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Isotopes have been widely applied in a variety of scientific subjects; many aspects
of isotopes, however, remain not well understood. In this study, I investigate the
relation between the number of neutrons (N) and the number of protons (Z) in
stable isotopes of non-radioactive elements and long-lived isotopes of
radioactive elements at the double-linear scale (conventional Segrè chart) and
the double-logarithmic scale. Statistical analyses show that N is a power-law
function of Z for these isotopes:N = 0.73 × Z1.16. This power-law relation provides
better predictions for the numbers of neutrons in stable isotopes of non-
radioactive elements and long-lived isotopes of radioactive elements than the
linear relation on the conventional Segrè chart. The power-law pattern reveled
here offers empirical guidance for probing long-lived isotopes of unknown
radioactive elements.
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1 Introduction

Isotopes are variants of elements that possess the same number of protons but differ in
the number of neutrons (De Groot, 2004; Ellam, 2016). Several hundred isotopes have been
detected in natural environments on Earth, while thousands of other isotopes are
continuously created in various areas in the universe (White, 2014; McSween Jr and
Huss, 2022). Since the first discovery by Frederick Soddy in 1913 (Soddy, 1913), isotopes
have been widely applied in different subjects. For example, ecologists use isotopic
signatures to study the exchanges of materials between life and environments
(Michener and Lajtha, 2008), biologists investigate metabolic processes on the basis of
intermolecular and intramolecular isotopic effects (Kohen and Limbach, 2005), and
geochemists use the fingerprints that isotopes left in sedimentary records to reconstruct
the evolutionary trajectories of life and environments on the ancient Earth (White, 2014).

Isotopes are classified into two categories according to their stability: stable and
radioactive isotopes. Stable isotopes of one element do not transform into other
elements under natural conditions, while radioactive isotopes decay to other elements
after certain time periods with specific half-lives (De Groot, 2004; Ellam, 2016). Among the
known 118 elements on the periodic table, 80 of them have one or more stable isotopes and
are called as non-radioactive elements (De Groot, 2004; Ellam, 2016). This non-radioactive
category includes the elements with atomic number (Z) less than 83 except for two elements
that have no stable isotopes (i.e., technetium with Z = 43 and promethium with Z = 61) (De
Groot, 2004; Ellam, 2016). In contrast, nature creates neutrons and protons in an
asymmetric manner in the nuclei of elements with atomic number larger than 83; these
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elements are also referred to as radioactive elements (Blatt and
Weisskopf, 1991; Thomson, 2013). As the imbalance between
neutrons and protons of a nucleus grows, its stability decreases;
in this case, decay offers an chance for the nucleus to re-establish a
balance between its neutrons and protons (Blatt and Weisskopf,
1991; Thomson, 2013). While radioactive elements eventually decay
into other elements, their long-lived isotopes may have rather
extended lifespans (Blatt and Weisskopf, 1991; Thomson, 2013).
For example, the half life of 209Bi, an isotope of the radioactive
element bismuth, is 2.01 × 1019 years, which is 1.5 × 109 times greater
than the age of the universe (De Groot, 2004; Ellam, 2016).

Combining protons and neutrons in an arbitrary way does not
necessarily generates a stable nucleus. A nucleus is unbounded when
it is outside the valley of stability, which is defined by the neutron
drip line and proton drip line (Hansen, 1993; Thoennessen, 2004).
Substantial efforts have been dedicated to exploring the principles
and mechanisms for the stability of isotopes. Since Myers, Światecki,
Viola Jr., and Seaborg predicted that nuclei of superheavy elements
occupy a region called as stability island on the Segrè chart (a plot
arranging nuclides by proton number Z and neutron number N at
the double-linear scale) (Myers and Swiatecki, 1966; Viola Jr and
Seaborg, 1966), the concept of the “island of stability” has been a
dominant paradigm in the study of superheavy nuclei. A variety of
intriguing properties in the island of stability have been revealed. For
example, it was discovered in the late 1940s that nuclei possessing a
magic number (2, 8, 20, 28, 50, 82, or 126) of protons or neutrons
exhibit much higher stability than other nuclei; this phenomenon
then became the basis of the nuclear shell model (Wigner, 1937;
Mayer, 1948; Haxel et al., 1949; Kanungo et al., 2002).

