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The paper presents the fabrication and characterization of [CuI(L)]n thin films,
where L represents various alkylpyridine ligands including 4-methylpyridine, 3-
methylpyridine, 2-methylpyridine, 4-tbutylpyridine, 3,4-dimethylpyridine, and
3,5-dimethylpyridine. The thin films were synthesized by exposing the
corresponding ligands to CuI thin films through vapor deposition. The
coordination reactions occurring on the films were investigated using PXRD
and time-dependent photoluminescence spectroscopy, and a comparison was
made between the structures of the thin films and the corresponding powder
phases. The films showed primarly blue emission (λem = 457–515 nm) and
polymeric structures with excited state lifetimes ranging from 0.6 to 5.5 μs.
Significantly, the studied compounds exhibited fast reversible luminescence
quenching when exposed to vapors of dichloromethane and dibromomethane
(15 and 30min respectively), and the luminescence was restored upon re-
exposure to the alkylpyridine ligand (after 20min). These findings indicate that
these thin films hold promise for applications as sensors (with sensitive and
reversible detection capability) for volatile halogen-based compounds (VHC).
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1 Introduction

Copper iodide (CuI) has been a topic of interest for material scientists due to its unique
optoelectronic properties and applications (Yu et al., 2017; Chen et al., 2018; Busch et al.,
2019; Ki et al., 2021; Schlachter et al., 2021). CuI is a wide bandgap semiconductor (3.1 eV)
which makes it an attractive component of optoelectronics, such as solar cells,
photodetectors, and light-emitting diodes (LEDs) (RUSOP et al., 2004; Sankapal et al.,
2004; Wang et al., 2017; Yin et al., 2021; Vora-ud et al., 2022). As well, CuI readily reacts with
volatile organic compounds and may act as a reversible sensor for the detection of gases and
monitoring temperature and pressure (Safko et al., 2012; Kondo et al., 2020; Dai et al., 2023;
Jia et al., 2023).

Copper(I)-halide complexes exhibit structural diversity that is coupled to their
photoluminescence (Boden et al., 2021; López et al., 2022; Murillo et al., 2022). Simple
combinations of copper iodide and pyridine-based ligands in varying ratios yields
compounds ranging from mononuclear [CuI(3-Methylpyridine)3] to blue emissive stair-
step polymer [CuIpy]∞. The coordination sphere is largely determined by electronic and
steric effects as well as crystallization solvent and concentration in solution. For instance,
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solutions of {CuIpy}n (where py = pyridine or pyridine
derivatives) primarily exist as tetrahedral clusters, [CuIpy]4
unless it is in the presence of high concentrations of py
leading to the formation of mononuclear or multinuclear
structures. Conversely, crystalline solids isolated from such
solutions may take the form of either tetranuclear or
polymeric structures, depending mainly on the crystallization
conditions, particularly solvent (Ford et al., 1999; Cariati et al.,
2000; Näther and Jeß, 2002; Zhang et al., 2014).

Among the copper(I)-halide complexes, the compounds
containing N-heteroaromatic ligands have garnered attention due
to their versatility and impressive luminescent, photophysical, and
electrochemical properties (Liu et al., 2015; Kirakci et al., 2017;
Kobayashi et al., 2020; Egly et al., 2021). Their unique features
render them optimal candidates and establishing them as a
compelling research area for scientists. The cost-effectiveness and
bright emissivity of copper(I)-halide complexes in the solid-state
makes them a preferred choice. By judicious selection of the ligands,
the emission wavelength of the complexes can be fine-tuned from
390–650 nm, underscoring their potential in sensing and identifying
N-heteroaromatic compounds (Ohara et al., 2014; Ohara et al., 2017;
Chen et al., 2023). Copper(I)-halide complexes are well known for
their vapochromism, which could be applied for sensing molecules
in the gas phase. Copper(I) materials undergo changes in their
photoluminescence upon exposure to volatile compounds, which
reversibly induce structural changes. The reversible structural
changes and luminescent behavior make them candidates for
sensor applications (Chai et al., 2015; Grupe et al., 2020; Tang
et al., 2023).

