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Introduction: We here describe a new method for distinguishing authentic
Bletilla striata from similar decoctions (namely, Gastrodia elata, Polygonatum
odoratum, and Bletilla ochracea schltr).

Methods: Preliminary identification and analysis of four types of decoction pieces
were conducted following the Chinese Pharmacopoeia and local standards.
Intelligent sensory data were then collected using an electronic nose, an
electronic tongue, and an electronic eye, and chromatography data were
obtained via high-performance liquid chromatography (HPLC). Partial least
squares discriminant analysis (PLS-DA), support vector machines (SVM), and
back propagation neural network (BP-NN) models were built using each set
of single-source data for authenticity identification (binary classification of B.
striata vs. other samples) and for species determination (multi-class sample
identification). Features were extracted from all datasets using an
unsupervised approach [principal component analysis (PCA)] and a supervised
approach (PLS-DA). Mid-level data fusion was then used to combine features
from the four datasets and the effects of feature extraction methods on model
performance were compared.

Results and Discussion: Gas chromatography–ion mobility spectrometry (GC-
IMS) showed significant differences in the types and abundances of volatile
organic compounds between the four sample types. In authenticity
determination, the PLS-DA and SVM models based on fused latent variables
(LVs) performed the best, with 100% accuracy in both the calibration and
validation sets. In species identification, the PLS-DA model built with fused
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principal components (PCs) or fused LVs had the best performance, with 100%
accuracy in the calibration set and just one misclassification in the validation set. In
the PLS-DA and SVM authenticity identificationmodels, fused LVs performed better
than fused PCs. Model analysis was used to identify PCs that strongly contributed to
accurate sample classification, and a PC factor loading matrix was used to assess
the correlation between PCs and the original variables. This study serves as a
reference for future efforts to accurately evaluate the quality of Chinese medicine
decoction pieces, promoting medicinal formulation safety.

KEYWORDS

Bletilla striata, data fusion, electronic senses, feature extraction, PLS-DA, GC-IMS,
authenticity, species

1 Introduction

Bletillae Rhizoma refers to the dried tuber of the plantBletilla striata.
It has a long history of use in medicines due to its pharmacological
activities, which include hemostatic, gastric mucosal protective, anti-
ulcer, antibacterial, anti-inflammatory, and wound healing functions (Li
et al., 2014; Posocco et al., 2015; Zhou et al., 2023). Bletillae Rhizoma is
also commonly used as a biomedical or cosmetic raw material (Luo
et al., 2010; Ding et al., 2016; Jiang et al., 2017; Zhang et al., 2019b), a
pharmaceutical excipient (Feng et al., 1995), and a component of
industrial glue (Cui et al., 2017; Liao et al., 2019). Continuous
discovery of Bletillae Rhizoma functions has gradually expanded its
application scope and themarket demand.However,B. striata plants are
fastidious, and their reproductive rates are low under natural conditions
(Jiang et al., 2022). Due to excessive collection by humans, wild B. striata
resources are decreasing every year (Jin et al., 2017). As a result,B. striata
is now listed as a second-class protected plant in the List of National Key
ProtectedWild Plants in China (Batch 2) (Zhang et al., 2019a). In recent
years, due to high demand and limited availability of high-quality
resources, raw B. striata materials and decoctions pieces on the
market have become heterogeneous in quality. For example, B.
striata materials are often mixed with the plants Bletilla ochracea
schltr (Li et al., 2023), Gastrodia elata, or Polygonatum odoratum,
which have some similar characteristics but differ in medicinal value
from B. striata (Zhai et al., 2012). Thus, circulation of counterfeit B.
striata products affects the clinical efficacy of B. striata decoction pieces
and can compromise drug safety. It is therefore necessary to develop
efficient, rapid, sensitive detection techniques to measure decoction
piece quality.

At present, the primary methods of identifying B. striata include
traditional manual identification, microscopic analysis, thin-layer
chromatography (TLC), near-infrared spectroscopy, and DNA
barcoding technology (Cai et al., 2020; Niu et al., 2020). These
detection methods are based on modern analysis technologies and
exhibit high accuracy, strong reliability, and precise detection.
However, some such methods require complex pretreatments and
can be prohibitively time-consuming and costly.

Artificial intelligence sensory technologies can be used to quantify
multiple quality signals, including sensory information obtained from
bionic sensory systems, and to perform pattern recognition for sample
classification. This approach provides fast, accurate, comprehensive
sample data, and has beenwidely used in detection and analysis of drugs
and foods in the past (Lu et al., 2022; Gui et al., 2023). Data fusion
technology consists in merging complementary information to obtain

more data points; this technologywas originally used in themilitary, but
has gradually been applied in various types of quality evaluation of
traditional Chinese medicine such as origin identification (Ru et al.,
2019; Wang et al., 2021), species identification (Lan et al., 2020; Sun
et al., 2020), quality control of production process (Zhang et al., 2022),
and evaluation of preparation quality (Wang et al., 2017; Yan and Sun,
2018). Traditional Chinese medicines are complex in composition and
the matrix elements utilized are diverse. Data fusion can organically
integrate these types of multi-dimensional data. Furthermore, multi-
class intelligent sensory data fusion can simulate traditional manual
evaluations by combining visual, auditory, taste, and scent-based data,
integrating complementary sensory information to improve
identification accuracy. Indeed, several studies have clearly
demonstrated the advantages of multi-intelligent sensory data fusion
(Zhang et al., 2021b; Li et al., 2022; Hou et al., 2023; Wang et al., 2023).

Data fusion approaches include multiple levels: low, mid, and
high. Mid-level fusion can avoid the disadvantages of the large data
volumes used in low-level fusion algorithms, effectively reducing data
dimensionality (Wang et al., 2019) to highlight key information and
facilitate rapid modeling. There are many methods used for feature
extraction in mid-level data fusion. In the present study, principal
components (PCs) and latent variables (LVs) were used as feature
variables and extracted with an unsupervised algorithm [principal
component analysis (PCA)] and a supervised algorithm [partial least
squares discriminant analysis (PLS-DA)]. Most previous studies have
extracted PCs through whole-sample joint dimensionality reduction.
However, that dimensionality reduction method reveals information
about the validation dataset, jeopardizing accurate analysis of model
generalizability. An improved dimensionality reduction method has
therefore been developed based on the principle of PCA, enabling
isolated dimensionality reduction in the calibration dataset and the
validation dataset. This method uses a dimensionality reduction
framework (standard deviation and variable boundary) that is
consistent between the validation and calibration datasets. Some
studies have found that features extracted by supervised algorithms
are related to classification labels, which improves identification
performance (Xue-Mei et al., 2018; Zhang et al., 2021a). We
therefore compared classification results obtained from fused PCA
and PLS-DA features.