Here, I investigate the relation between N and Z in stable
isotopes of non-radioactive elements and long-lived isotopes of
radioactive elements at double-linear and double-logarithmic
scales and show that N is a power-law function of Z in these
isotopes. The power law refers to a functional relation between
two variables in which one variable changes as a power of the other.
On a double-logarithmic plot, the power law appears as a straight
line, implying that the underlying regularity of this relation is
independent of the specific scales one investigates (Clauset et al.,
2009; Alstott et al., 2014). Statistical analyses in this work
demonstrate that the power-law relation on the double-
logarithmic Segrè chart provides more accurate predictions for N
than the linear relation obtained on the conventional double-linear
Segrè chart. These results offer new insights into the future searching
for the long-lived isotopes of unknown radioactive elements.

2 Data and methods

The dataset on isotopes is from Nubase 2020 (Kondev et al.,
2021). Except for technetium and promethium, each non-
radioactive element has one or more stable isotopes; the
numbers of neutrons in these isotopes usually are close to
one another. For each non-radioactive element, I calculate
the average number of neutrons in its stable isotopes and
denote this mean value by �N. On the other hand, the
lifespans of a radioactive element’s isotopes often vary across
a large range. For each radioactive element, I take the isotope
with the longest lifespan as the representative long-lived isotope

and denote the number of neutrons in this representative
isotope by Nrad. For simplicity, I henceforth use N to denote
�N or Nrad.

To investigate the relation betweenN and Z, I first divide the plot
of N versus Z into two regions (Figure 1): (1) non-radioactive
elements ( �N versus Z) and (2) radioactive elements (Nrad versus
Z). I then apply linear regression to fit the data in region (1) and
region (2) at the double-linear (Figure 1A) and double-logarithmic
(Figure 1B) scales; blue and green lines in Figure 1 show the best-
fitting lines in region (1) and region (2), respectively. The lines
obtained at the double-linear scale (Figure 1A) are conventional
linear regression lines, while the lines obtained at the double-
logarithmic scale (Figure 1B) are referred to as power laws. The
details of power-law analyses are described in Alstott et al. (2014)
and Clauset et al. (2009). Moreover, to compare the effectiveness of
predictions by the fitting formulas obtained using data in both
regions (1) and (2) to that obtained only based on data in an
individual region (1) or (2), I fit the data in both regions at the
double-linear (Figure 1A) and double-logarithmic (Figure 1B)
scales; red lines in Figure 1 show the best-fitting lines for all data
in both regions (1) and (2). The magnified plots for Figures 1A, B are
presented in Figure 2 and Figure 3, respectively.

To evaluate the goodness of fit of the fitting formulas, I calculate
the coefficients of determination (R2’s) and perform the
Kolmogorov-Smirnov (KS) test (Massey Jr, 1951) and Cramér-
von Mises (CM) two-sample test (Anderson, 1962). The metric
R2 measures the fraction of variations in a dependent variable that
can be explained by a fitting function; a larger value of R2 indicates a
better fitting and therefore a more reliable model (Freund and
Wilson, 2003). The KS statistic is defined as sup|Mm −Md|,
which measures the largest distance between the cumulative
distribution functions (CDFs) of a distribution that best fits the
data (Mm) and the data themselves (Md) (Massey Jr, 1951). The
CM test is defined as A × B

(A+B)2 [∑A
a�0(Mm(xa) −Md(xa))2+

∑B
b�0(Mm(xb′) −Md(xb′))2], where {xa}Aa�0 and {xb′}Bb�0 are

samples independently drawn from two distributions with CDFs
Mm and Md, respectively (Anderson, 1962). To perform the KS and
CM tests, I set the null hypothesis and two-sided alternative as H0:
Mm = Md and H1: Mm ≠ Md, respectively. The critical p-value for
these tests is set to 0.05; p > 0.05 suggests that a function fits the data
well while p ≤ 0.05 suggests that a function does not adequately
describes the data. To compare the effectiveness of predictions by
the fitting formulas obtained at the double-linear and double-
logarithmic scales, I calculate the average relative errors (AREs)
and root mean square errors (RMSEs) for the predicted values of
these fitting formulas; a smaller value of ARE or RMSE indicates a
better model.

