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Water scarcity and pollution pose significant challenges to global environmental
sustainability and public health. As these concerns intensify, the quest for
innovative and efficient water treatment technologies becomes paramount. In
recent years, graphene-based nanomaterials have emerged as frontrunners in
this pursuit, showcasing exceptional properties that hold immense promise for
addressing water contamination issues. Graphene, a single layer of carbon atoms
arranged in a hexagonal lattice, exhibits extraordinary mechanical, electrical, and
chemical properties. These inherent characteristics have led to a surge of interest
in leveraging graphene derivatives, such as graphene oxide (GO), reduced
graphene oxide and functionalized graphene, for water treatment applications.
The ability of graphene-based nanomaterials to adsorb, catalyze, and
photocatalyze contaminants makes them highly versatile in addressing diverse
pollutants present in water sources. This review will delve into the synthesis
methods employed for graphene-based nanomaterials and explore the structural
modifications and functionalization strategies implemented to increase their
pollutant removal performance in water treatment. By offering a critical
analysis of existing literature and highlighting recent innovations, it will guide
future research toward the rational design and optimization of graphene-based
nanomaterials for water decontamination. The exploration of interdisciplinary
approaches and cutting-edge technologies underscores the evolving landscape
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of graphene-based water treatment, fostering a path toward sustainable and
scalable solutions. Overall, the authors believe that this review will serve as a
valuable resource for researchers, engineers, and policymakers working toward
sustainable and effective solutions for water purification.
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1 Introduction

There is a global increase in soil, air, and water pollution due to
the world’s rising urbanization and industry (Celik, 2020). A clean
and safe environment is therefore essential for survival and
maintaining a healthy physique. As water is a vital component of
life, water pollution is the most serious form of pollution and has the
greatest negative influence on public health and the environment
(Mahmoud, 2020). Water has a profound effect on every facet of
human existence, such as food, energy, economy, and health (Yin
et al., 2020). A fresh water supply is necessary for the protection of
children and the impoverished, in addition to the negative effects
that inadequate sanitation and water availability have on the
environment, the economy, and society (Amin et al., 2014). The
textile, pharmaceutical, and metal industries, among others,
discharge toxic substances into the environment that damage
freshwater bodies. Pesticides, organic dyes, heavy metal ions
(HMIs), and other pollutants are among these hazardous
substances (Yap et al., 2021). The most hazardous to the
environment among these pollutants are HMIs and organic dyes
because of their immunogenic, carcinogenic, and mutagenic
qualities (Wani et al., 2022). This is because of their low
degradability and strong accumulative impacts (Mohd et al.,
2022). In humans, animals, and plants, these consequences can
reduce neurological, hormonal, and reproductive capacities. When
present in appropriate proportions, several heavy metals are

considered important nutrients; however, when their
concentration surpasses a threshold, they become hazardous to
the organism (Lu and Astruc, 2018), as shown in Figure 1.

Waterborne infections are thought to be the cause of
10–20 million deaths annually, while non-fatal infections claim
the lives of over 200 million people (Leonard et al., 2003). As per
estimates, diarrhea, a water-related issue, claims the lives of
5,000–6,000 children per day (Ashbolt, 2004). Currently, over
0.78 billion people lack safe water supplies globally, which has a
negative impact on their health (Amin et al., 2014). The existing
water supply will drop by one-third in a few decades, and it is
projected that over a billion people worldwide lack access to clean
water (Liu and Qiu, 2020). Therefore, a global effort is currently
being made to understand how human activity impacts the
environment and develop new technologies to reduce any
detrimental consequences on public health and the environment
in which they live (Gusain et al., 2020). Given that aquifers
worldwide are being depleted as a result of various factors,
including surface water contamination and saltwater intrusion,
now is the ideal time to address water-related issues. Improving
purification technology can lessen issues related to energy, water
scarcity, health, and climate change (Krishna et al., 2023). Reusing
wastewater (WW) can result in a significant reduction in the
amount of potable water used, but doing so needs the
development of dependable, efficient, and affordable materials
and techniques. The burden of micro-pollutants downstream can
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be reduced by diluting complicated WW effluents, but many of
these compounds still pass through conventional water treatment
as they exist in micrograms or even nanograms per liter
(Verstraeten et al., 2003).

Various treatment technologies have been utilized to eradicate
harmful contaminants from water and WW efficiently and
comprehensively. Flocculation, membrane filtration, photo-
catalysis, chemical precipitation, electrochemical elimination, ion
exchange, and adsorption are a few of these methods (Wani et al.,
2021). Even though these technologies exist, very few of them are
used by enterprises to treat their sewage due to several drawbacks,
including high maintenance costs, energy requirements, complex
operational procedures, a lack of a circular economy perspective,
and sustainability. For the removal of dyes, HMIs, and other
hazardous pollutants, the adsorption process is regarded as
among the most extensively utilized, valuable, adaptable, and
highly efficient techniques available (Khan et al., 2019).
Adsorption can be carried out using a variety of materials, such
as red mud, fly ash, crop residues, and microbiological cells.
Adsorption has several advantages, but despite these, its
application in the commercial sector is still quite restricted due
to its slow removal effectiveness after a few operating cycles.
Adsorbents should ideally have enough binding sites to allow for
the effective adsorption of harmful pollutants. If the adsorbent is
recyclable, this can further reduce the cost of the adsorption process.

Recent advances in the science of nanotechnology (NT) have
sparked considerable attention regarding harnessing the special
features of NMs for environmental remediation as one approach
to address these urgent environmental concerns (Xu et al., 2012;
Assad et al., 2022b). Because of their nanoscale size, NMs have
unique properties that can be used to develop new technologies
or improve the performance of ones that already exist. A growing
body of literature discusses how innovative NMs might be
applied to solve significant environmental problems (Assad

et al., 2022a). Advanced water systems are developing more
effective treatment methods thanks to the use of NMs like
CNTs and dendrimers (Kuchi et al., 2021; Ganjoo et al.,
2023). To preserve the stability of the ecosystem, NT can be
used in numerous ways to address the many water quality issues.
The use of NPs and NMs in nanoremediation is the process of
eliminating environmental pollutants from contaminated areas.
Both chemical and biological processes, including those
involving plants, fungi, and bacteria, can produce these NPs
and NMs (Nikam et al., 2022). As seen in Figure 2, various
studies found that NMs, including GBNs (GBNs), silver (Ag),
cerium oxide (CeO2), titanium oxide (TiO2), zinc oxide (ZnO2),
nano zero valent iron (nZVI), and nano carbon black (NCB),
were effective at removing pollutants (Masindi and Muedi, 2018).

Graphene, a 2D material comprised of layers of carbon atoms
that create six-membered rings, is considered the ultimate
graphitic form (fullerenes, CNTs, etc.), Zhi and Müllen (2008)
and has caught the attention of scientists. The unusual
physicochemical characteristics of graphene, particularly its
extraordinarily high SA, ē heat mobility, and mechanical
potency, are what initially sparked interest in it Assad et al.
(2023c). Theoretically, graphene has the largest specific surface
area (SA) of any substance at 2,630 m2 g-1 and is considered the
perfect material for adsorption or surface reaction processes
(Perreault et al., 2015). In addition, graphene provides good
support for securing chemical functions or NMs; as a result,
GBNs and nanocomposites have attracted a lot of consideration
from researchers looking for new materials (Al Faruque et al.,
2021). The total number of publications retrieved from Google
Scholar for the past 2 decades is shown below in the chart graph
(Figure 3), in which the gradual increase in the use of graphene-
based materials is clearly discernible.

Graphene or graphite can be employed as the initial material for
making GBNs, which are graphene-like nanostructures. They differ

FIGURE 1
Schematic representation of different entry pathways of contaminants into the environment, their action, and influences (Almeida-Naranjo
et al., 2023).
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from each other due to surface chemistries, the quantity of
imperfections, and lateral dimensions yet both include sp2 and
sp3 hybridized C atoms. Graphene oxide (GO), reduced graphene
oxide (rGO), and graphene quantum dots (GQDs) are examples of
GBNs (Lúcio et al., 2021). Moreover, graphene-based nanomaterial
production and application-related articles and patents have grown
rapidly and continue to do so (Zou et al., 2018). Unique
characteristics of GBNs have been discovered, and new processes

for the quick and effective fabrication of graphene-based
nanocomposites with applications in numerous domains have
been covered extensively in review articles over the past few
decades (Ghany et al., 2017; Ganjoo et al., 2023). Molina et al.
examined the most important studies concerning graphene-based
electrochemical sensors for the measurement of toxic ions (Molina
et al., 2016). Contemporary progress in the preparation and use of
GBNs for drug delivery were reviewed by Wang et al. (2017).

FIGURE 2
An introduction to general techniques for environmental remediation using nanotechnology (Mathur et al., 2022).

FIGURE 3
Graphical representation of the growing number of publications on graphene-based materials. The bars represent the number of publications
retrieved from Google Scholar. The examined time interval was (left) 2000–2011 and (right) 2012–2023.
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Additionally, Madni et al. (2018) examined the biological and
physicochemical features of GBNs and described the approaches
for producing them. Jiang et al. (2019) created a flexible LED
employing laser-induced reduced graphene oxide (LI-rGO),
which has a wall plug efficiency (WPE) of 1.4% and a luminous
endurance of over 60 h.

In actuality, materials based on graphene provide a wide variety
of opportunities for restoring the environment and using electricity.
Furthermore, numerous 2D graphene NMs, including pure
graphene, GO, and reduced GO, have been developed as
important crucial NMs for decontaminating soil (Fathizadeh
et al., 2017). These nanoparticles are well renowned for their
prowess as adsorbents and antifouling experts. They also possess
PC qualities. When compared with ordinary polyamide membranes,
graphene membranes have nuclear-level fineness, which increases
filtering (Homaeigohar and Elbahri, 2017). The tendency of
graphene to form prolonged aggregates or even regain graphite
stacking and van der Waals interactions represents the biggest
barrier to deploying GBNs in the realm of environmental
protection, which results in insufficient separation between the
sheets (Khalid et al., 2020). Toxic contaminants can be removed
from WW with the use of graphene-based nanoparticles, as
evidenced by the numerous excellent evaluations that have been
published to date. However, the majority of these assessments
concentrate on a single class of pollutant or are restricted to a
specific kind of material or adsorbent. We have covered in-depth the
adsorption and photodegradation of different pollutants, such as
antibiotics, pesticides, dyes, and HMIs, on graphene and GBNs in
this review. These processes are essential for the effective use of
GBNs to treat contaminated WW. In the meanwhile, an evaluation
of the materials’ risks, as well as the difficulties and prospects of
getting rid of the pollutants that have been clarified, are presented to
bring about additional fascinating advancements in this relatively
new but extremely promising subject in the future. By concentrating
on the difficulties facing future research, the authors hope that this
work will offer a distinctive viewpoint on the fundamental studies of
GBNs for the management of water and WW.