Here, a mid-level data fusion strategy based on feature extraction
was used to identify B. striata and related decoction pieces. First, four
types of decoction pieces were manually identified based on the Chinese
Pharmacopoeia and local standards. Differences in the volatile
substances present in each type of decoction pieces were analyzed
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with gas chromatography (GC)–ion mobility spectrometry (IMS).
Similarities in high-performance liquid chromatography (HPLC)
fingerprints were calculated and response values from an electronic
nose, eye, and tongue were analyzed. Using single-source data, models
were constructed for authenticity and species identification using PLS-
DA, support vector machines (SVM), and back propagation (BP)–
neural network (NN) models. Features (PCs and LVs) were extracted
using PCA and PLS-DA, respectively. Finally, using the feature fusion
data, authenticity and species identification were conducted.
Classification performance was compared between the two feature
extraction methods and the contribution of each PC to sample
identification was analyzed. Finally, the factor loading matrix was
calculated for the PCs to explore the feature elements that most
strongly influenced sample identification. Overall, our study provides
a flexible and accurate method for quality evaluation of B. striata and
other decoction pieces, promoting medicinal formulation safety.

2 Materials and methods

2.1 Samples

Samples of dried tubers were collected from the Chengdu lotus
pond Chinese medicine market and from seven hospitals, including
ZhengzhouHospital of ChineseMedicine, the First AffiliatedHospital
of Henan University of Chinese Medicine, the Henan Hospital of
Chinese Medicine, and the Zhang Zhongjing Pharmacy. The samples
comprised 45 batches of B. striata (BS), 30 batches of G. elata (GE),
30 batches of P. odoratum (PO), and 29 batches of B. ochracea schltr
(BOS). Each batch consisted of 100 g of material (Figure 1).

2.2 Sample identification

2.2.1 Pharmacopoeia- and local standard-based
identification

A total of 134 samples were identified with the following
methods: appearance analysis; microscopic identification; thin-
layer chromatography (TLC) identification; moisture content; and
ash content. These detection items were conducted as described in
the BS section of the Chinese Pharmacopoeia (2020) and the BOS
sections of the Sichuan Provincial Standards for Processing Chinese

Herbal Pieces (2015), the Gansu Provincial Standards for Processing
Chinese Herbal Pieces (2009), and the Gansu Provincial Standards
for Chinese Medicinal Materials (2009).

2.2.2 GC-IMS identification
GC-IMS was performed with a FlavourSpec® flavor analyzer

(GAS, Germany) equipped with analytical software including
Laboratory Analytical Viewer (LAV), Reporter, Gallery Plot, and
GC × IMS Library Search. For each sample, 1.0 g of crude powder
was accurately weighed and placed in a 20-mL headspace bottle. The
powder was incubated at 80°C for 20 min before injection into the
flavor analyzer. Each sample was injected twice in parallel. The
headspace injection conditions were as follows: incubation
temperature, 80°C; incubation time, 20 min; incubation speed,
500 rpm; injection needle temperature, 85°C; injection volume,
500 μL. For GC, an FS-SE-54-CB-1 chromatographic column of
15 m in length was used; the column temperature was 60°C. The
carrier gas flow volume was as follows: 0–2 min, 2 mL·min−1;
2–20 min, 2–100 mL·min−1; and 20–30 min, 100 mL·min−1. For
IMS conditions, the carrier and drift gas were N2, the temperature
was 45°C, and the drift gas flow rate was 150 mL·min−1. The NIST and
IMS databases included with the instrument software were used to
identify the volatile organic compounds present in the samples, then
the abundances of the volatile organic compounds were analyzed with
the Reporter and Gallery Plot functions.

2.3 HPLC

Reference standards of militarine and gastrodin (both with
purity ≥98%) were obtained from Shanghai Yuanye Biotechnology
Co., Ltd (catalog number K18O9B72711) and the National Institute for
Food and Drug Control (batch number 110807—201809), respectively.
B. striata referencemedicinalmaterials were obtained from theNational
Institute for Food and Drug Control (batch number 121261—201706).
Ethanol (Tianjin Yongda Chemical Reagent Co., Ltd.), methanol
(Merck KGaA, 64271 Darmstadt, Germany), acetonitrile (Merck
KGaA, 64271 Darmstadt, Germany), and phosphoric acid (Beijing
DiKMA Technology Co., Ltd.) was chromatographic pure.

For each of the 134 samples, a sufficient volume was crushed
through a No. 4 sieve to produce at least 2.0 g powder, which was
accurately weighed and placed in a 50-mL stoppered bottle. 40 mL

FIGURE 1
Samples of (A) Bletilla striata, (B) Gastrodia elata, (C) Polygonatum odoratum, and (D) Bletilla ochracea schltr.
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dilute ethanol (concentration: 52.9%) was added to each sample. The
total mass was weighed, then ultrasonic extraction was performed
for 30 min at 200 W and 40 kHz. Samples were filtered and the
filtrate was concentrated until the ethanol was not detectable by
taste. The residue was dissolved in 3% acetonitrile in water,
centrifuged for 10 min, then filtered through a 0.45 μm
microporous membrane. The resulting filtrates were used in
HPLC fingerprint analysis, which was performed on UltiMate-
3000 HPLC instrument [Thermo Fisher Scientific (ChinaCo.,
Ltd.] equipped with an ultraviolet detector. The chromatographic
column was a Shim-pack GIST C18-AQ (250 mm × 4.6 mm, 5 μm).
Mobile phase A was 0.1% aqueous phosphoric acid solution and
mobile phase B was acetonitrile. Before use, the mobile phases were
degassed and filtered through a 0.2 μm microporous filter
membrane. The gradient elution program was as follows:
0–5 min, 5%–20% A; 5–10 min, 20%–24% A; 10–20 min, 24%–
31.5% A; 20–25 min, 31.5%–35% A; 25–30 min, 35%–42% A;
30–45 min, 42%–60% A. The flow rate was 1.0 mL/min, the
column temperature was 30°C, the injection volume was 10 μL,
and the detection wavelength was 280 nm.

2.4 Electronic sensory signal acquisition

2.4.1 Electronic nose
Olfactory information was collected using 10 types of metal

oxide sensors (W1C, W5S, W3C, W6S, W5C, W1S, W1W, W2S,
W2W, and W3S) in a PEN3 portable electronic nose (AIRSENSE,
Germany). For each of the 134 samples, there were three replicates of
2 g of powder each. Based on data from our pre-experimental
results, the samples were tested after incubating at room
temperature in a covered container for 30 min. The sampling
time was 80 s, the cleaning time was 80 s, the sensor zeroing time
was 5 s, the sample preparation time was 5 s, and the air intake flow
rate was 400 mL·min−1. The resulting olfactory data were used to
construct the olfactory information matrix X1 (134 × 10).