3 Results

Figures 1A, B show the linear regression for �N orNrad versus Z at
the double-linear and double-logarithmic scales, respectively.
Region (1) in these two panels presents the dataset on stable
isotopes of non-radioactive elements (blue circles) and the linear
regression line (blue line) for these data, while region (2) illustrates
the dataset on long-lived isotopes of radioactive elements (green
circles) and the linear regression line (green line) for these data. The
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magnified plots for Figures 1A, B are illustrated in Figure 2 and
Figure 3, respectively. The mathematical expressions for linear
regression of the dataset on stable isotopes of non-radioactive
elements (i.e., �N versus Z) at the double-linear (Figure 2A) and

double-logarithmic (Figure 3A) scales are N = 1.54 × Z − 6.86 and
N = 0.74 × Z1.15, respectively. For the dataset on long-lived isotopes
of radioactive elements (i.e., Nrad versus Z), the mathematical
expressions for linear regression at the double-linear (Figure 2B)

FIGURE 1
Relation ofN versus Z in stable isotopes of non-radioactive elements and long-lived isotopes of radioactive elements at the (A) double-linear and (B)
double-logarithmic scales. The N on the vertical axis represents either �N (in region (1)) or Nrad (in regions (2) and (3)). Region (1) in panel (A) or (B) is for �N
versus Z in stable isotopes of non-radioactive elements (blue circles), region (2) in panel (A) or (B) is for Nrad versus Z in long-lived isotopes of radioactive
elements (green circles), and region (3) in panel (B) is for long-lived isotopes of unknown radioactive elements. Blue line in region (1) of panel (A) or
(B) is the linear regression (LR) for stable isotopes of non-radioactive elements (blue circles) at the linear or logarithmic scale, respectively. Green line in
region (2) of (A) or (B) is the LR for long-lived isotopes of radioactive elements (green circles) at the linear or logarithmic scale, respectively. Red line in
regions (1) and (2) of panel (A) or (B) is the LR for both stable isotopes of non-radioactive elements and long-lived isotopes of radioactive elements at the
linear or logarithmic scale, respectively. Red line (with question mark) in region (3) of panel (B) represents the predictions for N values of long-lived
isotopes of unknown radioactive elements. The results of statistical analyses are presented in Tables 1, 2. The magnified plots for panels (A) and (B) are
presented in Figures 2, 3, respectively.

FIGURE 2
Relation of N versus Z for (A) stable isotopes of non-radioactive elements (blue circles) and (B) long-lived isotopes of radioactive elements (green
circles) at the double-linear scale. Panels (A) and (B) in this figure are the magnification of region (1) and region (2) in Figure 1A, respectively. The N on the
vertical axis represents �N for panel (A) and Nrad for panel (B) in this figure. Blue and green lines are the linear regression (LR) for stable isotopes of non-
radioactive elements (blue circles) and long-lived isotopes of radioactive elements (green circles), respectively, at the double-linear scale. The
results of statistical analyses are presented in Tables 1, 2.
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and double-logarithmic (Figure 3B) scales are N = 1.44 × Z +
10.29 and N = 1.97 × Z0.95, respectively. To evaluate how well
these mathematical formulas fit the datasets, I calculate the
coefficient of determination (R2) and perform the KS and CM
tests (Section 2); the statistical results are summarized in Table 1.
All R2 values are close to 1 and all p-values for the KS and CM
tests are much greater than the critical value 0.05, indicating that
all formulas presented in Table 1 fit the data in specific regions
extraordinarily well.