2 Fabrication methods

It would be ideal if the fabrication of graphene and materials
based on it could be managed to give rise to features that would be
useful in particular contexts. As is well known, there are two primary
approaches for fabricating graphene: top-down and bottom-up
(Jana et al., 2017). Top-down methods require the segregation of
assembled graphite sheets to produce solitary graphene sheets, while
the bottom-up process brings the production of graphene from
different carbon sources (Yang et al., 2016), as shown in Figure 4.

How to generate effective substance in a repeatablemeans, on a huge
level, and at a reasonable price is one of the key difficulties in
commercializing graphene. Although this is still a significant difficulty,
several other ways to make graphene have been explored recently. Given
that a significant portion of graphene-based filters are crafted using top-
downmethodologies (Li et al., 2021), this sectionwill exclusively elucidate
the top-down approach and its associated techniques. By tearing apart the
stacked layers of graphite, this technology uses procedures to create a
single graphene sheet (Sengupta and Hussain, 2019; Vesel et al., 2019).
Moreover, graphite or other C-sources, like CNTs (carbon nanotubes),
fullerenes, or bigger graphene sheets that are sliced into minor
monoatomic C bits, are the starting point for top-down techniques for
creating GBNs (Jana et al., 2017; Pedrosa et al., 2020). These techniques
could be physical, chemical, or mechanical. The next section discusses a
few top-down strategies.

2.1 Mechanical exfoliation from graphite

The first high-quality graphene was produced utilizing scotch tape
and mechanical exfoliation from raw graphite (Sahu et al., 2021). The
original two-dimensional atomic lattices of graphene are completely
preserved despite the method’s primitiveness and low efficiency (Dasari
Shareena et al., 2018). This technique includes regularly rubbing SiO2/Si
substrates with scotch tape to exfoliate graphite (Jana et al., 2017). Single
or few-layer graphene of very good quality can be distinguished with
realistic discrimination thanks to the distinctive color contrast, despite

FIGURE 4
Schematic representation of fabrication methods of GBNs.
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being laborious and poor yielding (Chang and Wu, 2013). The
extensiveness of mechanically exfoliated graphene means ultrahigh
mobility and a variety of fascinating electrical characteristics are
easily observable (Geim, 2009). A great deal of attention toward
GBNs and other 2D atomic crystals was sparked by the effective
mechanical exfoliation of the first high-worth graphene from
graphite (Chang and Wu, 2013).

2.2 Unzipping carbon nanotubes

Unzipping carbon nanotubes is another technique that is
frequently used to investigate the physics of graphene because of its
comparatively good quality. Oxidized graphene nanoribbons were
produced by longitudinally slicing multi-walled CNTs employing laser
irradiation, plasma etching techniques, or wet chemical methods (Sahu
et al., 2021). This unlocking results in the production of graphene
nanoribbons. The nanoribbon widths are determined by the tube
diameter. After immersion in H2SO4, the nanotubes were cut and
treated in KMnO4 (Sahu et al., 2021). Uneven sides emerge from CeC
fission, which is often started at the distortion sites to decompress the
nanotubes (Cho et al., 2011). Owing to the existence of oxygen
deformation sites, the resulting graphene nanoribbons are strong
conductors but have a lower electrical quality than commercial-scale
graphene layers (Kosynkin et al., 2009). Later, the unzipping of flattened
CNTs, where outbreak arises beside the bent edges, was carried out (Saeed
et al., 2020) to generate nanoribbons with smooth edges.

2.3 Chemical reduction of graphene oxide

An alternative method of making graphene is the reduction of GO
(De Silva et al., 2017). The presence of polar O andOH groups causes the
graphite oxide to become hydrophilic throughout the oxidation process
(Pei and Cheng, 2012; Dasari Shareena et al., 2018). Water is one of the
solvents used in the chemical peeling process of this GO. Numerous
graphite oxide nanoplatelets are produced by the sonicated graphite oxide
solution (Li et al., 2021). The reduction process involves the removal of
oxygen units using reducing chemicals. Stankovich and others employed
this method by considering a hydrazine-reducing agent; however, it was
found that the reduction advancement was insufficient, leaving some
residual oxygen.When graphene is beingmanufactured, GO is created as
a precursor (Stankovich et al., 2007). GO is advantageous over graphite
due to its hydrophilic behavior (Pedrosa et al., 2020). Sonication is used to
suspendGO inwater. After that, spin coating orfiltering is used to deposit
it onto surfaces to create single/double layerGO. Then, to create graphene
films, this GO is reduced by thermal or chemical actions (Marcano et al.,
2010). The methods (Sieradzka et al., 2021) used to create GO include.

• Wet chemical synthesis
• Plasma functionalization
• Radio frequency plasma

2.4 Arc discharge

This process creates a few layers of graphene by applying direct
current under high pressure from hydrogen gas between electrodes

constructed of ultra-pure graphite (Li et al., 2021). Shen et al. found
that the combination of helium (He) and hydrogen (H2) gas
accounts for the material’s remarkable crystallinity out of all the
different gases considered (Shen et al., 2012). The development
method comprises a progressive route of graphite evaporation and
reactive-gas-restrictive crystallization of the vaporized carbon units.
Aqueous arc discharge technology, according to Kim et al., can
generate bi- and tri-layer graphene (Kim et al., 2016).With the aid of
a temperature increase, heat transfer, and aqueous turbulence,
graphene was extracted from the graphite electrodes. A median
proportion of graphene sheets with fewer oxygen-related defects
were created by varying the voltage of the arc discharge (Li et al.,
2021). Owing to a lack of scalability, intricacy, and the high expense
of the current technique of synthesizing graphene, GBN research is
still a long way from having any important uses.

3 Structure and characteristics of
graphene-based NMs

Graphene is regarded as the basic component of the family of
carbon-based substances, as it can roll into 1D CNTs, wrap into 0D
fullerenes, and stack into 3D graphite, enriching the family of carbon
compounds. GBNs are usually classified based on layers, oxygen-
containing group matter, and other chemical components.
According to one study, the structural variations of GBNs, which
control their physical and chemical characteristics, are numerous
(Yang et al., 2018a). Graphene is criticized as an “impractical
material" as it has not been demonstrated that monolayer
graphene is stable, even though past research on GBNs
concentrated mostly on its configuration and capabilities.
Landau, who asserted that rigid 2D crystals are
thermodynamically impossible, was proven wrong by the planar
2D framework of graphene (O’Hare et al., 2012). Furthermore, it was
discovered that graphene is not a perfect 2D crystal using analysis
methods like Raman spectroscopy, TEM, and AFM. To improve
stability, graphene sheets are distorted. The chemical makeup of
GBNs is depicted in Figure 5.

Standard graphene is a monolayer of graphite with a hexagonal
planar organization of C-atoms. With a reported width of
approximately 0.335 nm, graphene is the reediest 2D constituent
ever to be found. It was initially produced using CVD to
mechanically or chemically exfoliate graphite (Zhao et al., 2017a).
Three identical carbon atoms are linked to one carbon atom. A C–C
bond is a σ-bond created by sp2 hybrid orbitals and recognized by its
bond length and bond angle, which are approximately 1.42 nm and
120°, respectively. A carbon atom contributes one electron to the
system by joining the p orbitals of its neighboring carbon atoms. As
V-bonds and a cloud of ē pairs are honeycombed, graphene’s
skeleton is made of them. Identical in structure and functionality
to graphene, GO also possesses outstanding physiochemical
qualities. GO is a single-layer form of graphene that is created
when powerful acids and oxidants react. The outer layer of the
material encompasses several functional moieties, including -OH,
-O, and -CH (O) CH-. In contrast to graphene, the GO structure
uses a very specific approach for the oxygen atoms’ bonding with the
carbon atoms. In addition to having a monolithic configuration akin
to graphene and an extremely selective surface area as a consequence
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of the oxidation reaction, GO also has several functional units on its
upper surface that make it simpler for it to endure additional surface
reconfiguration. This is the main driver behind GO’s extensive
adoption in a variety of industries. GO simultaneously possesses
sp2 and sp3 hybrid orbitals, which stand for the aromatic and
aliphatic domains, respectively. GO reduces the conductivity of
graphene, but reduction can restore it (rGO). A thermal or
chemical reduction of graphite oxide or graphene can result in
the intergradation known as rGO (Cheng et al., 2020). Between the
perfect sheets of graphene and extremely oxidized GO, rGO is
regarded as an intermediary structure (Reina et al., 2017). By
using a reducing procedure, such as chemical and physical
reduction procedures, the oxygen units on the interface of GO
can also be lowered in the case of rGO. Moreover, owing to the
lowering of faults brought on by the inclusion of functional groups
(FGs), such reduction aids in strengthening the graphitic nature of
GO. Moreover, GQDs, a most recent variety of GBNs, are often
created utilizing artificial processes including thermal plasma jets.
They are thinner (1–20 nm, less than 10 layers), have carbon bonds
that are similar to those in graphene, have a greater SA, and splicing
that is appropriate for surface modification (Zhao et al., 2017b).

Additionally, owing to the edge effect and the same quantum
limitations as the C point, GQDs display a novel phenomenon
known as steady PL. GQDs have hydrophilic groups like -OH and
-COOH at their edges, which enable researchers to alter them as
required (Li et al., 2018; Chung et al., 2021).

Since 2004, numerous intriguing characteristics of graphene,
including its high SA, great electrical and mechanical conductivity,
and outstanding thermal characteristics, have been identified. There
are many resources of knowledge concerning the characteristics of
graphene (Soldano et al., 2010). Here, we emphasized how the
exemplary structure of graphene and GBNs are related to the
unique honeycomb pattern of graphene and its products. We
concentrated on the characteristics of graphene and GBNs that
are of utmost importance for their implementation in a variety of
domains, such as biomedicine, the environment, and industry.

