (Park et al., 2019; Park S. et al., 2020; Li et al.,

2021, 2022; Wu et al., 2021; Liu B. et al., 2023; Zheng et al.,

2023). In this one-pot synthesis (Figure 1D), the A monomers are

introduced (after a short reaction time) into the reaction mixture

containing the D oligomer/polymer blocks and the reaction is

simply continued under the same conditions. The absence of

the intermediate purification simplifies the synthesis but results

in a limited control over the length of the second block and

the entire structure. To gain more control over the size of both

blocks, a two-pot synthesis was introduced, in which the D

and A segments are prepared in separate reactions (Figure 1D).

Subsequent combination of the two reaction mixtures allows for

the integration of the freshly prepared active D and A chains

into a CBC. Cheng et al. (2023) recently reported the synthesis

of a CBC (D18-b-PYIT) using both one- and two-pot methods.

Besides reduced solar cell efficiency, a lower PYIT content was

observed for the one-pot product. These findings, in combination

with the expected improved chain length control, suggest the two-

pot procedure to be more adequate (Phan et al., 2022; Wu et al.,

2022; Cheng et al., 2023; Li et al., 2023).

The standard conjugated polymer purification methods are

applied to CBCs as well, i.e., precipitation of the crude material in

methanol followed by Soxhlet extractions with methanol, acetone,

hexanes, and (a) suitable chlorinated solvent(s) (Lo et al., 2021).

Considering the limited purification and the applied synthesis

protocols, it is only reasonable to assume that individual D

or A polymers or oligomers are present in the mixture of

polymer chains (Liu B. et al., 2023). Moreover, the length of

the blocks, their ratio, the exact sequence (diblock, triblock,

etc.), and potential gradient topology can be different for each

individual polymer chain. On top of that, structural defects

such as homocouplings (i.e., sequences in the polymer where

two identical monomers have coupled together rather than

undergoing a cross-coupling) may occur during the individual D

and A Stille polymerizations and when coupling the two blocks

(Hendriks et al., 2014; Vangerven et al., 2015; Lombeck et al.,

2016; Pirotte et al., 2018; Smeets et al., 2023; Vanderspikken

et al., 2023). In any case, a significant discrepancy between the

actual structure and the simple representation of a pure diblock

copolymer (as in Figure 1D) is expected. This coexistence of

other species does not necessarily reflect badly on the solar cell

performance. It has for instance been demonstrated that the

presence of individual D and A polymers (Liu B. et al., 2023)

and NFA dopants (Wu et al., 2022) can enhance device stability.

However, it does impede the establishment of rational CBC

structural guidelines.

Although the materials chemists responsible for the synthesis

are surely aware of the structural issues, statements on the CBC

composition in literature are mostly short or vague. It has to

be said though that it is actually very difficult to elucidate the
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FIGURE 2

(A) MALDI-ToF MS spectrum excerpt for D18, annotated by commercial software. (B) STM imaging and defect quantification for alkoxylated PBTTT

(reprinted with permission from Vanderspikken et al., 2023). (C) MALDI-ToF mass spectrum for 2TC-TT-BDTFT (16h reaction at 100◦C; see

Supplementary material for details), with assignment of the stannyl end-capped species (D, donor monomer; A, acceptor monomer). (D) Illustration

of molar mass tailoring of conjugated polymers by droplet-flow, illustrated for PM6 (reprinted with permission from Smeets et al., 2023).

exact structural composition, taking in mind the vast range of

possible linkages between the different moieties. Whereas, proton

nuclear magnetic resonance (1H-NMR) spectroscopy is key to

proof the structural identity and purity of organic molecules, it is

of little use for CBCs. 1H-NMR spectra can in principle be used

to determine the molar ratios of the different components in a

CBC (Lee et al., 2018; Park et al., 2019; Park S. H. et al., 2020;