To test the effectiveness of predictions by the mathematical
expressions in Table 1, I first use the fitting formulas for the dataset
on stable isotopes of non-radioactive elements (i.e., �N versus Z) at
the double-linear (Figure 2A) and double-logarithmic (Figure 3A)
scales to predict the values of �N and Nrad. The AREs and RMSEs of
these predictions are presented in Table 2, which shows that
switching from the fitting formula obtained at the double-linear
scale (N = 1.54 × Z − 6.86) to the fitting formula obtained at the

double-logarithmic scale (N = 0.74 × Z1.15) reduces the AREs of the
predictions for �N by 86%,Nrad by 39%, and both �N andNrad by 84%,
and reduces the RMSEs of the predictions for �N by 56%, Nrad by
41%, and both �N and Nrad by 42%. These results suggest that the
power law offers more accurate predictions for N than the linear
relation obtained at the double-linear scale. To further justify this
implication, I use the linear regression formulas for the dataset on
long-lived isotopes of radioactive elements (i.e., Nrad versus Z) at the
double-linear scale (Figure 2B) and the double-logarithmic scale
(Figure 3B) to predict the values of �N and Nrad. When using the
power law (N = 1.97 × Z0.95) instead of the linear relation (N = 1.44 ×
Z + 10.29), the AREs of the predictions for �N, Nrad, and both �N and
Nrad decrease by 62%, 13%, and 62%, respectively; the RMSEs of the
predictions for �N, Nrad, and both �N and Nrad decrease by 26%, 5%,
and 25%, respectively (Table 2). These results also imply that the
power law provides better predictions for N than the linear relation
obtained at the double-linear scale.

FIGURE 3
Relation of N versus Z for (A) stable isotopes of non-radioactive elements (blue circles) and (B) long-lived isotopes of radioactive elements (green
circles) at the double-logarithmic scale. Panels (A) and (B) in this figure are themagnification of region (1) and region (2) in Figure 1B, respectively. TheN on
the vertical axis represents �N for panel (A) andNrad for panel (B) in this figure. Blue and green lines are the linear regression (LR) for stable isotopes of non-
radioactive elements (blue circles) and long-lived isotopes of radioactive elements (green circles), respectively, at the double-logarithmic scale. The
results of statistical analyses are presented in Tables 1, 2.

TABLE 1 Coefficients of determination (R2’s), p-values of the Kolmogorov-Smirnov test (pKS’s), and p-values of the Cramér-von Mises two-sample test
(pCM’s) of the best-fitting formulas obtained in region (1), region (2), and both regions (1) and (2) in Figure 1 at the double-linear (Figure 1A) and double-
logarithmic (Figure 1B) scales. Region (1) and region (2) in Figure 1A correspond to panel (A) and panel (B) in Figure 2, respectively; region (1) and region (2) in
Figure 1B correspond to panel (A) and panel (B) in Figure 3, respectively.

Region in Figure 1 Panel in Figure 2 or Figure 3 Scale Best-fitting
line

Best-fitting
formula

R2 pKS pCM

Region (1) in Figure 1A Figure 2A Linear Blue N = 1.54 × Z − 6.86 0.94 0.99 0.98

Region (1) in Figure 1B Figure 3A Logarithmic Blue N = 0.74 × Z1.15 0.99 1.00 1.00

Region (2) in Figure 1A Figure 2B Linear Green N = 1.44 × Z + 10.29 0.96 0.98 0.99

Region (2) in Figure 1B Figure 3B Logarithmic Green N = 1.97 × Z0.95 0.98 0.99 0.99

Regions (1) & (2) in Figure 1A — Linear Red N = 1.61 × Z − 9.01 0.98 0.99 0.99

Regions (1) & (2) in Figure 1B — Logarithmic Red N = 0.73 × Z1.16 0.99 0.99 1.00
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To predict the N values of long-lived isotopes of unknown
radioactive elements [region (3) in Figure 1B], I calculate the
power-law formula between N and Z using all data [both regions
(1) and (2) in Figure 1B] at the double-logarithmic scale; the relation
of N versus Z for all data at the double-linear scale [both regions (1)
and (2) in Figure 1A] is also computed for comparison. The AREs of
the predictions for �N, Nrad, and both �N and Nrad obtained using the
power law (N = 0.73 × Z1.16) are 90%, 11%, and 88% lower,
respectively, than the linear relation at the double-linear scale
(N = 1.61 × Z − 9.01), and the RMSEs of the predictions for �N,
Nrad, and both �N and Nrad obtained using the power law are 59%,
17%, and 23% lower, respectively, than the linear relation (Table 2).
These results again support the above conclusion that the
predictions for N by power laws are more accurate than those by
linear relations obtained on the Segrè chart.