The effectiveness of complexes in sensors relies heavily on
producing thin films (Klochko et al., 2019). By reducing the density
of the complex molecule through vapor exposure, changes in the
complex can be more easily observed. Conversely, powdery
samples require prolonged vapor exposure spanning several
hours to exhibit changes in luminescence color (Touzani
et al., 2011; Lee et al., 2022). This inconsistency is attributed
to the difficult diffusion of vapor within densely packed crystal
lattices.

The primary objective of this study is to explore the response of
CuI films to various pyridine derivatives. To track any changes, we
will employ time-dependent photoluminescence spectroscopy.
Subsequently, we assess the responsivity of thin films to CH2Cl2
and CH2Br2 vapors to assess their effectiveness as sensors for
halogenated organic molecules.

2 Experimental

2.1 Materials

CuI (99%), CuSO4·5H2O, (98%), Na2S2O3 (99.99%), KI (99%),
4-methylpyridine (99%), 3-methylpyridine (99%), 2-methylpyridine
(98%), 4-tbutylpyridine (98%), 3,4-dimethylpyridine (98%), 3,5-
dimethylpyridine (98%), dibromomethane (99%), acetonitrile
(99.8%), and CDCl3 (99.8%) were purchased from Sigma Aldrich.
Anhydrous dichloromethane (99.8%) and microscope slides were
purchased from VWR Sweden. All chemicals were used as received
without any further purification.

2.2 Fabrication of thin film

CuI was first deposited onto glass substrate by spin-coating. The
solution for spin-coating was prepared by dissolving 0.10 g
(0.525 mmol) of CuI into 10 mL of acetonitrile. Spinning condition
was 3,000 rpm for 20 s. Subsequently, the thin film was heated using a
hot plate set at 61°C to evaporate the solvents. Spin-coatingwas repeated
4 times for the same film to grow the thickness of the layer.

Another method for fabricating CuI thin films is the SILAR
(successive ionic layer adsorption and reaction) method, in which a
glass substrate is immersed separated cation and anion aqueous
solutions with a water wash between steps, as described in the
literature (Dhere et al., 2010). For the cation solution, 1.05 g
(4.2 mmol) of CuSO4 5H2O was dissolved in 42 mL of water in a
50 mL beaker. Also, 94.8 mg (0.6 mmol) of Na2S2O3 was dissolved
separately in 6 mL of water before mixing with the copper solution.
The cation precursor solution was clear blue in color. The anion
precursor, on the other hand, was a transparent KI solution in a
50 mL beaker that contained 199.2 mg (1.2 mmol) of KI dissolved in
48 mL water. Two beakers containing distilled water were placed
between the cation and anion precursor for washing.

One SILAR cycle was completed by immersing the substrate into
the cation precursor for 5 s and into the anion for 20 s. The washing
steps each lasted for 3 s and removed excess ions from the substrate.
The cycles were repeated 30 times to obtain a favorable film
thickness.

Next, the CuI film was placed in an empty 2.0 mL vial, which
was further placed in a 10.0 mL vial containing the ligand
solutions. The 10.0 mL vials were sealed, which allowed the
ligand solution in the container to vaporize and react with the
CuI thin film and form the [CuI(L)]n compounds as thin films. The
[CuI(L)]n thin films were emissive and further characterized
by PXRD.

To test the vapochromism of the films in the presence of
halogenated organics, thin films of copper(I) iodide complexes on
glass slides were suspended in a quartz cell and a few drops of the
desired CH2Cl2 or CH2Br2 solution was added inside the cell without
any direct contact between the film and the solution.

2.3 Characterization

X-ray diffraction (XRD) patterns were measured on X’Pert PRO,
PANalytical using CuKα radiation (λ = 1.5406 Å) to analyze the
purity of the prepared sample and to determine the phase and crystal
structure of the prepared materials. 1H-NMR spectroscopic
experiments were performed with a Bruker DMX-500 MHz
spectrometer using CDCl3 as reference solvent.

2.4 Photoluminescence measurements

Photoluminescence measurements were carried out on a
Fluorolog FL 3-22 spectrometer (Horiba Jobin Yvon,
Longjumeau, France), equipped with a double excitation
monochromator, a single emission monochromator (HR320) and
a R928P PMT detector. A continuous xenon lamp (450 W) was used
for steady state measurements. A Delta Diode (λex 360 nm) was
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employed as the pulsed source for TCSPC lifetime acquisition. Luma
40 heat exchanger connected to TC1 temperature controller was
used for temperature adjustment.