Tseng et al., 2022), but the reasonably large molar mass and strong

aggregation tendency of push-pull copolymers often cause severe

peak broadening, thereby masking all structural information. Even

for a highly soluble CBC, the polymer composition is likely

too complex to unravel by NMR and the sensitivity is too low

to elucidate the often nuanced effect of structural defects like

homocoupling. Gel permeation chromatography (GPC) enables

to monitor shifts in molar mass and dispersity when adding

the second block, but this does not exclude that the first block

continues to grow individually (Li et al., 2021, 2022; Wu et al.,

2021, 2022; Cheng et al., 2023; Liu B. et al., 2023; Zheng et al.,

2023). Moreover, no structural information can be deduced from

GPC measurements. UV-Vis-NIR absorption spectra can indicate

that the individual D and A polymers are indeed present in the

final polymer mixture but do not provide any information on the

connectivity of the blocks. A physical mixture of the separate D

and A polymers would give a very similar absorption profile. In

present SC-OSC literature, energy-dispersive X-ray spectroscopy

(EDX) and/or X-ray photoelectron spectroscopy (XPS) are used

to evaluate the molar ratios of the blocks (Park et al., 2019; Li

et al., 2021; Wu et al., 2021; Cheng et al., 2023; Liu B. et al.,

2023). However, also here, no real structural information can

be deducted from these molar ratios. Even a combination of all

of the above-mentioned techniques falls short in providing real

structural insights. Considering, on top of that, homocoupling

defects can be quite prominent in state-of-the-art push-pull OPV

polymers and may have a strong impact on final solar cell

performance (Smeets et al., 2023), it is clear that additional efforts

are required to unravel the structure of CBCs and to investigate how

this structural variability influences the final SC-OSC efficiency

and stability.
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3 Pathways to enhanced control over
the CBC structure

From the above, it is obvious that further development in field

of SC-OSCs is hampered by the lack of control over the CBC

structure as well as the troublesome characterization. Both aspects

severely hinder the establishment of structure-property-device

relations. In this perspective, we propose a stepwise approach to

tackle this challenge, starting from the more controlled synthesis

and detailed analysis of the individual blocks before gradually

moving to the final CBCs.

Unfortunately, the Stille cross-coupling polymerization—the

currently most applied procedure for push-pull polymer and

CBC synthesis—is not the most “controlled” of all polymerization

methods. Although advanced catalyst-transfer polymerizations

would surely afford better control over the block length and end-

groups, and could even allow a “living” polymerization (and on top

of that would avoid organotin toxicity issues) (Woods et al., 2020;

Luscombe et al., 2022; Xu et al., 2023), the complex alternating

push-pull motifs of the state-of-the-art OPV polymers cannot be

realized by the controlled conjugated polymer synthesis procedures

available to date. For this reason, we focus on Stille polymerization

here. This does not prevent, however, that the gathered knowledge

can be translated to, for instance, direct arylation polymerization

protocols at a later stage (Nakabayashi, 2018; Chua et al., 2021).

In terms of polymer analysis, routine investigation with

matrix-assisted laser desorption-ionization—time of flight mass

spectrometry (MALDI-ToFMS) would be a very welcome addition

to the SC-OSC field. The gentle ionization ensures minimal to no

fragmentation. As a result, one can assume that the masses and

isotope patterns correspond to complete chains. MALDI-ToF MS

hence provides information on the type and number of monomers

present in each oligomer/polymer chain as well as the end-groups.

Over the past years, our group has successfully applied MALDI-

ToF MS on a wide range of alternating conjugated polymers,

in particular for the identification of homocoupling defects and

polymer end-groups (Vangerven et al., 2015; Pirotte et al., 2018;

Smeets et al., 2023; Vanderspikken et al., 2023). However, MALDI-

ToF MS also has its limitations. First of all, the technique is

most sensitive to low-molar-mass species. This results in spectra

preferentially showing the lower-molar-mass components in a

mixture. Secondly, the ionization tendency of varying species can

be quite different depending on their composition, end-groups, and

the matrix used, even within the same mass range, and no absolute

quantification can hence be done. Moreover, even though the

number of the different monomers present can be deduced, there

is no information on their connectivity. Finally, detailed manual

assignment of all species—by recognizing recurring patterns,

calculating the remaining mass, and subsequently aligning it with

feasible end-groups—is not trivial and requires expert insights

on the Stille cycle and its possible side reactions. Nevertheless,

MALDI-ToF MS analysis can provide valuable information on

the CBC backbone structure that cannot be retrieved by the

currently applied characterization methods. So far, however, the

use of MALDI-ToF MS has not been embraced by the SC-OSC

community. Only in the recent report by Phan et al. (2022), a

(two-pot synthesis) CBC product was subjected toMALDI-ToFMS

analysis. The number-average molar mass (Mn) was in line with

the GPC results but no real assignment of species was performed.