3.1 Mechanical properties

Each C atom in a graphene layer is covalently connected to three
nearby atoms as a result of the 2D honeycomb configuration of

FIGURE 5
Schematic depiction of several graphene variants. (A) Graphene (B) Graphene oxide (C) Reduced graphene oxide.
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carbon atoms. A single defect-free graphene sheet is therefore
approximately 200 times mechanically extremely durable due to
the tight C-C covalent connections that give graphene its exceptional
structural stiffness. This explains the remarkable mechanical
properties of graphene, which include its 1 TPa Young’s
modulus, 0.149 GPa Poisson’s ratio, and 130 GPa fracture
strength (Lee et al., 2010). Owing to its remarkable mechanical
qualities, interest in using graphene as a filler to improve the
tensile strength of lighter substances has grown (Potts et al.,
2011). In comparison to graphene, the surface moieties and
imperfections left behind from oxidation or other handling
operations have a considerable impact on the mechanical
characteristics of GO and rGO. However, these GBNs still
have a very high stiffness. These NMs may be employed to fill
or reinforce the frameworks of medical apparatuses, hydrogels,
biodegradable coverings, electrospun fibers, and other tissue
engineering scaffolds because of the amazing mechanical
stability of graphene and the good mechanical qualities of
GBNs (Zhao et al., 2020). When juxtaposed with CNTs,
graphene can dramatically improve the characteristics of
polymers that have also been thoroughly examined as
nanofillers for polymer matrixes. This is because the large SA
of the planar graphene layers permits better relationships
between the sheets and the polymer matrix (Perreault
et al., 2015).

3.2 Physicochemical properties

The enormous SA and sp2 network of graphene are its primary
unique physicochemical properties. These two qualities give
graphene a high degree of reactivity. The electrophilic
replacement processes that the graphene planar and ē
arrangements can participate in include click reactions,
cycloadditions, and reactions to carbine insertion. Additionally,
the sp2 network allows for V-V stacking interactions with
aromatic compounds seen in biomolecules or pharmaceuticals.
Finally, while the hydrophobic character of pure graphene is
indicated by its water contact angle of 95°–100°, medicinal
substances may potentially create hydrophobic connections with
graphene through van der Waals interactions. Owing to graphene’s
strong hydrophobicity, it is difficult to disperse it in aqueous
environments, necessitating the addition of stabilizing agents
such as surfactants to prevent clumping in biological fluids
(Goenka et al., 2014). The hydrophobic unaltered regions of
graphene that are preserved by GO can form V-V interactions
that are suitable for drug loading and non-covalent
functionalization. Nonetheless, it may be claimed that GO has a
higher loading potency as it has more hydroxyl and epoxide moieties
that can interact weakly with other groups of medicinal drugs and
create hydrogen bonds with them. As additional oxygen
functionalized entities in GO are ionized at specific pH levels (for
instance, at pH values >4.5, carboxyl FGs are negatively charged),
GO also exhibits an amphiphilic character. The reactivity of GO is
increased by the occurrence of ionizable moieties and negative
charges because more electrostatic interactions with therapeutic
substances can be generated. Additionally, charged groups
decrease GO’s water contact angle to 30.7°, increasing aqueous

dissolvability and, as a result, colloidal stability (Zhao et al.,
2017a). As opposed to graphene, rGO has more flaws that occur
during the oxygen removal process in GO, rendering it more
hydrophobic and less reactive than GO.

3.3 Thermal properties

Graphene has high thermal and electrical conductivity due to the
V-V bonds beneath and above the carbon atomic plane. In actuality,
the C atom typically has 4 ēs available for reactions; however, in
graphene, each atom is given one unbound ē that may move
randomly across the crystal framework, resulting in exceptionally
good TC (TC) (Balandin et al., 2008). Therefore, it has been noted
that defect-free graphene has a TC of between 4,500 and 5200 W/
mK (Balandin et al., 2008). Manufacturing flaws in GO and rGO
break the sp2 orbitals of graphene and add a lot of outer layer
moieties that block heat transport, lowering the TC of these GBNs
(Goenka et al., 2014; Zhao et al., 2017a). Even though increased TC
has been useful for many purposes, it is not necessary for all of them.
Offering greater thermal insulation features, such as flame
retardants and in-house insulation, might be advantageous in
some circumstances. It has been found in several recent studies
that GO is a useful filler that can improve the flame-retardant
qualities of several PNCs. To create superinsulation flame retardant
foam, the scientists tried to create CNFs by combining GO oxide and
sepiolite clay nanorods. The TC of the produced films has been
observed to be 15 mWm-1K−1 (Zhang et al., 2016). For various
application needs, maintaining heat conductivity has therefore been
crucial for GO materials.

4 Functional modifications of
graphene-based NMs

Owing to their superior performance, GBNs have seen extensive
use; nonetheless, unaltered GBNs still have several drawbacks. For
instance, graphene is extremely hydrophobic, which harms how well
it disperses in water. Owing to the charge-defensive properties of the
surface moieties, GO tends to assemble in the physiological
environment (Jiang et al., 2020). GO has a potent protein-
adsorption action and is quickly identified and absorbed in living
tissue by macrophages, resulting in inflammation (Kumari et al.,
2020). Additionally, in biomedical applications, GBNs lack in vivo
targeted, delayed, and controlled release capabilities. These flaws
collectively restrict the use of GBNs in several domains, especially in
biomedicine. The functional modulation by the outermost layers
functional of GBNs is a significant method for improving their
biological functions as it promotes the stability and water
solubilization of GBNs and offers them advanced features such as
directed, slow, and controlled release. Covalent and non-covalent
alterations make up the majority of surface changes nowadays.

Productive double bonds, polymeric materials, and
characteristic FGs are just a few examples of the groups that can
be added to the surface of GBNs through covalent modification.
Amidate, free radicals, and other chemical methods are used in
acidic environments to interact chemically with the active surface
FGs of GBNs and produce covalent bonds, which subsequently
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confer the required activities. Owing to the plentiful FGs that
contain oxygen and their potential for covalent modification, GO
is the primary method employed to modify GBNs. The possibility of
using GBNs for drug delivery, imaging, and diagnostics is increased
by covalent modification, which results in fewer electron networks.
Additionally, the structure of GO may change in a high-acid
environment, improving its physical and chemical properties.
Utilizing free radical interactions, Peng and coworkers created a
functionalized styrene copolymer alteration of graphene (Peng et al.,
2017). The outcomes showed that the distribution and conducting
properties of graphene were appreciably improved by free radical
transplantation via polymerization. Covalent alteration of GBNs
may also lead to a faster and more efficient release of drugs at the
malignant tumor site, leading to more precise and effective therapy.
GBNs that react to stimuli include those that are glutathione, light,
heat, and pH responsive. Additionally, small molecules can be used
to covalently functionalize GO, leading to new molecular
identification techniques for the creation of GBN-targeted
formulations. The manufactured Fa-GO may maintain enduring
uniform diffusion and steadiness in physiological solutions by
covalently grafting folic acid (Fa) to active GO using SO3H units,
for instance. Additionally, the drugs loaded on GO can be directed at
tumor sites exaggerating folate receptors. To create the
multifunctional GO that is so vitally needed in biomedical sectors
such as drug delivery, biosensing, imaging, tissue engineering, and
photo-thermal therapy, this covalent version of GO is especially
appropriate for coupling with biomolecules (nucleic acids
and others).

On the other hand, the non-covalent modification strategy relies
on non-covalent forces to achieve the goal, including ionic and
hydrogen bond, van der Waals, V-V, electrostatic, and coordination
interactions between the changed moieties and GBNs (Li and
Papadakis, 2020). Interestingly, the units of GBNs have a very
high degree of aversion to H2O molecules, with clear van der
Waals bonds and V-V layering, which makes the requirements
for the non-covalent transformation of these molecules quite
simple. In general, GBNs can undergo non-covalent modification
through surface absorption or polymer/biomacromolecule
encapsulation. The capabilities of GBNs for dispersion, safety,
reactive activation, and biosensors are improved by non-covalent
modification. Non-covalent modification does not create chemical
bonds; therefore, it has a weaker force of modification, less stability,
and is more susceptible to environmental influences than covalent
alteration. As a result, in vitro and in vivo non-covalently modified
GBNs are less stable. The active unit or architecture on the outer
layer of GBNs is not compromised, and the structure and
characteristics of the GBNs are completely preserved. GO (PVA-
GO) was functionalized by Chen et al. using covalent and non-
covalent methods (Chen et al., 2018). The findings revealed that
compared with covalently altered PVA-GO, non-covalently
modified PVA-GO had fewer strata and a lower defect
concentration while still maintaining all of graphene’s inherent
properties. As it can adsorb organic and inorganic components,
V-V bonding is the most efficient non-covalent alteration technique.
According to a previous study, gold nanoparticles, naphthalene,
phenanthrene, and porphyrin complexes with amantane grafts can
all form non-covalent bonds with graphene and GO (Sun et al.,
2019). By generating stable GO colloidal suspension, which has the

potential to be engaged as a carrier substance for biomedical
purposes, the active units on GO mix with other functional
moieties quickly and efficiently without the presence of
contaminants.

5 Removal of water contaminants by
graphene-based nanomaterials

Because of their exceptional structural and functional
characteristics, GBNs are used in a huge range of cutting-edge
applications (Yang et al., 2017b). The intensive study of graphene
over the past few decades has led to its widespread use in industries
ranging from aircraft to agriculture. Owing to the numerous
applications of NMs based on graphene, many areas of research
have undergone a revolution. It has piqued a broad array of
attentiveness and acknowledgment primarily because of its
promising prospective applications in fields of research such as
metal-eradication sensors and nuclear waste optimization (Jaiswal
et al., 2018). The quantity of pollutants discharged into the
environment has dramatically increased as a consequence of the
rapid population rise and strengthening of agricultural and
industrial operations. These extremely diversified pollutants pose
a stern threat to environment and general health (Adel et al., 2022).
As a result, there is an international effort underway to create
reliable technologies that can efficiently remove toxins from the
air and H2O. Adsorption is a rapid, low-cost, and efficient technique
for removing toxins from aquatic habitats among these approaches
(Tara et al., 2021). Through physicochemical interactions, the
contaminant (adsorbate) is bound to the nanomaterial
(adsorbent) during the adsorption process. The use of graphene-
based materials has sparked studies at the intersections of many
fields, notably environmental restoration, as shown in Figure 6.

GBNs have several π bonds, and GO has numerous FGs with
oxygen that are helpful. Every material based on graphene has a large
surface area. Five possible interactions might occur when GBNs are
adsorbed together: hydrophobic, electrostatic, covalent, and
hydrogen bonding (Zhu et al., 2010). Graphene-based materials
work well as adsorbents for a variety of waterborne contaminants. In
this section, we have briefly elucidated the use of NMs based on
graphene as adsorbents to confiscate inorganic and organic
contaminants from H2O, as elucidated below.

