AUTHOR=Zhou Dantong , Li Dongxiang , Chen Zhi TITLE=Recent advances in ternary Z-scheme photocatalysis on graphitic carbon nitride based photocatalysts JOURNAL=Frontiers in Chemistry VOLUME=Volume 12 - 2024 YEAR=2024 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2024.1359895 DOI=10.3389/fchem.2024.1359895 ISSN=2296-2646 ABSTRACT=Over the last few years, dDue to the its excellent photocatalytic performance over the last few years, graphitic-like carbon nitride (g-C3N4) has garnered considerable notice as a photocatalyst. Nevertheless, several limitations, including small surface area, the rates at which photo-generated electrons and holes recombine are swift, and the inefficient separation and transport of photoexcited carriers, continue to impede its utilization of solar energy utilization. ToIn order to overcome those limitations in singlecomponent g-C3N4, constructing a heterogeneous photocatalytic system has emerged as an effective way. Among the various studies involving the incorporation of hetero composite materials to design heterojunctions, among the most promising approaches is to assemble a Z-scheme photocatalytic configuration. The Z-scheme configuration is essential because it facilitates efficient photocarrier separation and exhibits superior redox ability in separated electrons and holes.This is attributed to its excellent ability to facilitate efficient photocarrier separation and exhibit superior redox ability in separated electrons and holes. Moreover, ternary composites have demonstrated enhanced photocatalytic activities and reinforced photostability. Ternary Z-scheme heterostructures constructed with g-C3N4 possess all the above-mentionedaforementioned merits and provides a pioneering strategy for the implementing implementation of photocatalytic systems for environmental and energy sustainability purposes. A brief summary of with the latest technological advancements toward design and fabrication in ternary all-solid-state Z-scheme (ASS Z-scheme) and direct Z-scheme (D Z-scheme) photocatalysts built on g-C3N4 is presented in this review. Furthermore, the review also discusses the application of ternary Z-scheme photocatalytic architecture established on g-C3N4 .