4 Discussion

As quantum systems, nuclei’s behaviors can be depicted with the
nonrelativistic Schrödinger equation (Olavo, 1999; Schleich et al., 2013);
within nuclei, how triple quarks gather to form protons and neutrons
can be interpreted by quantum chromodynamics (QCD) (Marciano
and Pagels, 1978; Greiner et al., 2007; Group et al., 2022). However, it is
well known that describing the features of isotopes does not need to
explicitly include quarks in theoretical models; instead, having protons
and neutrons in these models is sufficient to predict a variety of
properties of isotopes (Blatt and Weisskopf, 1991; Thomson, 2013).
For example, the mass of a nucleus can be estimated from its number of
protons and neutrons using theWeizsäcker mass formula (Weizsäcker,
1935), which is a refined form of the liquid drop model for the binding
energy of nuclei (Gamow, 1930). Moreover, neutrons also affect the
stability of nuclei and isotopes’ decay (Mueller and Sherrill, 1993;
Pfützner et al., 2012). In a stable nucleus, valence neutrons are well
bound; the corresponding wavefunction decays rapidly when the
valence neutron is outside the limit of stability (Blatt and Weisskopf,
1991; Mueller and Sherrill, 1993). In contrast, within an unstable
nucleus, valence neutrons are loosely bound and live in the

classically forbidden region; the corresponding wavefunction
possesses a long tail (Blatt and Weisskopf, 1991; Mueller and
Sherrill, 1993). For a specific element (with a fixed number of
protons), the lifespans of its isotopes are influenced by the number
of neutrons (Thomson, 2013; Martin and Shaw, 2017). Therefore, the
number of neutrons offers a window through which to predict the long-
lived isotopes of unknown radioactive elements.

Statistical analyses in this study show that power laws exist
between the number of neutrons and the number of protons in
both stable isotopes of non-radioactive elements and long-lived
isotopes of radioactive elements. Power laws have been identified
in a variety of natural systems, such as the evolutionary processes of
life over geological time scales (Raup, 1986; Shang, 2024), the
distributions of amino acids and expressed genes in various
organisms and tissues (Furusawa and Kaneko, 2003; Mora and
Bialek, 2011), and the degradation rate versus age of organic
matter in ecosystems (Middelburg, 1989; Shang, 2023). However,
the specific reasons for many observed power-law patterns are not
well understood (Clauset et al., 2009; Alstott et al., 2014). Similarly,
why the coefficient and exponent in the power-law relation betweenN
and Z (Figure 1B, Figure 3; Table 1) take those specific values remain
unknown. Moreover, the underlying physical mechanisms
responsible for the emergence of these power laws may not be
readily interpreted by our current knowledge of nucleons. It is well
known that the binding energy of a nucleus derives from the strong
interaction, which is described by QCD (Marciano and Pagels, 1978;
Greiner et al., 2007; Group et al., 2022). Nevertheless, the (low-energy)
QCD is not at the stage where we can use it to obtain comprehensive
understating of nucleons (Marciano and Pagels, 1978; Greiner et al.,
2007; Group et al., 2022). From the perspective of statistical
mechanics, power laws are usually attributed to self-organized
criticality, a concept that was originally suggested by Bak, Tang,
and Wiesenfeld (Bak et al., 1987). Self-organized criticality refers
to the phenomenon that the internal interactions of a system organize
itself into states where power laws appear (Bak et al., 1987, 1988).
However, studies have shown that power-law patterns are an
emergent property of self-organized criticality and do not
necessarily originate from the latter (Solow, 2005; Clauset et al.,

TABLE 2 Average relative errors (AREs) and root mean square errors (RMSEs) of the predictions for N by the best-fitting formulas obtained in region (1),
region (2), and both regions (1) and (2) in Figure 1 at the double-linear (Figure 1A) and double-logarithmic (Figure 1B) scales. The statistical results in the
specific regions in Figure 1 from which the best-fitting formulas in this table are obtained is presented in Table 1. Region (1) and region (2) in Figure 1A
correspond to panel (A) and panel (B) in Figure 2, respectively; region (1) and region (2) in Figure 1B correspond to panel (A) and panel (B) in Figure 3,
respectively. The percentages in parentheses showhowmuch the AREs or RMSEs of predictions forN in specific regions changewhen switching from linear
relations to power laws; downward arrows indicate decreases.