3 Results and discussion

3.1 Synthesis and characterization of thin
films

Synthesis of powder samples of [CuI(L)]n (n = 4 or ∞) where
L = 4-methylpyridine (4-Mepy), 3-methylpyridine (3-Mepy), 2-
methylpyridine (2-Mepy), 4-tbutylpyridine (4-tBupy), 3,4-
dimethylpyridine (3,4-diMepy), and 3,5-dimethylpyridine (3,5-
diMepy) were reported previously with their crystal structures
(Die Strukturchemie der KupferI et al., 1980; Rath et al., 1986;
Cariati et al., 2000; Cariati et al., 2005; Parmeggiani and Sacchetti,
2012; Kitada and Ishida, 2014). They exhibited strong blue emission
to blue-green, yellow, or red according to their structures as shown
in Figure 1.

In accordance with the experimental section, we utilized the spin
coating method to produce thin films of copper(I) iodide on glass
substrates. Spin coating is widely recognized for rapidly generating
uniform thin films with limited aggregation. Afterward, vapor
diffusion as a direct technique for the preparation of copper(I)
halide complexes as thin films were utilized. As seen in Figure 2, the
X-ray diffractograms confirm the reaction of the ligands with the
copper(I) films upon exposure to the ligand by vapor diffusion. No
CuI peak is detected after the reactions and there are no broad peaks
indicating the formation of amorphous material.

3.2 Photoluminescence and coordination
reaction

By monitoring the photoluminescence spectra of copper(I)
iodide films as a function of exposure time to ligand vapors

the reaction coordination processes can be resolved throughout the
entire reaction timeline. A detailed analysis of the photoluminescence
spectra revealed distinct changes in emission characteristics as the
reaction progressed. The emission intensity, peak position, and
spectral shape exhibited notable variations over time, indicating
the alteration of reaction coordination states on the film surface.
Therefore, thin film of CuI was exposed to the vapor of L and the
photoluminescence spectra and decay kinetics (lifetime, τ) were
measured. The photophysical data and their comparison to the
crystalline sample are shown in Table 1.

To prepare the thin films of the copper(I) iodide coordination
complexes, one CuI film (2 × 0.5 cm2) was placed in an empty
2.0 mL vial, which was then placed into a 10.0 mL vial
containing a ligand (L). Upon exposure to 4-Mepy vapor, the
initially non-emissive CuI film exhibits a remarkable
transformation in its emission. Figure 3 illustrates the time-
dependent photoluminescence spectra, highlighting the evolution of
emission characteristics. Within a few seconds of exposure, a vivid
blue emission emerged, resembling the emission exhibited by the
[CuI(4-Mepy)]∞ polymer as powder. The intensity of the blue
emission reached its peak after three minutes, with an emission
maximum (λem) at 498 nm.

Subsequently, the blue emission gradually diminished over a period
of 15 h, accompanied by the appearance of a low-energy red emission

FIGURE 1
Photos of CuI complexes (top) in powder form and (bottom) on
film under irradiation at 365 nm.

FIGURE 2
PXRD pattern of CuI film and complexes, [CuI(L)]n, on films
shown with ligands (L) as prepared by the SILAR method.
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band at 700 nm. This red emission became increasingly dominant after
21 h, suggesting the presence of a tetramer, [CuI(4-Mepy)]4, on the
film’s surface. Notably, after 2 days, the high-energy band regained
dominance, and it remained as the sole emission feature even after
33 days of storage in a sealed vial. The emission disappeared after 2 days
of exposure to air, which shows the sensitivity of the stability of the film
to environmental pressure.

The reaction of of 3-Mepy with CuI film led to the blue emission
at 498 nm, which is characteristic of [CuI(3-Mepy)]∞ polymer
(Supplementary Figure S1).

Based on the information presented in Figure 4, when CuI thin
film is exposed to 2-Mepy vapor, a reaction occurs resulting in dual
emission, with a dominant high energy peak observed from the initial
moments of exposure. The peaks appear to originate from two distinct
structures, possibly indicating the formation of two different
stoichiometric structures (a tetramer and a polymer). Previous
studies suggest that the enduring red emission, which remains
stable even after two hours, can be attributed to [Cu2I2(2-Mepy)]n
(Die Strukturchemie der KupferI et al., 1980). The X-ray diffraction
patterns (PXRD) of both the film and the powder exhibit a prominent
peak at 9.2°. However, when the blue-emitting [CuI(2-Mepy)]∞ film
is placed in a sealed vial in contact with vapors at room temperature, a
complete transformation to the yellow-emitting cubane [CuI(2-
Mepy)]4 is achieved within a span of 2 days.