2.4.2 Electronic eye
The IRIS VA400 electronic eye was used to collect visual data

from the samples. Samples of an area of about 10 × 10 cm2 were
randomly selected and placed on A4 white paper. Top lighting
conditions were selected based on pre-experimental results. A 24-
color plate was used for color correction. The electronic eye used a 5-
mm aperture and the upper and lower backlights were used
simultaneously to eliminate the background. Three separate
images were taken of each sample with the position of the slices
changed between images. The resulting visual data, obtained with
85 sensors, were used to construct the visual information matrix
X2 (134 × 85).

2.4.3 Electronic tongue
Taste information was collected from each of the 134 samples

using the TS-5000Z Insent electronic tongue (Ensoul Technology
LTD. Electronic tongue sensors include Sourness, Bitterness,
Astringency, Aftertaste-B, Aftertaste-A, Umami, Richness and
Saltiness.). For each sample, 2 g was weighed out and crushed in
an electric homogenizer for 15 s. The resulting powder was placed in
a 100-mL beaker with an appropriate volume of purified water. After

stirring, samples were incubated at room temperature without
perturbation for 5 min. The samples were subsequently filtered,
sterilized and poured into a special cup to be tested by the electronic
tongue. The electronic tongue sensor was cleaned in a cleaning
solution for 90 s, in a reference solution for 120 s, and in a different
reference solution for 120 s. The sensor started to collect sample
information after the response value stabilized at 0 for 30 s. The
acquisition time of the beforetaste value of each sample was 30 s, the
sensors were then cleaned for 3 s in the two reference solutions.
Finally, the sensors were inserted into the new reference solution to
collect data for 30 s and the aftertaste value was exported. This cycle
was repeated four times; data from the first cycle were removed and
the average value was calculated from the last three cycles. The
resulting taste data, obtained from eight sensors, were used to
construct the taste information matrix X3 (134 × 8).

2.5 Construction of authenticity and species
identification models based on single-
source data

To eliminate randomness and ensure model stability, the Kennard-
Stone algorithm was used to divide samples of the four species into a
calibration set (100 samples) and a validation set (34 samples). The
linear classifier PLS-DA, the nonlinear classifier SVM, and BP-NNwere
used to establish authenticity identification (binary classification)
models based on data from the electronic nose, electronic tongue,
electronic eye, and HPLC. Model performance was evaluated in terms
of accuracy in the calibration set with cross-validation and accuracy in
the validation set. Because the program used for SVM could not be used
for multi-classification problems, only the PLS-DA and BP-NN
algorithms were used to establish multi-class species identification
models. The performances of these models were evaluated as
described for the authenticity identification model.

PLS-DA is a discriminant method based on partial least squares
regression that can be used for dimensionality reduction,
classification, and prediction. The algorithm allows determination
of whether a given sample belongs to a specific predefined category
(Ballabio and Consonni, 2013; Borraz-Martínez et al., 2019). It can
transform input data into a set of linear latent variables for
classification problems. SVM and BP-NN are nonlinear classifiers
based on a kernel function and a large number of neurons,
respectively. Both algorithms are widely used in the field of
machine learning. SVM is used to identify an optimal decision
boundary (a classification hyperplane) and uses a kernel function to
map input samples to high-dimensional space for linear separable or
non-separable problems (Chauhan et al., 2019). Because the radial
basis kernel function of SVM has the advantages of local feature
expression and strong learning abilities (Gao et al., 2008), we
selected this kernel function. BP-NN is based on abstraction and
simulation of the basic characteristics of the human brain or a
natural neural network. It includes input, output, and hidden layers.
The addition of a momentum term can accelerate the algorithm’s
learning speed and avoid the oscillation caused by a high
convergence speed (Zheng, 2005). The number of hidden-layer
neurons is determined by the specific problem to which it is
applied. A greater number of hidden-layer neurons is associated
with higher accuracy but reduced generalizability. Furthermore, a
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smaller number of neurons can reduce the network cost. These
parameters usually require a series of repeated tests for optimization.

2.6 Feature extraction

Feature extraction was carried out with both PCA and PLS-DA.
Improved PCA-based feature extraction was performed in a home-
made program designed in MATLAB. First, the PC scores of the
calibration samples from each data source were extracted. The
validation set was then added to the calibration set for
simultaneous standardization of the entire dataset.
Standardization was performed with the z-score method
(Formula 1):

Xij
′ � Xij −Xj

Sj
, j � 1, 2, 3, . . . , m (1)

Xij refers to the number in the ith row and the jth column.Xij
′ refers

to the number after standardization in the ith row and the jth
column; Xj refers to the average value of the number in jth column;
Sj refers to the standard deviation of the number in jth column.

The standardized data in the validation set were then inserted
into the linear expression of each PC (Formula 2) to obtain the PC
scores of the validation set:

Zi � ai1X1
′ + ai2X2

′ + . . . + aimX
′
m i � 1, 2, . . . , m (2)

Zi refers to the scores of ith principal component; ai1, ai2, . . ., aim
refers to eigenvector; X1

′, X2
′, . . ., X′

m refers to the number value of
the sample in the first, second, . . ., mth original variables.

For feature extraction based on PLS-DA, the latent variable
scores of the calibration set and the validation set were obtained in
the process of algorithm operation.

PCA can be used to transformmultiple variables into a small number
of comprehensive variables, represented by PCs, through dimensionality
reduction. The PCs are linear combinations of the original variables that
collectively reflect most of the information contained in the original
variables. LVs can likewise explain most of the variance of the original
data. Here, the PCs selection principle was explanation ofmore than 90%
of the variance in the original data; the selection principle of LVs was
determined with leave-one-out cross-validation. The PC and LV scores
were used as the input variables for subsequent data analysis.

2.7 Construction of authenticity and species
identification models with fused data

Using the sample identification results and the features extracted
as described in Section 2.6, PLS-DA, SVM, and BP-NN authenticity

FIGURE 2
Vertical view plot of four types of decoction pieces [BS, GE, PO, and BOS] based on GC-IMS.
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identification fusion models and PLS-DA and BP-NN species
identification fusion models were constructed. Model
performance was evaluated as described in Section 2.5.

2.8 Model analysis

Wilk’s lambda value represents the ratio of intra-group variation
to inter-group variation in a calibration dataset (Yue et al., 2019). A
smaller value corresponds to a stronger discriminant ability in a
given variable. The factor loading represents the correlation
coefficient between PCs and original variables, reflecting the
closeness and direction of the relationship between the types of
data. Thus, the correlation between each PC and each original
variable can be understood through the factor loading matrix.
Here, using Wilk’s lambda value, we identified PCs with large
contributions to classification in the fusion models. The factor
loading of each feature was calculated as follows to analyze the
key features affecting sample identification (Formula 3):

qij �
��
λi

√
aij (3)

where λi is the eigenvalue of the ith PC and aij is the coefficient of
the original variable Xj.