We call on the field to routinely apply MALDI-ToF MS to get a

more realistic picture of the different species present in their CBC

products, e.g., sole A or D chains, oligomers, block copolymers,

active or terminated chains, etc.

For a prototypical CBC structure (Figure 1D), four different

monomers are copolymerized. This leads to a large variety of

possible products that risks to become a difficult puzzle to analyse.

To this end, automated MS signal assignment and statistical

analysis software specifically for conjugated (block) copolymers

would be very welcome. While specialized (commercial and open

source) software for copolymer analysis does exist, the application

thereof onmass spectra of conjugated copolymers remains difficult.

For example, even though commercial software can annotate mass

spectra in an intuitive way, it fails at correctly dividing the relative

abundance of overlapping identified species, and thus derived

copolymer statistics are incorrect. An illustration of this problem

is given in Figure 2A. In the mass spectrum of the alternating

conjugated polymer D18, the software incorrectly identifies the

weakly intense tail-end of the S6 signal to the (unlikely) highly

homocoupled species S1. Since the amount of plausible species gets

much larger when analysing CBCs, this issue is expected to increase

in severity. Moreover, current tools cannot be used for polymer

systems containing more than two monomers, such as CBCs.

Therefore, the development of software which can automatically

annotate and process the intricate mass spectra of CBCs through

deconvolution of overlapping signals is highly desirable.

Ultrahigh vacuum scanning tunneling microscopy (UHV-

STM) presents a very powerful analysis technique for conjugated

polymers, complementary to MALDI-ToF MS, since it is able to

visualize the exact polymer sequence and to identify and even

quantify structural defects (Warr et al., 2018; Ponder et al., 2021).

This was recently applied for the analysis of homocoupling in

an alkoxylated version of the benchmark semi-crystalline polymer

PBTTT (Figure 2B) (Vanderspikken et al., 2023). If this could be

used for CBCs, it would obviously be very helpful to characterize

them and acquire deeper insights on the CBC composition and

polymerization mechanism. However, the STM technique is not

widely available, the statistical analysis is labor-intensive, and end-

group identification remains difficult.

To achieve more insights on the CBC polymerization, a

stepwise two-pot synthesis strategy seems most appropriate. This

allows detailed characterization of the separate D and A blocks,

e.g., by MALDI-ToF MS (while even NMR could be useful if

the chains are small enough). At present, a 1:1 ratio of the

stannylated and halogenated monomers is commonly used for the

synthesis of the individual D and A blocks and the reaction time

is kept short to ensure that enough chain ends are still “active”.

However, a (slight) excess of one of the monomers would afford a

more homogeneous mixture of oligomers with either predominant

stannyl or halogen end-groups. Polymerization of these separate

blocks with complementary end-groups—which can individually

be analyzed by MALDI-ToF MS—should be more selectively and

should hence result in a better defined CBC structure. We have

performed a quick test to illustrate this approach. A small excess

of a distannylated benzo[1,2-b:4,5-b’]dithiophene (BDT) monomer
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(1.3 equiv) afforded short D oligomer chains (Mn = 7.2 kDa, Ð*

= 1.5) of 2TC-TT-BDTFT (Chen et al., 2018) that are mostly

stannyl end-capped (Figure 2C). It has to be noted though that BDT

homocoupling can be seen as well. Such homocoupling defects have

been shown to have a (mostly negative) impact on final solar cell

performance and may even mask the true potential of a material,

and hence have to be avoided (Hendriks et al., 2014; Vangerven

et al., 2015; Lombeck et al., 2016; Pirotte et al., 2018; Ma et al., 2022;

Smeets et al., 2023; Vanderspikken et al., 2023).