The photoluminescence spectra of the reaction with tBupy vapor
exhibits time-dependent spectra that are characterized by a strong and
blue emission at 500 nm and decay constant of 0.4 µs, accompanied by
a broad and lower energy peak at 700 nm. Interestingly, this behavior
contradicts what is observed in the solid state, indicating that the
predominant species in the reaction are polymers, with only a small

presence of clusters contributing to the excited state known as CC
(charge-transfer) (Cariati et al., 2005).

The emission from 3,4-diMepy remains consistent even after being
exposed to the ligand for a period of 2 days. The emission is characterized
by a vivid blue color and shows high intensity. It appears that the reaction
reaches completion within an hour, and even after 2 days of exposure to
ambient air, there is no reduction in emission intensity or quenching
observed (as depicted in Supplementary Figure S2A through emission

TABLE 1 Photoluminescence maxima and lifetimes of samples in powder and thin films at room temperature.

Compound Media λmax τ (µs) Reference

[CuI(4-Mepy)]n Film 498, 700 5.5 This work

[CuI(4-Mepy)]4 Powder 580 Cariati et al. (2000)

[CuI(4-Mepy)]∞ Powder 437 Cariati et al. (2000)

[CuI(3-Mepy)]n Film 498 5.5 This work

[CuI(3-Mepy)]4 Powder 614 8 Cariati et al. (2000)

[CuI(3-Mepy)]∞ Powder 454 0.38, 3.8 Cariati et al. (2000)

[CuI(2-Mepy)]n Film 457, 588 This work

[CuI(2-Mepy)]4 Powder 452 Die Strukturchemie der KupferI et al. (1980)

[CuI(2-Mepy)]∞ Powder 658 Die Strukturchemie der KupferI et al. (1980)

[CuI(4-tBupy)]n Film 500 0.4 This work

[CuI(4-tBupy)]4 Powder 602 Cariati et al. (2005)

[CuI(4-tBupy)]∞ Powder 452 0.4, 2.7 Cariati et al. (2005)

[CuI(3,4-diMepy)]n Film 490 0.6 This work

[CuI(3,4-diMepy)]4 Powder 667 9.52 Parmeggiani and Sacchetti (2012)

[CuI(3,5-diMepy)]n Film 514 0.5 This work

[CuI(3,5-diMepy)]∞ Powder 436 Kitada and Ishida (2014)

FIGURE 3
Time dependent photoluminescence for the reaction of a CuI
film with 4-Mepy vapors at 25°C in a 10.0 mL vial.

Frontiers in Chemistry frontiersin.org04

Jamshidi et al. 10.3389/fchem.2023.1330227

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1330227


spectra and color images). In contrast, when the same reaction is
subjected to heating at 70°C, it achieves completion within a mere
2 min (as illustrated in Supplementary Figure S2B). On the other
hand, for 3,5-diMepy, the reaction occurs at a significantly faster rate,
resulting in the observation of a single green emission peak at 514 nm
(as shown in Supplementary Figure S3).

Consequently, it appears that for di-substituted pyridine ligands
and para-bulky substituted pyridine ligands such as tBupy (Figure 5),
the presence of steric hindrance directs the reaction towards a single
product. The literature and thermal gravimetry reports on these
compounds suggest that degradation occurs as a result of the loss
of 1 alkylpyridine ligand or in the case of two-stage degradation of half
of the ligands. In such cases, fluorescence was not detectable either at
room temperature or at low temperature (De Ahna and Hardt, 1972).

3.3 Luminescence responsive to volatile
halogenated compounds (VHC)

Having sensors for halogens plays a crucial role in environmental
monitoring, health and safety, industrial applications, and emergency
response. These sensors help in detecting, quantifying, and tracking
halogens, allowing for proactive measures and effective management
of halogen-related risks and challenges. To test the viability of

copper(I) iodide coordination complexes as sensors for volatile
halogenated compounds, we investigated the photoluminescence
response from [CuI(3,4-diMepy)]n and [CuI(3,5-diMepy)]n thin
films upon exposure to CH2Cl2 and CH2Br2.