3 Results and discussion

3.1 Sample identification

3.1.1 Identification based on the pharmacopoeia
and local standards

We first analyzed 134 dried tuber samples as set forth in the
Pharmacopoeia and with microscopic, TLC, moisture content, and
ash content analysis. Based on these analyses combined, 45 batches of
B. striata decoction piecesmet the standards for classification as BS on
theChinese Pharmacopoeia (Part I) and did notmeet the standards for
classification as BOS based on the Sichuan Provincial Standards for
Processing Chinese Herbal Pieces, the Gansu Provincial Standards for
Processing Chinese Herbal Pieces, or the Gansu Provincial Standards

FIGURE 3
GC-IMS fingerprints of BS compared to (A) GE, (B) PO, and (C) BOS.
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for Chinese Medicinal Materials. Similarly, 30 samples each of GE and
PO decoction pieces did not meet the standards for classification as
BS; they were positively identified as authentic GE and PO,
respectively. However, many of the 29 batches of BOS not only
met the standards for classification as BOS, but also met the
standards for classification as BS. Specifically, the traits of BOS
samples 106–120 were essentially identical to those of BS.
However, samples 121–134 were highly wooded and had a
significantly different texture than BS, thus meeting local standards
for classification as BOS. There was extremely high similarity in TLC
results between the 29 BOS batches and the control medicinal samples
of BS, making it difficult to distinguish between the two sample types.
Microscopic characteristics were consistent between the 29 BOS
batches and the BS samples, displaying the characteristic
“epidermal cells with wavy curved walls, calcium oxalate needle
crystal bundles, catheters, fiber bundles and gelatinized starch
granules” described in Pharmacopoeia. However, the microscopic
background was more turbid in BOS than in BS samples. Overall, the
moisture contents of 134 samples ranged from 6.10% to 12.75% and
the ash contents ranged from 1.22% to 4.39%, consistent with
expectations based on the Pharmacopoeia.

3.1.2 GC-IMS identification
We next analyzed the levels of volatile organic compounds in

each sample with GC-IMS. Sample 34 (BS), sample 49 (GE), sample
79 (PO), and sample 108 (BOS) were randomly selected for
comparison of the two-dimension vertical view plot of BS with
the vertical view plots of the other sample types (Figure 2). In
Figure 2, the ordinate represents the GC retention time and the
abscissa represents the normalized ion draft time. The red vertical

line at abscissa = 1.0 is the normalized reactive ion peak (RIP). Each
point on the right side of the RIP peak represents one type of volatile
organic compound. Concentrations are indicated with color depth.
The results clearly showed significant differences in both the types
and abundances of volatile organic compounds between BS and
other three types of decoction pieces.

We first compared the fingerprints of BS and GE (Figure 3A). In
regions A and B, levels of volatile compounds were higher in BS.
Specifically, BS had an increased abundance of butyraldehyde, 3-
methylbutyric acid, 2,3-pentanedione, 4-methylthiazole, 2-
butanone, 2-heptenal, 2-hexenal (monomer), 2-hexenal
(polymer), and several unknown compounds compared to GE.
Region C shows volatile compounds that were more abundant in
GE than in BS, namely, ethyl propionate, 3-pentanone, acetone,
acetic acid, 2,3-butanedione, 2-methyl-1-pentanol, furfural
(monomer and dimer), phenylacetaldehyde, 2-methylbutanal, 5-
methylfurfural, and 2-furanmethanol (monomer and dimer).

Comparison of fingerprints between BS and PO (Figure 3B)
showed numerous volatile compounds that were more abundant in
BS (regions A and B): 2,3-pentanedione, 4-hydroxy-2,5-dimethyl-3
(2H) furanone (dimer), methylheptenone, furfuryl alcohol
(monomer), trans-2-nonenal, 2-heptanone, 4-methyl-2-pentanone
(dimer), and some unknown compounds. However, compounds
including 1-octen-3-ol, furfuryl mercaptan, cis-2-penten-1-ol,
isovaleric acid, 3-octanone, 5-methylfuranaldehyde, camphene, and
ethyl acetate were more abundant in PO (region C). Finally, the
fingerprints of BS and BOS were compared (Figure 3C). Overall, the
volatile organic compounds were similar in both identity and
abundance between the two types of decoction pieces, although
there were subtle differences. Regions A–F show compounds

FIGURE 4
HPLC fingerprints of 134 batches of decoction pieces. Data are shown for (A) BA, (B) GE, (C) PO, and (D) BOS.
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(including 2,3-pentanedione, furfuryl mercaptan, 3-hydroxy-2-
butanone, 3-methyl-3-buten-1-ol, 4-methylthiazole,
methylheptenone, 4-hydroxy-2,5-dimethyl-3 (2H) furanone [dimer],

and 1-penten-3-one) that were more abundant in BS than in BOS.
RegionsG–I show compounds that were significantlymore abundant in
BOS than in BS, including benzaldehyde (dimer), eucalyptol, ethenyl

FIGURE 5
Response values of the electronic (A) nose, (B) tongue, and (C) eye devices for samples of BS (S1–S45), GE (S46–S75), PO (S76–S105), and
BOS (S106–S134).
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acetate, 5-methyl-2-furanmethanol (monomer and dimer), 2,3-
butanedione, isobutanol, and 4-methyl-2-pentanone (monomer).
Thus, the integrated results of the Pharmacopoeia, local standards,
and GC-IMS positively identified samples 1–45 as BS, samples 46–75 as
GE, samples 76–105 as PO, and samples 106–134 as BOS, consistent
with the known identities of the samples.

3.2 HPLC fingerprinting

Each sample was next analyzed with HPLC fingerprinting
(Figure 4). Based on reference samples, peak 3 in the control
fingerprint (Supplementary Figure S1) of BS was gastrodin and
peak 14 was militarine. There were significant differences in the
fingerprints of BS, GE, and PO samples. The 45 batches of BS
were used as representative samples to generate a control
fingerprint. Using the control fingerprint as a reference, the
similarities of the 134 batches of decoction pieces were

calculated with the common peak weighting method;
militarine and other components were weighted as 2.5 and 1,
respectively. The fingerprints of the 45 BS, 30 GE, 30 PO, and
29 BOS batches showed similarities of 0.88–0.98, 0.2–0.34,
0.1–0.2, and 0.7–0.88, respectively. Thus, the fingerprint
similarities differed considerably between the four types of
decoction pieces. Precision: S14 solution was continually
injected 6 times according to the above chromatographic
conditions. The RSD of relative retention time and relative
peak area of 8 common peaks measured with militarine as the
reference peak was both ≤0.1%. Repeatability: 6 batches of
identical S14 solution were injected according to the above
chromatographic conditions. The RSD of relative retention
time and relative peak area of 8 common peaks measured by
militarine as reference peak were ≤0.1% and ≤2.3%, respectively.
Stability: S2 solution was injected at 0, 2, 4, 8, 12 and 24 h after
preparation according to the above chromatographic conditions.
The RSD of relative retention time and relative peak area of

FIGURE 6
Score plots of single-source PLS-DA authenticity and counterfeit identification model based on (A) electronic nose, (B) electronic tongue, (C)
electronic eye and (D) high-performance liquid chromatography. Class1, BS; class2, counterfeit species (GE, PO, and BOS).
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8 common peaks measured with militarine as the reference peak
was 0.1% and 0.3%, respectively, indicating that the sample
solution was stable within 24 h.