5.1 Removal of heavy metals

Industrialization has led to a rise in WW discharge. Metals are
typical pollutants that may unintentionally contaminate drinking
water supplies and aquatic ecosystems as a consequence of
anthropological actions, including mining and industrial waste
generation, soldered joints, and plumbing material corrosion
(Assad and Kumar, 2021; Assad et al., 2023a; Assad and Kumar,
2023; Assad et al., 2023b; Assad et al., 2024). The presence of heavy
metals in water can be hazardous to human health as well as
negatively impact aquatic life (Yu et al., 2019). Heavy metals do
not biodegrade like organic substances. Industrial effluent contains a
variety of pollutants, including cobalt, chromium, zinc, lead,
mercury, arsenic, and cadmium (Wang et al., 2021). These metals
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have the potential to be harmful and carcinogenic to living things,
even in small amounts (Priyadharshini et al., 2022). Consequently,
there is an increasing interest in reducing the amount of hazardous
metals in aqueous medium (Zhan et al., 2019). Metals and organic
molecules have been eliminated using a variety of physical and
chemical techniques, as previously mentioned (Zhu et al., 2010).
These techniques, however, have poor removal efficiency. The
adsorption process is the most popular approach to treating
water as it is inexpensive, simple to use, effective, and
environmentally benign. Additionally, adsorbents can be recycled
via the desorption process (Elsagh et al., 2017). Furthermore,
adsorption does not result in the creation of toxic materials
(Ahmaruzzaman, 2011). Using GBNs as adsorbents may have
several benefits. First, two basal planes in single-layered graphene
materials are available for the adsorption of pollutants. By contrast,
the adsorbates cannot access the inner walls of CNTs. Second,
without the need for complicated machinery or metallic catalysts,
GO and rGO can be produced simply through the chemical
exfoliation of graphite (Zhao et al., 2014). There are no catalyst
remnants in the finished graphene material; therefore, no additional
purifying procedures are required. Concerning GO, no extra acid
treatments are necessary to give the material a hydrophilic character
and reactivity because it already has a significant amount of oxygen-
comprising functional moieties. Given that those FGs probably
cause metal ions to adhere to GO sheets, this is a huge
advantage. Numerous studies have discussed the use of GBNs as
adsorbents to confiscate inorganic species from water. For the
majority of these investigations, GO was used as a model
adsorbent to eliminate metallic ions from H2O (Sitko et al.,
2013). Because GO has a higher concentration of oxygen groups
that can communicate with metallic ions than pristine graphene, GO
is preferred for metal ion adsorption. The effectiveness of Pb (II)
adsorption on unoxidized and oxidized graphene sheets was
compared to highlight the significance of these oxygen-
comprising functional units. To incorporate oxygen functional

units, pristine graphene was initially processed using a vacuum-
promoted low-temperature exfoliation. This was shadowed by heat
treatments (GNS500 and GNS700) at 500°C and 700°C. In
comparison with pristine graphene, the abovementioned
structures displayed a greater capacity for adsorbing divalent lead
ions, which emphasizes the significance of carboxyl units in the
adsorption procedure of lead ions (Huang et al., 2011). The
adsorption efficiency of GO was discovered to be influenced by
several variables, including the strength of the ions, pH, GO layer
count, and the occurrence of natural organic matter. Recently, Tan
et al. (2015) created GO membranes, and they were employed as
adsorbents to remove Cu (II), Cd (II), and Ni (II) with the highest
adsorption capabilities of 72.6, 83.8, and 62.3 mg/g, respectively. The
greater interlayer spacing of the GO membranes allowed the
adsorption to achieve an equilibrium state faster (10–15 min),
which is advantageous for promoting the interstitial diffusion of
HMIs to functional sites. Over six regeneration cycles of the GO
membranes resulted in a minor reduction in their adsorption
capability (Tan et al., 2015). Zhao and coworkers revealed that at
pH 6.0, copper and cadmium divalent ions were successfully
adsorbed by GO sheets (Zhao et al., 2011), whereas Sitko et al.
verified the elimination of copper, zinc, cadmium, and lead divalent
ions at pH 5.0 (Sitko et al., 2013). Yari et al. (2016) employed GO as
an adsorbent to remove Pb (II). The equilibrium time of adsorption
on the GO surface was 60 min in this experiment. In this study, the
adsorption capacity (AC) of Pb (II) on the GO surface developed in
proportion to ambient temperature, i.e., when the temperature rose
from 288 to 308 K, the AC increased from 15.9 to 19.7 mg/g. The
endothermic character of Pb (II) adsorption on GO is demonstrated
by this result. Higher temperatures hence promote adsorption. GO
provided a ΔH° value of 22.70 (kJ/mol). This suggests that Pb (II)
was adsorbed physicaly on the GO surface. The results of a
thermodynamic investigation showed that Pb (II) ion adsorption
on the surface of GO was endothermic and spontaneous (Yari et al.,
2016). Moreover, the pHpzc (pzc, point of zero charge) of GO in

FIGURE 6
Diagrammatic representation of graphene oxide hybrids used in water filtration for environmental applications (Joel and Lujanienė, 2022).
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aqueous solution controls how it behaves. The GO surface is
negatively charged when pHpzc < solution pH due to the proton
removal from carboxyl and hydroxyl fragments. The electrostatic
interaction with positively charged metal ions is more advantageous
when the GO outer layer is negatively charged, improving AC. The
most popular method for creating GBNs (composites) for the
elimination of metallic ions is the conjugation of graphene with
magnetic NPs, such as Fe or iron oxide (Gollavelli et al., 2013). The
elimination of anionic contaminants from aqueous systems, like
phosphate (PO4

−), perchlorate (ClO4
−), and fluoride

(Kamangerpour et al., 2002), has also been examined using
GBNs, although the preponderance of reports focus on the
adsorption of cationic metallic ions (Shi et al., 2012). The
mechanism of anion adsorption, such as that of halide ions, was
traditionally attributed to anion interactions rather than the
immobilization of cationic metal species. The basis for this anion
association is the interaction between the anion (or lone electron
pair) and an aromatic framework on the graphene sheet that is
electron deficient. Additionally, Alejandro presents findings on the
synthesis of an aerogel incorporating reduced graphene oxide (rGO)
and polyethylenimine (PEI) using a supercritical CO2 method
(Borrás et al., 2022). The synthesized rGO/PEI aerogel
demonstrates high efficiency as a sorbent for treating Hg (II)-
contaminated water. Sorption tests show the rapid removal of Hg
(II) from water, achieving residual concentrations as low as
3.5 μg L−1 in a short period, nearing the legal limits for drinking
water. The aerogel displays a remarkable maximum sorption
capacity of approximately 219 mg g−1 for Hg (II), making it a
promising candidate for treating Hg (II) contaminated
wastewater. Based on the analysis of surface charge, Figure 7

schematically illustrates the potential interactions involved in the
removal of Hg (II).

Still, there are undoubtedly challenges with the way that heavy
metals are now treated in both industrial effluent and point-of-use
water. Current methods typically face constraints and difficulties
when it comes to naturally removing certain heavy metals from
point-of-use water. The heavy metals in industrial effluent are
precipitated as sludge that requires additional treatment, which
greatly reduces the value of the metals. Using a GO-modified
carbon felt (CF/GO) electrode, an electrochemical method has
been devised that can handle heavy metal pollution at low and
high concentrations. The methodology uses both direct-current (dc)
and alternating-current (ac) electrodeposition (ED) (Liu et al.,
2019). Because of the high density of surface FGs in GO, which
allows for electrodeposition with >29 g of heavy metal per 1 g of GO,
the ensuing AC is two orders of magnitude greater than that of
traditional adsorption methods. When used on point-of-use water
with low levels of heavy-metal contamination, Dc ED with a CF/GO
anode may minimize contamination from single HMIs (Cu, Pb, and
Cd) and multiple-ion composites to levels considered safe for human
consumption. As with conventional adsorption techniques, this
approach can handle a broad array of HM pollutants in point-of-
use water. The study’s findings indicate that dc ED is capable of
recovering over 99.9% of HMIs from industrial WWs that have high
levels of pollution (Liu et al., 2019). Furthermore, the ED technique
may selectively recover Cu, Pb, and Cd separately by adjusting the
voltage and ac frequency; this increases the elimination of HMs.
Table 1 provides a comprehensive overview of significant studies
investigating the efficacy of GBNs as adsorbents for the removal of
heavy metals from water.

FIGURE 7
Schematic representation of the potential interactions involved in the removal of Hg (II) (Borrás et al., 2022).
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5.2 Removal of volatile organic compounds

According to the WHO, different types of volatile organic
compounds (VOCs) are to blame for the rise in sarcoma rates
among individuals worldwide (Fraga et al., 2019). One VOC and the
main indoor air contaminant linked to sick building syndrome is
formaldehyde, which is found in varnish and other decorating
supplies. Recent studies on VOC eradication through the
sorption process and PC degradation have used GBNs,
particularly GO, to minimize the damage that VOCs cause to
humans and the surroundings (Wang et al., 2013). Owing to the
oxygen FGs on its outer-layer, GO is probably going to have a lower
hydrophobicity than rGO and pristine graphene. As an outcome,
GO might have a lower ability for adsorbing aromatic VOCs than
the abovementioned analogs. For instance, rGO and GO were
revealed to have adsorption capabilities of 276.4 and 216.2 mg g-1,
respectively, in an ongoing flow reactor with an initial loading of
50 ppmC6H6. In comparison with GO, rGO can play a major part in
boosting the adsorption capability of aromatic VOCs due to its
hydrophobic nature and higher inclination to form π–π bonds. In
addition to hydrophobicity, it was hypothesized that the superior
adsorptive functioning of rGO was a result of its larger surface area
compared with GO. It was discovered that rGO and GO had surface
areas of 292.6 and 236.4 m2 g-1, respectively (Yu et al., 2018).
Toluene removal tests have also been conducted on the GO and
rGO. When demonstrating the desired adsorption of toluene on
their outer layers, the ability of GO and rGO to demonstrate π–π
bonds, hydrophobic interactions, and electrostatic attraction with
toluene can be helpful. Three different forms of GBN-graphene

platelets (GP), rGOMW, and KOH were mentioned in a study.
Toluene adsorption tests on activated rGOMW (rGOMWKOH)
were conducted, and the results obtained contrasted with AC (Kim
et al., 2018b) (it is noteworthy that the air conditioner used in this
instance is often used as a marketable air conditioner adsorption
filter). In removing the toluene, the adsorption capabilities of these
GBNs were 2, 7, and 14.4 mg g-1 for GP, rGOMW, and
rGOMWKOH respectively, and were ordered as follows:

GP < rGOMW < rGOMWKOH

Additionally, it was noted that the composite of GO and MOF-5
was effective at removing benzene gas, with an elimination capability
of 251 mg g-1 (Liu et al., 2015a). Because there were thought to be
weak and non-selective adsorption dynamisms between tiny
molecules and MOFs, it was hypothesized that, despite their
great porosity, MOFs were unable to hold onto tiny molecules in
ambient settings. The aforementioned issues in holding small
molecules were resolved by combining graphene-based materials
with MOFs. In this context, different amounts of GO, such as 1.75,
3.5, 5.25, and 7 wt%, were used to construct the GO/MOF-
5 composite. From all of these composites, the one made with
5.25 weight % GO had the maximum SA and volume of pore among
the evaluated GO andMOF-5 ratios, making it the best responder in
terms of benzene removal capability. Aliphatic VOCs, particularly
n-hexane, are commonly released into the environment (Sun et al.,
2014). The industries that typically use n-hexane are those that
produce shoes, bags, electronics, foodstuffs, lubricant extraction, and
chemicals. Adsorption of n-hexane is typically regarded as a secure,
quick, and affordable way of mitigating it. It was discovered that

TABLE 1 Adsorption characteristics of heavy metals by different GBNs.