Figure 6 demonstrates that when the polymer film [CuI(3,4-
diMepy)]n was exposed to a small quantity of dichloromethane
vapor, the blue emission was gradually suppressed within a 15-min
timeframe. This evidence indicates that the exposure to CH2Cl2 does
not result in the conversion of the polymer to cubane, but rather leads
to the emergence of a new non-emissive structure. Indeed, subsequent
experiments confirmed this outcome. Conversely, the polymer could
be transformed back to CuI(3,4-diMepy)]n by subjecting the
sample to 3,4-diMepy vapors for 20 min, resulting in increasing
photoluminescence intensity compared to the initial sample.

Although the PXRD pattern of [CuI(3,4-diMepy)]n samples
remained relatively unchanged throughout the process (see
Supplementary Figure S4), the PXRD analysis of [CuI(3,5-diMepy)]n
(Figure 7A) displayed the appearance of a new peak at 8.7° and
broadening of the peak at 11.3° (Figure 7B). Furthermore, after re-
exposure to 3,5-diMepy vapor, the peak at 11.3° remained broadened,
while the peak at 8.7° vanished (Figure 7C). A similar trend was
observed following exposure to CH2Br2, albeit with a quenching
time of approximately 30 min.

To conduct further analysis, the [CuI(3,4-diMepy)]n deposited
on the substrate was dissolved in CDCl3 and subjected to 1H-NMR
(Figure 8). The 1H-NMR spectrum of the ligand revealed the
presence of three distinct hydrogen types in the aromatic region,
specifically at chemical shifts of 6.9, 8.22, and 8.23 ppm. It was
anticipated that these same peaks would be observed after nitrogen
coordination to the copper. Surprisingly, the downfield signals were
no longer detectable, and instead, a new broad signal emerged at
8.4 ppm. Additionally, a signal appeared at 7.1 ppm. We postulate
that these observations may be indicative of hydrogen bond
interactions occurring between the ortho hydrogens of the
pyridine ring and the chloride present in CH2Cl2.

FIGURE 4
(A) Photoluminescence from the reaction of a CuI film with 2-
Mepy after 30 min, 2 h and 33 days of exposure in a 10.0 mL vial. The
inset shows a picture of the film under illumination after 33 days of
exposure to the ligand. (B) Crystal structure of [Cu2I2(2-Mepy)]n,
which shows red emission at 658 nm.

FIGURE 5
Time dependent photoluminescence of the reaction of CuI film
with tBupy vapor at 25°C in a 10.0 mL vial.
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4 Conclusion

In conclusion, the fabrication process of thin films of copper
iodide alkylpyridine compounds was carried out in a straightforward
manner. The characteristics of the resulting structures, their
photoluminescence, and stability were found to be influenced by
the steric hinderance of the alkylpyridine ligand. It was observed that
bulkier ligands led to the formation of a polymer blue emitter
structure, which exhibited enhanced stability at ambient temperature.

Additionally, the sensitivity of the films to environmental pressure
was demonstrated by the rapid loss of emission within just 2 days of
exposure to air. This highlights the crucial importance of considering
stability factors when utilizing CuI films in practical applications.

Furthermore, the compounds [CuI(3,4-diMepy)]n and [CuI(3,5-
diMepy)]n were specifically investigated as detectors for volatile
halogenated compounds. The emission of these compounds was found
to be quenched due to structural changes induced by the presence of the
volatile compounds. Importantly, the emission could be restored upon re-
exposure to the ligand, indicating a reversible behavior.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

FIGURE 6
Reaction of [CuI(3,4-diMepy)]n, A, with CH2Cl2, B, and reverse
reaction with 3,4-diMepy, C, at 25°C.

FIGURE 7
(A) PXRD pattern of complex 3,5-diMepy, and (B) that after
CH2Cl2 vapor exposure. (C) PXRD pattern after exposing sample B to
3,5-diMepy vapor.

FIGURE 8
Aromatic region of 1HNMRof 3,4-diMepy ligand and (A) [CuI(3,5-
diMepy)]n, and (B) after exposure to CH2Cl2 vapor. (C) After re-
exposing the film to 3,4-diMepy vapor in CDCl3.
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