3.3 Electronic sense signals

All 134 samples were analyzed with an electronic nose, an
electronic tongue, and an electronic eye. Most of the samples had
the highest response for the electronic nose sensors W1W, W2W,
and W1S, followed by W5S and W2S (Figure 5A). Notably, the
response values at sensors W5S and W2S were significantly
higher for BOS than for BS samples. Most of the samples had
low response values at sensors detecting alkanes and hydrogen
gases (e.g., W3S and W6S) and aromatic compounds (e.g., W1C,
W5C, and W3C). In the electronic tongue sensor detection,
Bitterness, Astringency, Aftertaste-B, and Umami showed the
greatest differences between sample types (Figure 5B). The
bitterness and astringency response values were relatively low
in BS samples but very large in some BOS samples. Other BOS
samples showed high similarity to BS samples, indicating
extensive heterogeneity among the 29 BOS batches. The
results also showed significantly stronger astringency in PO
compared to BS samples. Across all samples, the electronic eye

detected the strongest color values at numbers 3784, 3785, 3786,
3767, 3494, 3512, 3513, 2677, 3221, 3222, 2949, 2967, and 3240
(Figure 5C). These corresponded to moderate yellow and light
yellowish brown sample colors.

3.4 Authenticity identification models

3.4.1 Models built with electronic nose data
The PLS algorithmwas used to convert the electronic nose data into

linear LVs. Six LVs were then used to establish a PLS-DA model with
good performance. These first six LVs explained 99% of the total
variance among the samples. For the first two LVs, there were some
similarities between BS and counterfeit samples (Figure 6A). In the
calibration set, the BS samples S34 and S44 were misclassified, and S76
(PO) was misclassified as BS (Table 1). In the validation set, S57 (GE)
was misclassified as BS. Misclassification of the samples may have been
due to differences in volatile components compared to other samples
resulting from changes in temperature and humidity during
transportation and storage. Overall, the model accuracy was 97% in
the calibration set and 97.06% in the validation set. The model
sensitivity (Se) and specificity (Sp) were 0.94 and 0.98, respectively.
This indicated that electronic nose data could be used to accurately
distinguish between BS and similar decoction pieces.

TABLE 1 Authenticity identification results andmodel parameters [Se= TP/(TP + FN); Sp= TN/(TN + FP); Ac= TP/(TP + FP); TP: true positive; FP: false positive;
TN: true negative; FN: false negative].

Model Data matrix Calibration set Validation set

Misclassified
samples

Not-assigned
samples

Se Sp Ac Misclassified or
not-assigned samples

Ac

PLS-DA EN 3 0 0.9400 0.9800 0.9700 1 0.9706

EE 2 0 1.0000 0.9700 0.9800 1 0.9706

ET 1 0 0.9700 1.0000 0.9900 1 0.9706

HPLC 2 0 0.9700 0.9800 0.9800 0 1.0000

Data fusion by PCs 0 0 1.0000 1.0000 1.0000 1 0.9706

Data fusion by LVs 0 0 1.0000 1.0000 1.0000 0 1.0000

SVM EN 8 0 0.9100 0.9200 0.9200 4 0.8824

EE 1 0 1.0000 0.9800 0.9900 1 0.9706

ET 10 0 1.0000 0.9800 0.9000 2 0.9412

HPLC 6 0 0.8500 0.9800 0.9400 0 1.0000

Data fusion by PCs 0 0 1.0000 1.0000 1.0000 1 0.9706

Data fusion by LVs 0 0 1.0000 1.0000 1.0000 0 1.0000

BP-NN EN 2 0 0.9400 1.0000 0.9800 1 0.9706

EE 1 0 1.0000 0.9800 0.9900 1 0.9706

ET 1 1 1.0000 0.9800 0.9800 1 0.9706

HPLC 5 0 0.9100 0.9700 0.9500 0 1.0000

Data fusion by PCs 1 0 1.0000 0.9800 0.9900 1 0.9706

Data fusion by LVs 1 0 1.0000 0.9800 0.9900 1 0.9706

The bold values indicate the optimal model.
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We next optimized the kernel parameter and cost values, which
were initially 0.05 and 0.1, respectively (Supplementary Figure S2).
The error rate in cross-validation changed along with the kernel
parameters and cost values, and we selected the combination that
produced the lowest error rate and highest accuracy (kernel
parameter = 1.13, cost value = 10). The model was run again
with the optimized parameters. In the calibration set, S28, S34,
and S44 (BS) were misclassified, whereas S64 (GE), S83, S86, and
S101 (PO), and S121 (BOS) were misclassified as BS; in the
validation set, S30, S81, S82, and S128 were misclassified. Thus,
the accuracy was 92% and 88.24% in the calibration and validation
sets, respectively. The model Se and Sp were 0.91 and 0.92,
respectively. Visualization of the SVM classification hyperplane
and decision boundaries (Supplementary Figure S3A) indicated
that the performance of the model built with electronic nose data
required improvement.

The optimized BP-NN model parameters were as follows: two
hidden layers; 10 neurons per layer; learning rate = 0.01; momentum
term = 0.5; 500 iterations. After 500 iterations of training, the model
error rate was 0 (Figure 7A). In the calibration set, the BS samples

S28 and S44 were misclassified; in the validation set, S82 was
unassigned. Notably, these three samples were also misclassified
or unclassified in the PLS-DA and SVM models, presumably due to
differences in sample quality. The accuracy was 98% and 97.06% in
the calibration and validation sets, respectively, and the Se and Sp
were 0.94 and 1.0, respectively. Thus, the BP-NN model built with
electronic nose data could be used to accurately distinguish between
BS and related decoction pieces.

3.4.2 Models built with electronic eye data
In leave-one-out cross-validation, the PLS-DAmodel performed

best when using the first three LVs, which together explained 63% of
the sample variance. The two types of samples (BS and others) had
good aggregation in the first two LVs (Figure 6B). S84, S91, and
S5 were misclassified. Analysis of the original samples suggested
that they may have been misclassified because they had slightly
different surface color characteristics compared with other
samples. The accuracy was 98% and 97.06% in the calibration
and validation sets, respectively, and the Se and Sp were 1.0 and
0.97, respectively.

FIGURE 7
Training iterations and error rates of BP-NN authenticity and counterfeit model. Models were built with data from (A) an electronic nose, (B) an
electronic eye, (C) an electronic tongue, and (D) HPLC.
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The SVM model had the lowest error rates when the kernel
parameter was 1.6, 2.26, 3.2, or 4.53 and the corresponding cost
value was 1, 1, 1, or 0.1, respectively; these parameter combinations
produced accuracies of 96%, 99%, 99%, and 96%, respectively.