Our group has embraced continuous flow chemistry to achieve

enhanced control over the structure of push-pull conjugated

polymers and minimize batch-to-batch variations (Pirotte et al.,

2015; Beckers et al., 2020, 2022; Smeets et al., 2023). Besides

the generally accepted advantages in terms of safety, scalability,

speed, and reaction optimization, flow chemistry allows to tailor

the molar mass of state-of-the-art OPV polymers (Smeets et al.,

2023). It is known that a reasonably high molar mass of the D

polymer (while keeping it soluble) is one of the main requirements

to get optimally performing organic solar cells (Chu et al., 2012;

Bartelt et al., 2014; Lee et al., 2014; Gasparini et al., 2015; Li

et al., 2017). Droplet-flow chemistry avoids diffusion of the polymer

product into the solvent stream, thereby allowing the synthesis of

conjugated polymers with an optimal and reproducible molarmass.

When applied to PM6, combined with an optimized Stille catalytic

system (Ma et al., 2022), our droplet-flow protocol afforded this

D polymer with a predefined molar mass (Figure 2D) and a

strongly reduced homocoupling content. This approach is thus

very attractive for CBC synthesis, in particular since PM6 (or a

derivative thereof) is applied as the D part for some of the best-

performing CBCs to date. Bi et al. (2023) investigated the impact

of the molar mass of the polymer acceptor in PM6:PYIT all-

polymer solar cells. Their findings revealed a substantial influence

of the A polymer’s length on the aggregation behavior and overall

performance of the polymer blend. Consequently, we propose to

control the size of both the D and A blocks by separately preparing

them in continuous flow streams and then combine these further

on. In a CBC optimization context, the flow chemistry approach

emerges as the go-to technique, since it enables swift optimization

of various reaction parameters like temperature, residence time,

and concentration.

As a final note, we would like to mention that the currently

best-performing CBCs have rather complex structures. As synthetic

complexity is part of the i-FOMmetric, it would be good to not only

focus on PM6, PYIT, and related high-efficiency D and A polymers

but rather to start introducing “simpler”, more industrially relevant

materials [e.g., PTQ-10 as the D part (Szymanski et al., 2020)],

preferably even containing bio-based building blocks.

4 Conclusions

Ever since the emergence of the first organic-based solar

cells, scientists have struggled with the necessity to combine two

different materials in the photoactive layer to realize efficient

exciton splitting. Although the power conversion efficiency has

strongly improved over the past three decades, the intimate bulk

heterojunction nanomorphology and its (in)stability over time

remain important points of attention. In last years, however,

remarkable steps have been taken to realize the old dream of

“single-component” organic solar cells. The spectacular surge

in efficiency for both polymer:NFA and all-polymer solar cells

has motivated material chemists to combine the top donor and

acceptor structures in single “conjugated block copolymer” chains.

Within a short period of time, impressive solar cell efficiencies

(up to 15%) and enhanced stabilities have been reported for these

novel materials. Nevertheless, we are convinced that the best is

yet to come for single-component organic photovoltaics. In this

perspective, we listed the different aspects that—in our opinion—

can still be improved. We pointed to the lack of structural control

and troublesome characterization of the state-of-the-art CBCs and

made different suggestions to enhance the chemical precision,

facilitate analysis, and improve reproducibility, all of this with the

overarching aim to establish rational structure-device relationships

as an additional leverage for SC-OSCs and OPV in general. As a

last recommendation, we highlighted the importance of “synthetic

simplicity” for industrial valorization. Combined with simple ink

formation and large-area printing options, these might be the final

pieces to convince SMEs and potential investors that the future is

really organic. Finally, the knowledge gained on single-component

organic semiconductors will not only benefit the solar cell field.

Cross-over to other emerging green energy technologies, such as

solar-to-hydrogen conversion, is on the horizon as well (Kosco

et al., 2022).
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