S. No Adsorbent Contaminant qm

(mg/g)
Medium References

1 RGO/CoFe2O4 Pb(II) 299 Aqueous solution Zhang et al. (2014)

2 PEI-modified GO-alginate hydrogel Hg 374 Wastewater Arshad et al. (2019)

3 Thiol-functionalized GO/Fe-Mn Hg 233.17 Surface water, groundwater, and
seawater

Huang et al. (2019)

4 GO-based Fe-MgOH Ag 142.2 Polluted water Huang et al. (2018)

5 3-Mercapto propyl-trimethoxysilane
functionalized MGO

Hg 129.7 Aqueous solution Mohammadnia et al.
(2019)

6 GO Pb Polluted water Madadrang et al. (2012)

7 GO-manganese ferrite As(V) 102 Water Shahrin et al. (2018)

8 rGO Cd - Polluted water Wu et al. (2015)

9 GO-based Fe-Mg (Hydr)oxide Pb 617.3 Polluted water Huang et al. (2018)

10 ß-cyclodextrin decorated GO Pb 149.56 Polluted water Zheng et al. (2018)

11 RGO/CoFe2O4 Hg(II) 158 Aqueous solution Zhang et al. (2014)

12 GO-based Fe-Mg (Hydr)oxide Cu 432.9 Polluted water Huang et al. (2018)

13 PEI modified GO-alginate hydrogel Pb 602 Wastewater Arshad et al. (2019)

14 N-doped magnetic GO Co 14.6 Wastewater Wang et al. (2018)

15 GO-based Fe-Mg (Hydr)oxide Zn 121.7 Polluted water Huang et al. (2018)

16 PEI modified GO-alginate hydrogel Cd 181 Wastewater Arshad et al. (2019)
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using a GO/MIL-101 composite was a virtuous process to erase
n-hexane from the atmosphere. Despite the excellent n-hexane
elimination performance of graphene-based composites, few
studies have been conducted in this field. RCHO and RCOR are
the chief carbonyl VOCs influencing the atmosphere. GBNs have
also been successfully employed to eliminate carbonyl VOCs. An
amino-functionalized graphene aerogel was employed to remove
gaseous formaldehyde in a study, both in its pure usage and as a
compound with CNTs (Wu et al., 2017a). Chemical and physical
adsorption techniques were used to bind formaldehyde to the
aforesaid amino-functionalized graphene sheets. The van der
Waals interactions via amino and carbonyl moieties of CH2O
were principally accountable for the chemical adsorption process.
CNTs supported the graphene layers in the CNT-adjusted amino-
functionalized graphene aerogel (GN/E), which decreased the pore
diameter. The adsorptive functioning of GBNs has also been
investigated for ketonic VOCs (acetone and butanone) in
addition to aldehydes (Zhou et al., 2014; Guo et al., 2016).

Generally, the elimination of various VOCs showed excellent
promise when using graphene materials both on their own and in

combination with other strong structures. According to several
studies, these GBNs are far superior to traditional adsorbents like
AC and zeolites. Nonetheless, experimental variables like high or
low partial pressures of the target gaseous molecules may drastically
change how well the adsorbent material performs. It is noteworthy
to mention that some adsorbents function exceptionally well under
controlled circumstances. In more real-world settings, in which the
dosage of the target contaminant is lower than in an experiment,
these NMs, can function very badly. To eliminate the systematic bias
in such concerns, it is crucial to evaluate the effectiveness of
adsorbents by using appropriate metrics (including the partition
coefficient (PC)) to prevent these difficulties (Szulejko et al., 2019).

5.3 Removal of antibiotics

Pharmaceutical medications are a class of organic pollutants that
detrimentally impact public health and the atmosphere. Between
30% and 90% of these substances are still not degradable and are
ejected as active molecules in the surroundings, even at trace levels

FIGURE 8
Surface plots representing the removal efficiency (%) of antibiotics (garamycin and ampicillin) on magnetic-functionalized graphene
nanocomposites (MSG and SG, respectively) (Elessawy et al., 2020). (A, C, E) represent Surface plots of response for removal efficiency (%) of Garamycin
on MSG, (B, D, F) represent Surface plots of response for removal efficiency (%) of Ampicillin on SG.
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(Siddiqui and Chaudhry, 2018). The application of GBNs for the
adsorption of antibiotics has demonstrated potential in research
(Zhao et al., 2020). The adherence of organic materials on the
interface of GBNs is thought to be caused by five different possible
interactions, comprising hydrophobic effects, π-π- stacking,
H-bonds, covalent contacts, and electrostatic relations (Kim et al.,
2018a). When used as an adsorbent, graphene has great qualities for
removing antibiotics. As graphene is composed of just one C-sheet,
all of its atoms are easily contacted by antibiotics due to their
exposure to their surroundings on both sides (mostly through a π-π
interaction). Second, the porous shape and large surface area of
graphene adsorbents, as compared with conventional adsorbents,
make them a prime option for antibiotic surface reactions or quicker
diffusion, resulting in efficient and rapid adsorption (Perreault et al.,
2015). Third, the cost of producing graphene adsorbents on a wide
scale is less expensive than that of other high-performance
adsorbents (such as carboxyl multi-walled carbon nanotubes and
single-walled carbon nanotubes) with an equivalent antibiotic AC.
Moreover, antibiotic-polluted water and other organic and
inorganic pollutants can be efficaciously remediated using GBNs,
as shown in Figure 8.

Despite significant advancements in graphene adsorbent
technology, many intrinsic drawbacks remain to be addressed.
Surface hydrophobicity and facile agglomeration in aqueous
solution are graphene’s primary disadvantages, which
significantly reduce the material’s adsorption capability in real-
world applications (Bai et al., 2015). Thus, the development of
functionalized graphene is required to address these limitations
(Kumar et al., 2017). Chemically modified graphene has the
potential to generate oxygen-containing groups linked to its
carbon backbone, improving its dispersion and resulting in a
homogenous aqueous suspension. Two significant GBNP
branches created by chemically altering graphene are rGO and
GO. Research has used GO and rGO as adsorbents in numerous
experiments to retrieve several antibiotics from water-based
solutions (Rostamian and Behnejad, 2016). According to Chen
et al. (2015), GO efficiently adsorbs SMX and CIP at pH 5.0,
with maximum sorption capacities of 240 and 379 mg/g,
respectively. Liu et al. looked into the adsorption of two
sulfonamide pharmaceuticals from water using two rGOs (Liu
et al., 2016). These experimental findings indicate that GO and
rGO have a great deal of potential for absorbing various antibiotics.

Owing to the existence of functional moieties (such as COH and
CO2-) created by photocatalysts, antibiotics can be successfully
degraded or reduced into non-hazardous tiny molecular entities
under sunlight, VL (VL), or UV light in addition to adsorption (Li
et al., 2016a). Thus, PC degradation is among the most well-liked,
productive, and eco-friendly techniques for eliminating
environmental contamination caused by antibiotics. Its high
electrical conductivity, low manufacturing cost for large-scale
manufacturing operations, and specific surface area for even
distribution, the quick transmission of ēs, and narrow band-gap
energies, have made graphene a potentially lucrative photocatalyst
that has been comprehensively explored for the PC breakdown of
antibiotic pollutants in water. However, studies have shown that GO
cannot function in the VL area because its band gap is just 1.79 eV
(Anirudhan et al., 2017), and it easily loses its catalytic properties
during the self-aggregate procedure between the layers of graphene

(Julkapli and Bagheri, 2015). Consequently, to get around these
problems and increase the catalytic activity of antibiotics, graphene
is frequently mixed with other photocatalysts to create innovative
graphene-based photo-catalysts (GBPs). Various efforts (including
the use of different semiconductors) have been made to create and
manufacture GBPs in the last few years to increase the degradation
capacity of antibiotic pollutants. Antennas based on graphene-based
nanosheets are an effective solution for mitigating the many
drawbacks of individual semiconductors. Rich surface FGs and a
large specific SA of graphene materials may be linked to their strong
PC qualities, which help to increase adsorption efficiency.
Furthermore, combining different graphene materials may hasten
the electron transport and separate photo-induced electron-hole
pairs more quickly. The rGO/Bi2WO6 composites were produced by
Anirudhan et al. (2017) and used to remove CIP in a VL simulation.
The rGO/Bi2WO6 composites demonstrated an exceptional VL-
driven PC degradation rate of CIP (89.2%). This was most likely
caused by the rGO loading, which decreased the rate of electron-hole
recombination while simultaneously increasing adsorption and
catalytic sites. The produced ē could be effectively transferred
from the CB of Bi2WO6 to rGO under VL irradiation,
prolonging the lifespan of photo-excited ē/h+ couples. This
portion of the electrons could come into touch with the O2

present in the photodegradation system at the same time and
react swiftly to create CO2

− groups. The CO2
− and h+ produced

by photolysis can react further in water to break down CIP
molecules. This study demonstrated that adding Bi2WO6 to rGO
as a photocatalyst could effectively increase the PC activity of CIP
degradation under VL by ensuring higher electronic conductivity,
accelerating the separation of photo-induced electron-hole pairs,
and prolonging the electron transfer. Currently, an increasing
number of studies have concentrated on linked semiconductor
materials in conjunction with graphene, which typically offers the
major benefits of encouraging electron-hole pair separation and
preserving the reduction and oxidation events at two distinct
reaction sites (Tang et al., 2015). For example, the coupling of
other semiconductors (ZnS, ZnO, etc.) with CdS-graphene
composites has garnered a lot of interest because of its benefits,
which include increasing charge separation, extending the life of the
charge carrier, and increasing the effectiveness of charge
transmission (Huo et al., 2016). Furthermore, an Ag3PO4/BiVO4/
rGO heterojunction photocatalyst was successfully prepared by
Chen et al. (2017) using a simple in situ deposition method. The
catalyst demonstrated 90% removal effectiveness toward TC under
VL irradiation, which was significantly higher than that of pure
BiVO4 (56%), Ag3PO4/BiVO4 (82%), and rGO/BiVO4 (78%).
Compared with single semiconductors or single semi-conductor/
graphene composites, the PC activity of coupled semiconductor/
graphene composites can be significantly increased. Therefore,
creating a novel coupled semiconductor/graphene multi-
component photocatalyst and investigating the processes of
component interaction are crucial for the removal of antibiotics.