Larger kernel parameter and cost values were associated with
smaller numbers of support vectors (Supplementary Figure S4).
The role of a support vector is to determine the optimal classification
hyperplane. The number of support vectors is affected by both the

FIGURE 8
Results of models built with fused data. (A,B) PLS-DA score plots. (C,D) SVM classification hyperplanes and support vectors. (E) SVM parameter
optimization. Models shown in (A,C) were built with fused PCs; models shown in (B,D,E) were built with fused LVs.
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penalty parameter c and the kernel parameter g (Yang and Gao,
2020). A larger c corresponds to fewer support vectors, higher model
accuracy, a smaller occupied network space, and faster prediction
speeds. The number of support vectors was smallest (51) when the
kernel parameter was 3.2 and the cost value was 1. This model was
therefore selected for further analysis. Using these parameters,
S91 and S5 were misclassified in the calibration and validation
sets, respectively; Ac was 99% and 97.06% in the calibration and
validation sets, respectively; Se and Sp were 1.0 and 0.98,
respectively.

Because there were 85 color values detected by the electronic eye
and the input variables were large, the number of hidden-layer
neurons in the BP-NN model needed to be optimized for these
data. Too many hidden-layer neurons will weaken model
generalizability and increase network operation costs. After
optimization, the parameters were as follows: three hidden
layers; 10 neurons per layer; learning rate = 0.01; momentum
term = 0.5; 500 iterations. When the number of training

iterations was 500, the model error rate was 0 (Figure 7B).
However, S5 was still misclassified in the validation set. This
sample comprised irregular thick slices with sections of white,
gray-white, and brown; thus, the sample characteristics were
different from the irregular thin slices and white color of the
44 other BS samples. In the validation set, S116 was misclassified.
Ac was 99% and 97.06% in the calibration and validation sets,
respectively and the model Se and Sp were 1.0 and 0.98,
respectively.

3.4.3 Models built with electronic tongue data
The PLS-DA model performed best when it was built with four

LVs that explained 83% of the sample variance (Figure 6C).
S3 and S60 were misclassified in the calibration and validation
sets, respectively. BS and non-BS samples showed some
similarities in the variance of the first two LVs. The Se and Sp
of the model were 0.97 and 1, respectively, and the classification
performance was good.

FIGURE 9
Performance of BP-NN authenticity and counterfeit model. (A) Training iterations and error rates for a model built with fused PCs. (B) Receiver
operating characteristic (ROC) curves (left), sensitivity, and specificity (right) for a model built with fused PCs. (C) Training iterations and error rates for a
model built with fused LVs. (D) ROC curves (left), sensitivity, and specificity (right) for a model built with fused LVs.
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In cross-validation, the SVMmodel error rate was smallest when
the kernel parameter was 0.4, 0.57, 0.8, 1.6, or 3.2, and the
corresponding cost value was 1, 1, 1, 10, or 1, respectively. Model
accuracy was highest (90% and 94.12% for the calibration and
training sets, respectively) at kernel parameter = 0.57 and cost
value = 1. Using this model, there were seven and three
misclassified BS and GE samples, respectively, in the calibration
set. In the validation set, S10 and S67 were misclassified. Se and Sp
were 1.0 and 0.98, respectively. The classification result showed that
when the SVM classifier performed pattern recognition on the
electronic tongue data, the relationship between the recognition
mechanism and the differences in electronic tongue data
demonstrated a need for further optimization.

The optimal BP-NNmodel contained two hidden layers and five
neurons per layer; it had a learning rate of 0.01, a momentum term of
0.3, and was trained for 500 iterations. In the calibration set, the
accuracy was 98%, S15 was unassigned, and S53 was misclassified.
S48 was misclassified in the validation set (Ac: 97.06%). After

500 iterations of training, the error rate was 0 (Figure 7C).
Model accuracy increased the most when the momentum term
was gradually increased from 0.2 to 0.5 while other parameters were
unchanged. However, when the momentum term was increased
from 0.4 to 0.5, the accuracy decreased due to an increase in the
number of unclassified samples. This indicated that a larger
momentum term was not well suited for model classification and
that parameters in the BP-NN model should be further optimized.
The model Se and Sp were 1.0 and 0.98, respectively.

3.4.4 Models built with HPLC data
The first 12 LVs, which could explain 89% of the sample

variance, were selected to construct a PLS-DA model. In the
calibration set, S41 and S119 were misclassified, but the accuracy
in the validation set was 100% (Figure 6D). The model Se and Sp
were 0.97 and 0.98, respectively, and the classification performance
was good. For the SVM model (Supplementary Figure S3D),
accuracy was highest (94% and 100% in the calibration and

FIGURE 10
Single-source PLS-DA score plots of species identification model based on (A) electronic nose, (B) electronic tongue, (C) electronic eye and (D)
HPLC. Class1, BS; class2, GE; class3, PO; class4, BOS.
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validation sets, respectively) when the kernel parameter was 9 and the
cost value was 1. The model Se and Sp were 0.85, 0.98, respectively.
The optimized BP-NN model contained two hidden layers and
10 neurons per layer; the learning rate was 0.1, the momentum
term was 0.5, and it was trained for 500 iterations, producing an
error rate of 0 (Figure 7D). There were fivemisclassified samples in the
calibration set with Ac of 95%, but the validation set accuracy was
100%. The model Se and Sp were 0.91, 0.97, respectively. The high
accuracy in the validation set may have been because there were
extensive differences in the HPLC data between the four types of
decoction pieces; especially when the sample size was small, this could
correspond to clear difference between sample types. Thus, for the
HPLC data, the accuracies of both the linear and nonlinear classifiers
were 100% on the validation set.

3.4.5 Models built with mid-level fused data
The PC scores of the electronic sensor and HPLC data were fused

and models were built as described above. The accuracy of the
resulting PLS-DA model was 100% for the calibration set, which
was superior to the performance of the PLS-DA models constructed
with single-source data. In the validation set, only S5 was misclassified
(Ac: 97.06%). Se and Sp were 1.0, 1.0, respectively. The two sample
types could be completely divided into two categories based on the
first two LVs (Figure 8A); the aggregation trend was also superior
compared to the models built with single-source data. This indicated
that fused PCs (each explaining more than 90% of sample variance in
the single-source data) could be used to accurately identify the two
sample types while reducing the algorithm running speed. The
optimal SVM model had a kernel parameter of 6.4 and cost value
of 1; this produced a classification prediction probability of 1 for both
sample types (Supplementary Figure S5), which was better than the
corresponding SVM model for each single-data source. Model
accuracy was also 100% when the kernel parameter was 2.26 or

9 and the cost value was 1, but the number of support vectors was
larger in the former case and the classification prediction probability
was lower in the latter case. Thus, a kernel parameter/cost value
combination of 6.4/1 was selected. The classification hyperplane and
support vectors of SVM model was shown in Figure 8C. In the
validation set, S5 was misclassified (Ac: 97.06%). Se and Sp were 1.00,
1.00, respectively. The optimal BP-NN model built with the fusion
data contained two hidden layers and 10 neurons per layer with a
learning rate of 0.1, a momentum term of 0.4. It was trained for
500 iterations, producing a final error rate of 0 (Figure 9A). The area
under the curve (AUC) of the receiver operating characteristic (ROC)
was 1 (Figure 9B). In the calibration set, S120 was misclassified with
Ac of 99.00%; S5 remained misclassified in the validation set with Ac
of 97.06%. The model Se and Sp were 1.00, 0.98, respectively.