Best-fitting
formula

ARE of
predictions in
region (1)

ARE of
predictions in
region (2)

ARE of
predictions in
regions (1) & (2)

RMSE of
predictions in
region (1)

RMSE of
predictions in
region (2)

RMSE of
predictions in
regions (1) & (2)

N = 1.54 × Z − 6.86 29.61%
(↓ 86%)

4.54%
(↓ 39%)

21.98%
(↓ 84%)

2.82
(↓ 56%)

7.47
(↓ 41%)

4.75
(↓ 42%)

N = 0.74 × Z1.15 4.01% 2.52% 3.56% 1.25 4.43 2.74

N = 1.44 × Z + 10.29 87.02%
(↓ 62%)

1.43%
(↓ 13%)

60.91%
(↓ 62%)

13.51
(↓ 26%)

2.55
(↓ 5%)

11.36
(↓ 25%)

N = 1.97 × Z0.95 33.01% 1.24% 23.34% 9.98 2.43 8.46

N = 1.61 × Z − 9.01 39.35%
(↓ 90%)

2.37%
(↓ 11%)

28.43%
(↓ 88%)

3.39
(↓ 59%)

4.34
(↓ 17%)

3.46
(↓ 23%)

N = 0.73 × Z1.16 3.97% 2.11% 3.52% 1.39 3.61 2.65
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2009; Marković and Gros, 2014). Whether the power-law pattern
observed in this study (Figure 1B, Figure 3; Table 1) originates from
certain mechanisms related to self-organized criticality in nuclei
requires further investigation.

The power laws shown in this work provide better prediction for
the number of neutrons in stable isotopes of non-radioactive
elements or long-lived isotopes of radioactive elements than the
linear relation on the Segrè chart (Tables 1, 2). The power law, N =
0.73 × Z1.16, which is obtained using all data (i.e., both �N and Nrad

versus Z) at the double-logarithmic scale (Table 2), therefore, may be
applied to predict N values of long-lived isotopes of unknown
radioactive elements with Z ≥ 119 [region (3) in Figure 1B]. For
example, with thismathematical formula, onemay expect that themean
number of neutrons in long-lived isotopes of the unknown radioactive
element with Z = 120 would be about 188; the region surrounding this
point, (120, 188), on the plot of N versus Z at the double-logarithmic
scale would be the island of stability for the isotopes of this unknown
radioactive element. However, one should note that predicting the
maximum number of neutrons that can exist in a stable/long-lived
nucleus, which has been recognized as a difficult task for ab initiomany-
body theories (Ring and Schuck, 2004; Hergert, 2020), is beyond the
ability of the power-law relation presented in this work.

Studies have suggested that the neutron-proton asymmetry
significantly influences the stability of a nucleus; as the value of Z
increases, the stability of a nucleus decreases due to the growth of
Coulomb repulsion (Blatt and Weisskopf, 1991; Martin and Shaw,
2017). This implies that the power-law pattern presented here
probably will disappear when Z exceeds a certain large, critical value.
Actually, power laws observed in natural systems often vanish at some
critical points (Schroeder, 2009; Bak, 2013). Although this appears
daunting, no available clue shows that the disappearance of the
power-law pattern occurs immediately when Z ≥ 119. Therefore, the
mathematical formula, N = 0.73 × Z1.16, may still provide empirical
guidance for probing the long-lived isotopes of unknown radioactive
elements. Future discovery of new radioactive elements will offer further
validation for the predictive ability of the power-law relation revealed in
this study.
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