Additionally, by combining the benefits of graphene structure
with these materials, other methods such as combinations with other
functional nanoparticles, polymers, or optical fibers can also operate
as an extremely effective composite substance for eliminating
various antibiotics (Cao et al., 2016; Anirudhan and Deepa, 2017;
Lin et al., 2017b). These substances could substantially improve the
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photocatalytic effectiveness for antibiotic elimination by improving
the surface area, responsiveness, stability, active sites, charge
separation and transfer, and reaction of the photocatalyst. Lin
et al. created TiO2-rGO to eradicate SMX pollution in water
using an immobilized photoreactor and catalyst-coated side-
glowing optical fibers (SOFs). Higher light utilization efficiency
was achieved with SOFs by promoting light transmission directly
through the inner fiber cores to the photocatalysts coated on the
surface and the outer surface of the photocatalysts. This was a cost-
effective way to transfer photons in big reactors evenly and
efficiently without having to separate the photocatalysts from the
water (Lin et al., 2017a). Table 2 provides a comprehensive overview
of significant studies investigating the efficacy of GBNs as
adsorbents for the removal of antibiotics from water.

Although graphene-based photocatalysts can photodegrade
antibiotics, there is currently very little research regarding the
application of graphene-based photocatalysts for antibiotic
removal and the photodegradation of antibiotics in combination
with other materials. Thus, it is crucial to investigate the possibilities
of these materials in photocatalysis.

5.4 Persistent organic compounds

Persistent organic compounds (POCs) constitute a class of
organic chemicals characterized by their resistance to
environmental degradation, stemming from their chemical
stability and resistance to breakdown processes (Radjenovic and
Sedlak, 2015; Mantovani et al., 2023). Examples include
polychlorinated biphenyls (PCBs), dioxins, furans, organochlorine
pesticides, poly-brominated diphenyl ethers (PBDEs), and per- and
poly-fluoro-alkyl substances (PFAS) (Schulze et al., 2019; Gagliano
et al., 2020; Podder et al., 2021). POCs, which are prevalent due to
past industrial use, waste incineration, and certain consumer
products, pose environmental and human health risks. Their
persistence in ecosystems, ability to bio-accumulate, and potential
long-range transport underscore the need for global regulatory
efforts to mitigate their impact on environmental integrity and
public health. Graphene’s unique properties (Khaliha et al., 2021;
Mantovani et al., 2021; Lombardi et al., 2022) make it an ideal

candidate for adsorption and catalysis in the removal of POCs from
water. Graphene oxide (GO) and reduced graphene oxide (rGO),
which are derivatives of graphene, exhibit increased adsorption
capabilities due to their functional groups and large specific
surface area (Mantovani et al., 2022; Mantovani et al., 2023).
These nanomaterials can effectively capture POCs through π-π
stacking, hydrogen bonding, and other interactions. Additionally,
the incorporation of other nanoparticles onto graphene surfaces can
further increase their adsorption capacities. The efficient
regeneration of graphene-based adsorbents adds to their appeal
for long-term use. Thus, the utilization of graphene-based
nanomaterials for the removal of POCs has emerged as a
promising avenue in environmental remediation. For instance,
Ren et al. investigated the adsorption behavior of six
polychlorinated biphenyl (PCB) congeners using pristine
graphene (GN), graphene oxide (GO), and sulfonated graphene
(SG) at environmentally relevant concentrations ranging from
picograms to micrograms per liter (Ren et al., 2019). GN
demonstrated superior adsorption capacities to GO and SG,
which was primarily attributed to increased surface adsorption. A
conspicuous planarity effect was observed in the adsorption of PCB
congeners on all graphene nanomaterials at low aqueous
concentrations (0.01–10 ng L−1), which diminished as the
concentration increased. Notably, functionalized graphene,
especially SG, exhibited a more pronounced planarity effect than
pristine GN, particularly at lower concentrations. Under acidic or
alkaline conditions, the planarity effect on GOwas attenuated due to
the preferential dispersion of GO particles in the solution. However,
the planarity effect on SG remained minimally impacted by changes
in the pH of the solution. Lower temperatures increased the
planarity effect in the adsorption of PCBs on both functionalized
graphene materials, with SG displaying a lower increase than GO.
Conversely, elevated temperatures resulted in the suppression of the
planarity effect. Additionally, a boron-doped graphene sponge
anode was synthesized and employed by Nick et al., for the
electrochemical oxidation of C4-C8 per- and poly-fluoroalkyl
substances (PFASs) (Duinslaeger and Radjenovic, 2022).
Operating in low conductivity electrolyte and one-pass flow-
through mode, removal efficiencies ranged from 16.7% to 67% at
an anodic current density of 230 Am−2, with an energy consumption

TABLE 2 Adsorption characteristics of antibiotics by different GBNs.

S. No Adsorbent Contaminant qm (mg/g) Medium References

1 GO SMX 240 Polluted water Chen et al. (2015)

2 rGO SMZ 174.42 Aqueous solution Song et al. (2016)

3 GO nanosheet SMX 127 Water Rostamian and Behnejad (2016)

4 Graphene nanosheet SMX 103 Water Rostamian and Behnejad (2016)

5 Fe/Cu-GO TC 201.9 Water Tabrizian et al. (2019)

6 Fe3O4@G TC 423 Water Zhang et al. (2017)

7 GO/TiO2 CTC 261.10 Aqueous solution Li et al. (2017b)

8 M-GNPs AA 106.38 Aqueous solution Kerkez-Kuyumcu et al. (2016)

9 Nano-GO/M CIP 1.36 Polluted water Alicanoglu and Sponza (2017)

10 MGB TC 388.33 Aqueous solution Li et al. (2017a)
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of 10.1 ± 0.7 kWh m−3. The removal mechanisms included
electrosorption (ES) (7.4%–35%) and electro-oxidation (9.3%–

32%). Defluorination efficiencies for C4-C8 per-fluoro-alkyl
sulfonates and acids ranged from 8% to 24%, with efficient
fluoride recovery (74%–87%) suggesting effective C-F bond
cleavage. Stoichiometric sulfate recoveries (91%–98%) indicated
the proficient cleavage of sulfonate head-groups. Adsorbable
organic fluoride analysis revealed the ES of remaining partially
defluorinated byproducts during the current application, which
were released into the solution after current cessation. This
proof-of-concept study highlights the graphene sponge anode’s
capability for C-F bond cleavage and defluorination of PFAS,
offering the potential for the electrochemical degradation of
PFAS-laden wastewaters and brines due to the anode’s
electrochemical inertness toward chloride and absence of chlorate
and perchlorate formation, even in brackish solutions. Moreover,
graphene nanosheets and nanoplatelet-alginate composite hydrogels
were synthesized by Francesca et al., through ionic gelation for the
removal of emerging contaminants (ECs) from tap water (Tunioli
et al., 2023). The resulting gel beads exhibited a porous structure
with a uniform distribution of graphene materials on pore surfaces.
The adsorption kinetics of graphene-related materials (GRMs) were
notably faster than granular activated carbon (GAC), a benchmark
industrial sorbent, with an ofloxacin removal capacity 2.9 to
4.3 times higher. Confocal Raman microscopy mapping and SEM
confirmed the gel bead structure and GRM distribution. Adsorption
isotherm studies, as shown in Figure 9, revealed a high maximum
adsorption capacity of 178 mg/g for rhodamine B, which was
comparable with powered activated carbon.

Regeneration tests, as shown in Figure 10, demonstrated the
resilience of the gel beads, maintaining adsorption performance
even after saturation and washing with ethanol. Repeated reuse
cycles up to the fourth cycle showed no significant loss of
adsorption efficiency. These findings highlight the potential of
graphene-based composite hydrogels for effective EC removal,
including bisphenol A, ofloxacin, and diclofenac, from tap water.
The study suggests the promising application of these materials

in water treatment, offering advantages in terms of both
adsorption kinetics and recyclability.

Overall, the application of graphene-based nanomaterials in
POC removal showcases a promising and sustainable approach
to addressing environmental pollution challenges. Ongoing
research continues to explore and optimize these materials for
practical and large-scale remediation applications.

5.5 Other contaminants

Surface area and pore size distribution are the main surface
characteristics that affect adsorption on graphene. Although there is
no porosity, pristine graphene possesses an extremely high specific
surface area. Porosity can be added to graphene to significantly
increase its adsorption efficacy by mixing it with other porous
materials, such as silica, chitosan, and gelatin (Lin et al., 2017a;
Fan et al., 2019). By adding various functional groups, good
adsorption performance can also be attained. The formation of
bonds with the adsorbate is facilitated by these functional groups.
The example of GO and rGO, which have many oxygen-containing
functions that can form bonds with the adsorbate, makes this quite
visible. Consequently, the successful application of functionalized
graphene-based nanocomposites in environmental remediation
depends on their ability to be fabricated with a wide surface area,
high porosity, and oxygen-containing functionalities, as
demonstrated in section 4. As this section discusses, graphene-
based adsorbents have been used to remove a variety of organic
contaminants thus far, but with many changes made to the original
graphene structure.