After fusing the LVs from each data source, all three model types
could discriminate between samples better than the corresponding
models trained on single-source data and performed comparably to
or better than the models built with PC fusion data. The PLS-DA
model showed 100% accuracy in both the calibration and validation
sets, and Se and Sp were both 1. The two sample types could be
completely separated on the first two LVs, and samples clustered
together better than in the results of the models built with PC fusion
data (Figure 8B). For SVM, the optimal parameter combination was
kernel parameter = 9 and cost value = 1 (Figure 8E); this model had
33 support vectors (Figure 8D) and accuracy was 100% on both the
calibration and validation sets. Se and Sp were 1.00, 1.00,
respectively. The optimized BP-NN model had two hidden layers,
10 neurons per layer, a learning rate of 0.1, a momentum term of 0.3,
and 500 iterations (final error rate = 0) (Figure 9C). Using this
parameter combination, only S76 was misclassified. The AUC of
ROC was 1, and the Se and Sp values at varying prediction
probability thresholds showed that the Sp value increases when it
is close to 0 and the Se value decreases when it is close to 1 and the

TABLE 2 Species identification results and model parameters.

Model Data matrix Calibration set Validation set

Misclassified
samples

Not assigned
samples

Se Sp Ac Misclassified or
not-assigned samples

Ac

PLS-DA EN 2 6 0.9400 1.0000 0.9200 4 0.8824

EE 3 7 1.0000 0.9800 0.9000 5 0.8529

ET 0 3 1.0000 1.0000 0.9700 0 1.0000

HPLC 4 4 0.9400 0.9800 0.9200 0 1.0000

Data fusion by PCs 0 0 1.0000 1.0000 1.0000 1 0.9706

Data fusion by LVs 0 0 1.0000 1.0000 1.0000 1 0.9706

BP-NN EN 1 2 0.9700 1.0000 0.9700 2 0.9412

EE 1 1 1.0000 1.0000 0.9800 3 0.9118

ET 2 3 0.9700 0.9800 0.9500 1 0.9706

HPLC 4 5 0.9400 0.9700 0.9100 0 1.0000

Data fusion by PCs 0 2 1.0000 1.0000 0.9800 1 0.9706

Data fusion by LVs 1 2 1.0000 1.0000 0.9700 2 0.9412

The bold values indicate the optimal model.
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area surrounded by the red and blue lines is also large, which
indicated that the model had good classification performance
(Figure 9D). The accuracy of the final model was 99%, with only
one sample misclassified in the validation set and the model Se and
Sp were 1.00, 0.98, respectively; this was superior to the classification
results based on electronic nose or electronic tongue data alone.

3.5 Species identification

3.5.1 Models built with electronic nose data
Six LVs which can explain 99% of the sample variance were

selected for construction of an optimal PLS-DA species
identification model. The four sample types showed similarities
in the variance represented by the first two latent variables

(Figure 10A). S28 and S34 were misclassified in the calibration
set. Because PLS-DA can divide samples only into predefined
categories, this model was unable to identify specific samples;
one, one, and four BS, GE, and PO samples, respectively, were
unassigned. The accuracy was 92% in the calibration set, and Se and
Spwere 0.94 and 1, respectively. There were four unassigned samples
in the validation set. This indicated a need for further improvement
of this model.

The model identification criteria were strict in the BP-NNmodel
because the samples were divided into four categories. This
necessitated an appropriate increase in the number of hidden
layers and the number of neurons in each layer. The final model
contained three hidden layers with 10 neurons per layer and had a
learning rate of 0.1, a momentum term of 0.3, and was trained for
500 iterations. In the calibration set, S28 was misclassified and

FIGURE 11
PLS-DA score plots and the number of training iterations and error rates for models of species identification. (A,B) PLS-DA score plots for models
built with fused PCs (A) and LVs (B) (C,D) Training iterations and error rates of BP-NN model built on fused PCs (C) and LVs (D). Class1, BS; class2, GE;
class3, PO; class4, BOS.
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S80 and S83 were unclassified and Acwas 97.00%. The model Se and
Sp were 0.97, 1.00, respectively. In the validation set, two samples
were misclassified and the overall accuracy was 94.12%.

3.5.2 Models built with electronic eye data
The first 13 LVs, which explained 95% of the sample variance,

were selected to establish a PLS-DA model. The four sample types
could be clearly distinguished in the two-dimensional plot, with GE
and PO clustering relatively close to one another and BS and BOS
samples also clustering near one another (Figure 10B). In the
calibration set, S52, S63, and S91 were misclassified and seven
samples were unclassified (Ac: 90%). In the validation set, S5,
S11, and S48 were unassigned and S67 and S93 were
misclassified (Ac: 85.29%). Se and Sp were 1.00, 0.98, respectively.

For the BP-NN model, the optimal parameter combination was
two hidden layers, 15 neurons per layer, a learning rate of 0.1, a
momentum term of 0.3, and 500 training iterations. In the
calibration set, the accuracy was 98%; S23 was unclassified and
S69 was misclassified. The model Se and Sp were 1.00, 1.00,
respectively. The AUC-ROC was 1, indicating good parameter
optimization (Supplementary Figure S6). Increasing the number
of hidden layers from two to three while keeping the other
parameters unchanged led to a sudden increase in the number of
unclassified samples. This suggested that the multi-classification

FIGURE 12
Wilk’s lambda values of variables in the PCs-based data fusionmodels. Data are shown for the (A) sample authenticity binary classificationmodel and
the (B) species identification multi-class model.

TABLE 3 Original variables with larger factor loading values of highly
contributing principal components.

Problems of classification PCs Original variables

Authenticity identification ET-PC1 Sourness

EE-PC4 Color number value 1621

EE-PC2 Color number value 1621

HPLC-
PC2

Peak 4

Species identification EE-PC1 Color number value 1621

ET-PC3 Sourness

HPLC-
PC1

Peak 5

EN-PC2 W1C
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ability of the model could not be improved overall by only increasing
the number of hidden layers.