Using graphene-based materials to remove aromatic polycyclic
polar and non-polar chemicals has been reported in multiple cases.
The adsorptive removal of polar and non-polar PAHS is facilitated
by the π-π interactions, hydrophobic effect, and van derWaals forces
between graphene-based adsorbents and PAHS. Colloidal graphene
oxide nanoparticles (GONPs) were used to study the adsorptive
characteristics of a variety of aromatic compounds, including polar
(1-naphthylamine and 1-naphthol) and non-polar (PYR, PNT,
NAP, and DCB) molecules. This research was conducted by
Wang et al. (2014). The strong hydrophobicity of PYR and PN
was the cause of their high adsorption affinities. The adsorption
affinity order for the hydrophobic effect was determined by

FIGURE 9
Monolayer adsorption capacity (Qm) of RhB as a function of the
oxidation degrees expressed as the O/C ratio (Tunioli et al., 2023).

FIGURE 10
Regeneration test of alginate and alginate-graphene beads
(Tunioli et al., 2023).
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normalizing the adsorption data, and it was PYR > PNT > NAP >
DCB. In addition to the hydrophobic impact and van der Waals
forces, π electron-rich PAHs and electron-depleted portions of
strongly polarized graphitic surfaces communicate through π-π
electron donor-acceptor (EDA+) interactions. The adsorption
capacities of GONPs were increased by the π-π interactions,
Lewis acid-base interactions, and H-bonding between 1-
naphthylamine and 1-naphthol (Wang et al., 2014).

Just as there are several papers on PAHs, graphene-based
adsorbents have also shown promise for phenolic compound
removal. In-depth adsorption is influenced by the adsorbent
surface area and degree of reduction. According to Wang et al.
(2015), PNT and 1-naphthol significantly increase the adsorption
affinities of GO nanoparticles (GONPs) in the presence of sulfide.
The increased surface hydrophobicity of GO following Na2S
treatment was the cause of the higher PNT adsorption. The
increase in adsorption in the naphthol example resulted from the
phenolic and carboxyl groups on the surface of GO converting from
epoxy/ether groups, allowing for a deeper H-bonding between 1-
naphthol and GONPs. Another study examined the theoretical and
experimental relationships between phenol naphthol and rGO (Yu
et al., 2017). Both phenol and naphthol were adsorbed on rGO,
according to the pseudo-first-order model. When the pKa value was
reached, the removal capacity increased along with the pH, at which
point the negatively charged rGO and anionic phenols experienced
electrostatic repulsions. The π-π EDA interactions caused the
phenols to be adsorbed. Using the projector augmented wave
(PAW) approach and the PBE functional at the GGA, the
authors performed DFT. The computed Eads further supported
the final closest interaction’s finding that naphthol exhibited
stronger π-π interactions with the rGO plane than phenol. The
adsorption of 4-CP on pure graphene (Gupta et al., 2018), GO, and
N- and B-doped graphene was investigated using DFT (Cortés
Arriagada et al., 2013). Because of hydrogen bonding, the 4-CP
adsorption on GO was stronger than on PG, as demonstrated by a
molecular dynamics simulation using the PM6 potential. Because
graphene is an acceptor, the charge density distribution showed
electron transport from 4-CP to graphene. However, in the case of
GO, it was discovered that the dispersion and H-bonding
interactions caused the oxygen functions to take an electron from
graphene and then transfer it to 4-CP. The adsorption of N- and
B-doped graphene was determined by the authors to be equivalent to
that of PG for 4-CP. By raising the doping concentration on the
surface, it is possible to somewhat increase the adsorption on
N-doped graphene. Using DFT-D3 computations with the
revPBE/def2-TZVP theory model, Abadee et al. (2019) recently
investigated the interaction of phenol and water molecules with
graphene and graphene nanobuds. As these forces have an impact
on the binding behavior of the interacting species, the DFT-D3
research investigation of non-local dispersion forces is crucial in this
situation. In comparison to water molecules, greater phenol
adsorption was made possible by the simultaneous presence of π-
π stacking and electrostatic interactions on graphene and graphene
nanobuds. Because of its higher SSA, graphene nanobuds turned out
to be a superior adsorbent to graphene. Another theoretical study
used DFT research with GO as the adsorbent to examine the
adsorption behavior and mechanism of phenol, 4-CP, 2,4-diCP,
and 2,4,6-triCP (Wei et al., 2019). They used DFT-D3 simulations to

account for dispersion corrections to determine the most stable
geometry because the weak interactions in the sorption system have
an impact on the geometry. Theoretical data led the authors to
conclude that the adsorption process is primarily driven by the
hydrophobic effect, H-bonding, and π-π interactions. MD
simulations provided more support for this finding. Additionally,
it was discovered that adsorption affinity increased with increasing
numbers of hydroxyl groups on GO and decreasing numbers of
chloro groups on phenols. Moreover, the presence of polar solvents
and acidic environments strengthened H-bonding and electrostatic
interactions.

Another significant class of organic contaminants is dyes. Dyes
are released into the water by a wide range of industries, including
printing, textile, dyeing, paper manufacture, tanning, and painting.
The majority of colors dissolve in water and are either cationic or
anionic. Most dyes have complex chemical structures, are long-
lasting, and do not break down naturally. Additionally, some colors
are toxic to humans. They disrupt natural cycles and present several
health risks to living things (US EPA). For instance, it has been
found that approximately 10% of the dyes, which are highly
carcinogenic and toxic, are released into WW (Uddin et al.,
2009). Furthermore, dyes change the color of water, interfering
with aquatic plants’ ability to photosynthesize, blocking sunlight,
and creating an unbalanced aquatic ecosystem (Thakur and
Kandasubramanian, 2019). Therefore, taking into account the
possibility of environmental toxicity and public health harm,
these dyes must be removed. Van der Waals forces, π
interactions, and oxygen-containing groups cause the positively
charged amino groups of dye molecules to engage
electrostatically with the negatively charged surface of the
adsorbate, which is how most dye removals are accomplished.

GO-hydrogel porous nanocomposites were created by
Pourjavadi et al. (2016), who also investigated the impact of the
hydrogel’s porosity on dye adsorption. By incorporating CaCO3 in
varying concentrations and then removing it, they were able to get
varied porosities. The exceedingly high porosities they discovered
allowed for an exceptionally high AC. The Langmuir isotherm
model (LIM) and the pseudo-second-order kinetics model
provided the best description of the adsorption. To adsorb MB,
Mercante et al. (2017) fabricated PMMA nanofibers wrapped with
rGO (PMMA-rGO) and found that the spontaneous adsorption was
driven by the π-π stacking interactions. The adsorption of MB dye
was best characterized by the pseudo-second-order kinetics model
and the LIM. Furthermore, Huong et al. (2018) produced magnetic
manganese ferrite/GO nanocomposites to adsorb MB dye.
According to their proposal, GO nanosheets are primarily
involved in the interactions that cause dye molecules to adsorb,
such as π-π interactions, oxygen-containing groups, and
electrostatic/ionic interactions. To improve electrostatic/ionic
interactions, π-π electron coupling, and other oxygen-containing
functional groups, such as carboxyl, epoxy, and hydroxyl groups,
they raised the concentration of GO, which in turn boosted
adsorption activity. The best agreement was found between the
adsorption isotherm data and kinetics and the pseudo-second order
kinetics model and Langmuir isotherm model. In a different study
(Wang, 2017), it was shown that magnetic graphene nanoparticles
(Fe3O4@GNs) had increased MB adsorption capability upon a
decrease in C=O groups. The kinetics results demonstrated that
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MB dye and Fe3O4@GNs undergo chemisorption through π-π
interactions, as predicted by the pseudo-second-order model.

In addition to the cationic dyes previously described,
graphene-based adsorbents have been widely employed in the
elimination of diverse anionic dyes. GO was used by Konicki et al.
(2017) to adsorb the anionic azo dyes acid orange 8 (AO8) and
direct red 23 (DR23). The isotherm model approximated the
Langmuir form, while the kinetics model neared pseudo-second-
order kinetics. Owing to the deprotonation of the -COOH and
-OH groups at basic pH, which created electrostatic repulsive
forces with the sulfonate anions (RSO3

−) in the dye molecules, the
effectiveness of adsorption reduced with increasing pH. Apart
from the electrostatic interactions, the adsorption of dyes onto
GO was also facilitated by H-bonding and π-π stacking
interactions. They proposed that for the DR23 ions to reach
the adsorption sites, they must first (at least partially) exit the

hydration shell, which necessitates energy input. As a result, for
DR23 and AO8, the adsorption process is exothermic and
endothermic, respectively. The two color adsorption values for
ΔGo fell within the physisorption range.

The literature makes it abundantly evident that while GO’s
anionic groups and anionic dyes experience high electrostatic
repulsion, GO shows significant cationic dye adsorption through
the formation of electrostatic interactions. Because of the additional
stacking interactions, GBNs can effectively behave as excellent
adsorbents for cationic and anionic dyes. Wang et al. investigated
the adsorption of a neutral dye, acridine orange (AO), in addition to
cationic and anionic dyes (Wang et al., 2016). They coated a
graphene oxide sheet (GO) with calcium silicate after depositing
Fe3O4 nanoparticles, creating an MGSi graphene oxide composite.
Because MGSi contains carboxylic groups, which give its surface a
negative charge at pH values greater than 2.8, which are

TABLE 3 Adsorption characteristics of different contaminants by different GBNs.

S. No Adsorbent Contaminant qm (mg/g) Medium References

1 rGO/TNT MB 26.3 Wastewater Nguyen and Juang (2019)

2 GO/MOF-5 Ethanol 158.2 Polluted water Liu et al. (2015a)

3 Fe3O4/rGO Simazine 88.58 Aqueous medium Boruah et al. (2017)

4 Fe3O4@GO MB 131.1 Wastewater Ganesan et al. (2018)

5 Mg(OH)2-GO CR 118.4 Polluted water Liu et al. (2015b)

6 HCSs/GAs MO 344.1 Wastewater Hou et al. (2019)

7 GA RhB 111 Contaminated water Tang et al. (2019)

8 Fe3O4@SiO2/GO CVL 769.23 Aqueous solution Pourjavadi et al. (2016)

9 rGO/ZIF-67 CVL 1714.2 Polluted water Yang et al. (2018b)

10 GO/silk fibroin MB 1,322.71 Dyeing wastewater Wang et al. (2019)

11 Fe3O4/rGO Prometryn 91.34% Aqueous medium Boruah et al. (2017)

12 Cu-BTC@GO Toluene 838.5 Polluted water Li et al. (2016b)

13 GO DR23 15.3 Aqueous solution Konicki et al. (2017)

14 GA MB 76.0 Contaminated water Tang et al. (2019)

15 3D graphene MO 27.932 Aqueous solution Labiadh and Kamali (2019)

16 Fe3O4/rGO Simetone 81.22% Aqueous medium Boruah et al. (2017)

17 GA MG 352 Contaminated water Tang et al. (2019)

18 HCSs/GAs RhB 441.5 Wastewater Hou et al. (2019)

19 SCGOM MG 289.1 Aqueous solution Gao et al. (2015)

20 GO LEV 256.6 Polluted water Dong et al. (2016)

21 Fe3O4/rGO Attrazine 75.24% Aqueous medium Boruah et al. (2017)

22 rGO/NMA CR 473.93 Single and binary water Wu et al. (2017b)

23 MF-GO MB 190.8 Aqueous solution Huong et al. (2018)

24 rGO Benzene 276.4 Polluted water Yu et al. (2018)

25 UiO-67/GO OPP 482.69 Contaminated water Yang et al. (2017a)

26 Fe3O4/rGO Ametryn 93.61% Aqueous medium Boruah et al. (2017)

27 GA MO 16 Contaminated water Tang et al. (2019)
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electrostatically attracted toward the positively charged AO, these
nanocomposites could adsorb up to 193.05 mg g-1. The highest AC
was attained at pH 6, and it increased as pH rose. Because AO is
neutral andMGSi has a negative charge in the basic medium, the AC
is reduced.

Pesticide removal is also a big concern because of the
widespread use and careless application of these chemicals in
drinking water. Agricultural, dairy, and insect control still use a
lot of pesticides, which are organic aromatic compounds.
Furthermore, herbicides have been used in veterinary treatment
and home gardening. Even in extremely low concentrations, they
are dangerous to living things. Because pesticides can cause
neurotoxicity and cancer, and are involved in other illnesses,
their routine usage is not recommended (Paramasivan et al.,
2019). Moreover, acetylcholinesterase enzyme inhibitors, which
cause nervous system dysfunction, are the reason that
organophosphorus insecticides are hazardous (Fraga et al.,
2019). Numerous research teams have also investigated
employing graphene-based materials as adsorbents to remove
pesticides from aqueous solutions. Strong electrostatic and π-π
interactions reduce pesticide absorption. Adsorption efficiencies
for ametryn, prometryn, simazine, simetone, and attrazine at
pH 5°C and 25°C were reported by Boruah et al. (2017) as
93.61, 91.34, 88.58, 81.22, and 75.24%, respectively, on the
Fe3O4/rGO nanocomposite. Because of the greatest electrostatic
interactions and the least amount of iron leaching from the
adsorbate, the AC reduced as pH increased and reached its
maximum at pH 5. It was discovered that the Fe3O4/rGO
nanocomposite’s oxygen-containing functions and the
pesticide’s ≡N+‒ group interacted electrostatically. The most
beneficial adsorption was facilitated by the strong π-π
interactions. Additionally, metal-organic framework/graphene
oxide hybrid nanocomposites (UiO-67/GO) were created by
Yang et al. (2017a) to remove OPP hydrocarbons. According to
the findings, 482.69 mg g-1 of glyphosate adsorbed at
pH 4 corresponds to the Langmuir model and the pseudo-
second-order kinetics model. The XPS tests demonstrated that
the favorable adsorption is caused by the interaction between the

phosphate group of glyphosate and the oxygen-containing FGs on
the surface of UiO-67/GO. The significant increase in crude oil
discoveries and the boom in petrol products have had detrimental
effects on, and ultimately destroyed, many ecosystems.
Furthermore, the main environmental issue that frequently
arises in water or along beaches is the seepage of oil from oil
drilling facilities. To lessen the negative impact on the marine
ecosystem, research on the adsorption of leaky lubricants from
contaminated H2O has been essential (Tsang et al., 2017).
Successful recent studies on the adhesion of oil suspensions on
GBNs have demonstrated strong adsorption capacities. Extremely
spongy GBNs, or xerogels, have recently been created as state-of-
the-art oil adsorbents; several of them include magnetic metallic
nanospheres that are connected to them and characterized by high
recyclability. Table 3 provides a comprehensive overview of
significant studies investigating the efficacy of GBNs as
adsorbents for the removal of antibiotics from water.

6 Risks of GBNs to human health and
environment

NMs based on graphene have been applied in a variety of fields,
including biomedicine and environmental exposures. However,
even so, the level of toxicity needs to be taken into consideration
if it is to be used for human and environmental applications.
Understanding and categorizing GBNs according to their
applications and safety requirements requires an understanding
of how biological characteristics interact with them. When used
in non-biomedical applications, GBNs have the potential to be
harmful when exposed to the environment (Fadeel et al., 2018).
Intentionally or accidently, humans come into touch with GBNs,
especially those who create and live in the suburbs of an industrial
manufacturing setting. GBNs, which are mostly introduced into the
ecosystem through waste from industrial or pharmaceutical
production, are exposed by regular people. Different organs may
be impacted depending on how GBNs enter the body through
biological barriers or blood flow. Owing to their nanosize, surface

FIGURE 11
Cellular toxicity of graphene oxide-based NMs (Zare et al., 2021).
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morphology, complexation, charge, impurities, aggregation, corona
effects, and physical destructions, GBNs can pass through the blood-
air, blood-brain, blood-testis, and blood-placental barriers, as well as
the blood-air, blood, and placental barriers. Several cellular
processes, including oxidative stress, DNA destruction,
inflammatory response, localized cell death, autophagy, and
necrosis, are important contributors to the toxicity of GBNs (Ou
et al., 2016), as shown in Figure 11.

They represent a significant hazard to the aquatic ecosystem. As
a result, GBNs found in soil or water are also ingested by people
through a variety of methods, including through the food chain. The
environmental effects of GBNs have only been briefly examined by a
few researchers (Chowdhury et al., 2015). The immediate impacts of
GO on the microbial population in wastewater were examined by
Ahmed and Rodrigues (2013). According to their findings, GO was
hazardous to microorganisms at concentrations ranging from 50 to
300 mg L-1. Because of the increase in water turbidity and decrease in
sludge dewaterability, the effluent’s quality worsened. The harmful
effects of GO on microbial populations were also confirmed to be
caused by the creation of reactive oxygen species (ROS). Hence, it is
important to comprehend how GBNs interact with one another and
how harmful they are at the cellular and molecular levels. The dose,
the form and chemistry of the surface, the exposure route, purity,
etc., are some of the elements that are crucial in figuring out the level
of toxicity, as shown in Figure 12.

However, Deng et al. looked at characterization elements,
including the hazardous impact, destiny, and exposure factor of
GO, in the atmosphere to examine the life cycle influence of GO-
BNs (Deng et al., 2017). Moreover, the layered architecture of GBNs
is controlled by the surface chemistry, which also makes it simpler to
comprehend the active surface area and flexural rigidity while
carrying out any biofunctionalization feature. The lateral
dimension, which is useful for biological aspects including cell
uptake, renal clearance, and transit across the blood-brain
barrier, can be utilized to ascertain the dimension of the
substance. Regarding the use of NMs based on graphene, purity
is another issue. The residual and unreacted compounds that are
produced throughout the synthesis process must be kept under
observation and eliminated. To report the toxicity features of GBNs

for biological investigations, numerous characterizations must be
carried out. Researchers have suggested using GBNs for a broad
array of biomedical purposes by assessing their toxicity and safety in
many investigations.

7 Conclusion and outlook

The understanding of utilizing graphene-based nanomaterials
in various applications, particularly for addressing environmental
challenges, has significantly progressed in recent years. The special
characteristics of graphene have created new opportunities for
augmenting GBN functioning in a broad array of fields, such as
wastewater treatment. However, the advancement made possible
by the use of graphene was only marginally better than that made
possible by other carbon-based NMs or even by more conventional
carbonaceous materials, such as activated carbon. In this review,
we examined a few current progressions in the fabrication and use
of graphene and GBNs in the elimination of contaminants from
water. The extraordinary characteristics of GBNs, such as their
large SA, several unsaturated π-bonds, mechanical characteristics,
and adsorption capacities, have also been elucidated, with a special
emphasis on those that favor sensor platforms and environmental
applications of this material, such as water remediation.
Nevertheless, the utilization of GBNs as adsorbents in the
environment should not be limited to water treatment and
should to be expanded to include air and soil filtration.
Without causing additional deterioration, the high AC and
physisorption can be used to remove and separate contaminants
from the soil, air, and water. Traditional contaminants including
dyes, insecticides, and organic solvents, have been the subject of
the majority of investigations. Therefore, research on new
contaminants such as oil, grease, antibiotics, phenolics, oxygen-
demanding wastes, and derivatives of octanoic acid will be needed
in the future.

Despite the numerous indications that demonstrate the value of
GBNs as adsorbents, there is no recognition of their extensive use in
environmental cleaning. This is because toxicity, which includes
both short- and long-term exposure to individuals and their
surroundings, is a problem that is almost completely disregarded.
As a result, concerns about the impacts on public health and the
environment have been raised in the scientific community. As the
waste from GBN manufacture is released rapidly into the biological
environment, it was expected and later observed that the
marketplace for GBN merchandise would reach millions of
dollars in coming years. It is essential to have a thorough
understanding of the interaction between GBNs and the
biological system as well as the possible toxicity of GBNs to the
natural environment to fully exploit their application advantages in
biomedicine and minimize their influence on the environment. It is
obvious that the chemical manufacture of GBNs and their sensor
applications is far from mature, and none of them have yet touched
the industrial scale, given the quick display of more intriguing
features of these materials. Overall, the discussion makes clear
that the progress accomplished thus far is impressive. A cost-
effective and practical methodology for fabricating high-quality
graphene on a wide gage that is also ecologically benign is still
needed. In addition, even though numerous studies have

FIGURE 12
Numerous factors affecting the cytotoxicity of graphene-based
materials (Tadyszak et al., 2018).
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demonstrated that the adsorbents of GBNs can be reprocessed,
these studies are yet rare, and future studies must focus on more
creative approaches to facilitate the parting and renaissance of
GBN’s adsorbents.

Furthermore, research on GBNs is still in its early stages and needs
additional inputs, but thus far, they seem to be excellent prospects for
water treatment applications. The use of GBNs as adsorbents will be
revolutionized bymore advancements in several fields. Furthermore, with
advancements in nanomaterial fabrication, additional graphene-based
materials should be produced in future research. Understanding of the
many characteristics and phenomena linked to GBNs, especially as
adsorbents for water treatment, can be aided by this review, which
can also assist researchers in realizing the full potential of GBNs.
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