3.5.3 Models built with electronic tongue data
To some extent, taste responses reflected the chemical

composition of each sample. The electronic tongue data could
therefore theoretically characterize the differences between the four
types of decoction pieces better than the other sensory data types.
Seven LVs accounting for a full 100%of the sample variance were used
to build a PLS-DA model. Compared to the other two sensory data
types, the number of unassigned samples decreased to one GE and
two PO samples. There were no misclassified samples. Acwas 97.00%
and 100% in the calibration and validation sets, respectively and Se
and Spwere 1.0 and 1.0, respectively. Clustering based on just the first
two LVs also showed good sample separation (Figure 10C); PO
samples clustered far away from the other three sample types. BS,
GE, and some BOS samples clustered close together, indicating that
their tastes were similar. The clear distinction of the latter three
sample types from POwas likely because PO is amember of the family
Liliaceae, whereas the other three belong to the family Orchidaceae.

The optimal BP-NN model contained two hidden layers with
five neurons per layer; the learning rate was 0.1, the momentum
term was 0.4, and there were 500 iterations. In the calibration set,
S29 and S53 were misclassified and S24, S79, S114 were unclassified
(Ac: 95%). In the validation set, the accuracy was 97.06% and there
was only one unassigned sample. The model Se and Sp were 0.97,
0.98, respectively. The error rate reached 0 after 500 iterations and
the AUC-ROC was 1 (Supplementary Figure S7). This indicated that
the selected parameters were appropriate for distinction between the
four sample types.

3.5.4 Models built with HPLC data
A PLS-DA model was constructed from the first nine LVs, which

explained 84% of the sample variance. There were four misclassified and
four unclassified samples in the calibration set (Ac: 92%); in the
validation set, the accuracy was 100%. Se and Sp were 0.94, 0.98,
respectively. In the two-dimensional plot, the BS and BOS samples
overlapped, whereas GE and PO samples could be clearly classified into
two separate categories, distinct from the BS and BOS samples
(Figure 10D). This was consistent with the high similarity between
BS and BOS samples in the HPLC fingerprint data. The optimal BP-NN
model built on these data had two hidden layers, 10 neurons per layer, a
learning rate of 0.1, a momentum term of 0.5, and 500 iterations. There
were nine misclassified samples in the calibration set, but the accuracy
was 100% in the validation set. The model Se and Sp were 0.94, 0.97,
respectively.

3.5.5 Models built with mid-level fused data
The PCs from the electronic sensor data were next fused with the

PCs from HPLC data (Table 2). PLS-DA and BN-NN models built
with the fused data had improved classification abilities compared to
the corresponding models built with single-source data. The PLS-
DA model was constructed with the first five LVs. The accuracy in
the calibration set was 100%; in the validation set, S5 was still
misclassified (Ac: 97.06%). Se and Sp were 1.00, 1.00, respectively. In
the variance represented by the first two LVs, the four sample types
could be clearly distinguished, although BS and GE were close
together (Figure 11A). The optimal BP-NN model had three

hidden layers, 10 neurons per layer, a learning rate of 0.1, a
momentum term of 0.4, and 500 iterations. After data fusion,
there were two unassigned samples in the calibration set (Ac:
97.00%); Se and Sp were 1.0 and 1.0, respectively; the error rate
decreased consistently as the training iteration number increased
(Figure 11C). The AUC-ROC was 1 for the four sample types
(Supplementary Figure S8), indicating that appropriate
parameters had been selected.

The LVs were then fused for the electronic sensor and HPLC data.
The classification results of a PLS-DA model built with the fused LV
data were the same as the results of the model built with the fused PC
data: no unclassified or misclassified samples in the calibration set;
100% accuracy; and only S5 unclassified in the validation set. Se and Sp
were 1.00, 1.00, respectively. The four sample types were fully
separated based on the first two LVs (Figure 11B), and the model
performed better than it did with the fused PCs. However, the
classification performance of a BP-NN model built with the fused
LV data was not significantly improved compared to models built
with single-source data. The optimal model had two hidden layers,
15 neurons per layer, a learning rate of 0.1, a momentum term of 0.4,
and was trained for 500 iterations. In the calibration set, this model
misclassified one sample and two others were unassigned (Ac: 97%);
there was one unassigned and one misclassified sample in the
validation set (Ac: 94.12%). Se and Sp were 1.00, 1.00, respectively.
After 500 training iterations, the error rate was 0 (Figure 11D).

3.6 Highly contributing feature analysis

In classifying sample authenticity, the PCs with relatively small
Wilk’s lambda values were electronic tongue (ET)-PC1, electronic
eye (EE)-PC4, EE-PC2, and HPLC-PC2 (Figure 12A). In species
identification, the PCs with small Wilk’s lambda values included EE-
PC1, ET-PC3, HPLC-PC1, and electronic nose (EN)-PC2
(Figure 12B). These PCs contributed greatly to the classification
model. Notably, the results indicated that it was not only the first
three PCs that played major roles in classification with each data
type; other PCs also represented a great deal of variance.

We next constructed a factor loading matrix of the four types of
data sources (Supplementary Table S1). Some of the original
variables (Table 3) had larger factor loading values of the highly
contributing PCs. These original variables were highly correlated
with the PCs, and changes in these values would be expected to have
a strong impact on the classification performance of the model.

4 Conclusion

In this study, a preliminary identification of B. striata and
similar decoction pieces was firstly conducted based on the
classification scheme in the Chinese Pharmacopoeia and local
standards. Samples were then analyzed with GC-IMS, an
electronic nose, an electronic eye, an electronic tongue, and
HPLC. Classical machine learning and deep learning algorithms
were used to classify samples based on each type of data.
Furthermore, using improved data fusion technology, highly
effective models were constructed to accurately distinguish
between B. striata and similar decoction pieces. In the sample
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authenticity binary classificationmodel (B. striata vs. other samples),
the PLS-DA and SVM models built with fused LV data had the best
performance, with an accuracy of 100% after cross-validation of the
calibration dataset and only one misclassified sample in the validation
set. In the multi-class species identificationmodel, the PLS-DAmodel
built with fused PCs and the PLS-DAmodel generated with fused LVs
performed the best, with accuracies of 100% and just onemisclassified
sample each in the validation set. The results of feature extraction were
compared between a supervised and an unsupervised algorithm;
overall, fused LVs performed better than fused PCs in the PLS-DA
and SVM authenticity identification models, whereas fused PCs
performed comparably to or better than fused LVs fusion in the
BP-NN authenticity and species identification models. PCs beyond
the first three components can make large contributions to sample
classification, sometimes playing key roles in model identification.
Factor loading values indicated that some original variables had
higher values of the highest-contributing PCs, demonstrating the
importance of specific original variables in accurately classifying
samples. These variables included the Sourness sensor in the ET,
the W1C sensor in the EN (aromatic organic compounds), color
number 1621 in the EE (dark reddish gray), and peaks 4 and 5 in the
HPLC data. In summary, our study provides a highly feasible method
of accurately evaluating putative B. striata and related samples,
promoting quality evaluation and control in Chinese decoction pieces.
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